Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 kwietnia 2025 18:07
  • Data zakończenia: 13 kwietnia 2025 18:28

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. analogowy omomierz
B. amperomierz oraz woltomierz
C. watomierz oraz amperomierz
D. cyfrowy watomierz
Wykorzystanie watomierza cyfrowego do pomiaru rezystancji przewodów jest nieodpowiednie, ponieważ watomierz służy do pomiaru mocy elektrycznej, a nie do oceny rezystancji. Watomierz mierzy moc czynną, wyrażoną w watach, na podstawie pomiaru napięcia i natężenia prądu oraz współczynnika mocy. Użycie tego narzędzia w kontekście pomiaru rezystancji prowadzi do mylnych rezultatów, ponieważ nie uwzględnia ono specyfiki rezystancji, która jest niezależna od mocy. Podobnie, połączenie amperomierza i woltomierza również nie jest właściwe, gdyż te urządzenia mierzą natężenie prądu i napięcie, a do obliczenia rezystancji potrzebne jest odniesienie do wartości mierzonej bezpośrednio, co wymaga zastosowania omomierza. W przypadku watomierza i amperomierza, pomiar rezystancji wymagałby dodatkowego przeliczenia, co wprowadza niepotrzebne komplikacje i możliwość błędów. Coraz częściej w praktyce inżynierskiej wykorzystuje się zalecenia dotyczące stosowania omomierzy, które zapewniają dokładność i prostotę pomiarów. Zrozumienie tego, że każdy instrument ma swoje specyficzne zastosowanie, jest kluczowe dla przeprowadzania efektywnych i dokładnych pomiarów w elektrotechnice.

Pytanie 2

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Badanie stanu izolacji podłóg
C. Pomiar impedancji pętli zwarciowej
D. Badanie wyłącznika różnicowoprądowego
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 3

Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na co najmniej

A. 300/500 V
B. 300/300 V
C. 450/750 V
D. 100/100 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 4

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla zmywarki
B. zasilającego gniazdka w łazience oraz kuchni
C. zasilającego gniazdka jedynie w kuchni
D. oddzielnego dla urządzeń gospodarstwa domowego
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 5

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,60 V
B. ± 4,30 V
C. ± 4,50 V
D. ± 4,40 V
Błędy w obliczeniach błędów bezwzględnych pomiaru mogą wynikać z niedokładnego zrozumienia klasy dokładności miernika oraz sposobu jej zastosowania. W przypadku analizowania błędów pomiarowych istotne jest, aby pamiętać, że klasa dokładności odnosi się do całego zakresu pomiarowego, a nie tylko do konkretnego odczytu. Na przykład, niektóre odpowiedzi mogłyby sugerować, że błąd bezwzględny pomiaru wynosi ± 4,30 V lub ± 4,40 V, co jest wynikiem mylenia wartości procentowych z rzeczywistymi pomiarami. Klasa 1,5% oznacza, że błąd ten powinien być obliczany z całkowitego zakresu, a nie bezpośrednio z odczytu. Ponadto, pomijanie kontekstu zastosowania miernika oraz jego ograniczeń prowadzi do nieprawidłowych wniosków, co może być krytyczne w praktycznych zastosowaniach, takich jak instalacje elektryczne. Przykładowo, nieprawidłowe oszacowanie błędu pomiarowego może prowadzić do niewłaściwego doboru komponentów systemu lub nieprawidłowej oceny stanu instalacji, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz efektywność energetyczną całego systemu. Dlatego tak ważne jest, aby przy obliczaniu błędów pomiarowych zawsze stosować przyjęte normy i metodyki, zapewniając rzetelność wyników.

Pytanie 6

Który z wymienionych elementów zabezpiecza nakrętki przed odkręceniem?

A. Podkładka dystansowa.
B. Podkładka sprężysta.
C. Tuleja redukcyjna.
D. Tuleja kołnierzowa.
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 7

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. we wszystkich pomieszczeniach.
B. w łazienkach.
C. w sypialniach.
D. w holach.
Odpowiedzi wskazujące na instalację gniazd z kołkami ochronnymi w holach, sypialniach czy we wszystkich pomieszczeniach mogą wynikać z niepełnego zrozumienia przepisów dotyczących bezpieczeństwa elektrycznego. Warto zaznaczyć, że chociaż gniazda z kołkami ochronnymi są ważnym elementem instalacji elektrycznych, ich umiejscowienie powinno być zgodne z warunkami panującymi w poszczególnych pomieszczeniach. Hol, jako przestrzeń o niskim ryzyku kontaktu z wodą, nie wymaga stosowania gniazd z kołkami ochronnymi w takim stopniu, jak łazienki. Z kolei w sypialniach również nie jest to standardem, ponieważ te pomieszczenia są mniej narażone na kontakt z wodą, co zmniejsza ryzyko porażenia prądem. W odniesieniu do odpowiedzi mówiącej o 'wszystkich pomieszczeniach', warto wskazać, że takie podejście może prowadzić do niewłaściwego planowania instalacji elektrycznych, które powinny być dostosowane do specyfiki każdego pomieszczenia. W praktyce, stosowanie gniazd z kołkami ochronnymi powinno być zróżnicowane w zależności od miejsca, aby zapewnić efektywne zabezpieczenia, które są zgodne z wymogami norm PN-IEC 60364. Dlatego ważne jest, aby projektanci i wykonawcy instalacji elektrycznych dokładnie znali przepisy i dostosowywali je do warunków panujących w każdym pomieszczeniu, co jest kluczowe dla zachowania bezpieczeństwa użytkowników.

Pytanie 8

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia: <br> 1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy<br> 2. zmywarka - 3,5 kW - obwód jednofazowy<br> 3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy<br> 4. pralka automatyczna - 4,5 kW - obwód jednofazowy<br><br/> Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 9

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po wyłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć miejsce pracy.
B. rozłożyć dywanik elektroizolacyjny w miejscu pracy.
C. powiadomić dostawcę energii.
D. zabezpieczyć obwód przed przypadkowym załączeniem napięcia.
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 10

Które z wymienionych materiałów stosowane są do wykonywania izolacji żył przewodów elektrycznych?

A. Polwinit i mika.
B. Guma i krzem.
C. Polwinit i guma.
D. Mika i krzem.
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 11

Który z wymienionych łączników instalacyjnych jest przeznaczony do niezależnego sterowania dwoma sekcjami źródeł światła w żyrandolu?

A. Schodowy.
B. Świecznikowy.
C. Dwubiegunowy.
D. Krzyżowy.
Wybór łączników schodowych, krzyżowych czy dwubiegunowych nie jest właściwy w kontekście niezależnego sterowania sekcjami źródeł światła w żyrandolu. Łączniki schodowe są używane głównie do włączania i wyłączania jednego źródła światła z dwóch różnych miejsc, co jest idealne na klatkach schodowych lub w długich korytarzach. Umożliwiają one jedynie podstawową funkcjonalność, nie pozwalając na kontrolę poszczególnych sekcji, co jest istotne w przypadku żyrandoli. Krzyżowe łączniki z kolei poszerzają możliwości sterowania w systemach z wieloma przełącznikami, ale również nie są przeznaczone do niezależnego zarządzania różnymi sekcjami oświetlenia. Ich zastosowanie ogranicza się do sytuacji, w których potrzeba włączania lub wyłączania jednego źródła światła z różnych lokalizacji. Dwubiegunowe łączniki są stosowane przede wszystkim w sytuacjach, gdzie wymagane jest przełączenie jednej linii zasilającej, co nie przekłada się na elastyczność potrzebną w żyrandolach z wieloma źródłami światła. Wybór niewłaściwego typu łącznika może prowadzić do ograniczeń w zakresie praktycznego użytkowania oświetlenia i zmniejszenia komfortu jego stosowania w codziennych sytuacjach.

Pytanie 12

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Wiertarka, wiertło, piła do cięcia, wkrętak.
B. Zestaw kluczy, wkrętarka, wiertło, przecinak.
C. Piła do cięcia, przecinak, młotek.
D. Nóż monterski, wiertarka, zestaw kluczy.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 13

Którego z wymienionych wyłączników różnicowoprądowych należy użyć jako zabezpieczenia przeciwporażeniowego, przeciążeniowego oraz zwarciowego w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 302 25-30-AC
C. P 304 25-30-AC
D. P 344 C-16-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 14

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. W kanałach podłogowych
B. Prowadzona na drabinkach
C. W listwach przypodłogowych
D. Wykonana przewodami szynowymi
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 15

Który z wymienionych czynników <u><strong>nie wpływa</strong></u> na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Przekrój poprzeczny przewodów
B. Metoda ułożenia przewodów
C. Długość zamontowanych przewodów
D. Rodzaj materiału izolacyjnego
Przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów są elementami, które mają istotny wpływ na dopuszczalną obciążalność długotrwałą instalacji elektrycznej. Przekrój poprzeczny żył wpływa na opór przewodów; im większy przekrój, tym mniejszy opór, co przekłada się na możliwość przewodzenia większych prądów bez przegrzewania się. Z kolei materiał izolacji ma kluczowe znaczenie dla wydolności cieplnej przewodów; różne materiały mają różne właściwości termiczne i dielektryczne, co w praktyce wpływa na bezpieczeństwo użytkowania. Sposób ułożenia przewodów również jest istotny – na przykład, przewody ułożone w szczelnych kanałach mogą wymagać zmniejszenia dopuszczalnej obciążalności ze względu na ograniczony przepływ powietrza i trudności w odprowadzaniu ciepła. Typowe błędy myślowe obejmują mylenie długości przewodów z ich zdolnością do przewodzenia prądu. Choć długa trasa kablowa może zwiększać spadek napięcia, nie wpływa na maksymalną wartość prądu, jaki przewody mogą bezpiecznie przewodzić. Dlatego istotne jest, aby projektując instalacje, kierować się zaleceniami zawartymi w normach oraz wytycznymi branżowymi, aby uniknąć nieprawidłowych wniosków dotyczących obciążalności przewodów.

Pytanie 16

Która z wymienionych czynności należy do oględzin wirnika maszyny komutatorowej?

A. Sprawdzenie stanu wycinków komutatora.
B. Sprawdzenie braku zwarć międzyzwojowych.
C. Pomiar rezystancji izolacji.
D. Wyważenie.
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 17

Którym symbolem oznacza się przewód jednożyłowy z aluminiową żyłą wielodrutową, w izolacji polwinitowej, o przekroju żyły 2,5 mm<sup>2</sup>?

A. ADY 2,5 mm2
B. YLY 2,5 mm2
C. YDY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 18

Ile wynosi znamionowa sprawność silnika jednofazowego o danych: P<sub>N</sub> = 3,7 kW (mocy mechanicznej), U<sub>N</sub> = 230 V, I<sub>N</sub> = 21,4 A, cos φ<sub>N</sub> = 0,95?

A. 0,79
B. 0,71
C. 0,75
D. 0,95
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 19

W którym układzie sieciowym występuje bezpiecznik iskiernikowy włączony między punkt neutralny strony wtórnej transformatora zasilającego ten układ, a uziom roboczy?

A. IT
B. TN-S
C. TT
D. TN-C
Wybory układów TN-S, TN-C oraz TT wskazują na niepełne zrozumienie zasad działania systemów elektroenergetycznych. W układzie TN-S, punkt neutralny jest uziemiony, co oznacza, że w razie uszkodzenia izolacji, prąd zwarciowy przepływa bezpośrednio do ziemi, co zwiększa ryzyko porażenia prądem. Nie ma w nim miejsca na dodatkowy bezpiecznik iskiernikowy, ponieważ jest on niekompatybilny z zasadą bezpośredniego uziemienia. Podobnie w przypadku TN-C, gdzie neutralny i ochronny przewód są połączone, ryzyko uszkodzenia izolacji jest wysokie, a wprowadzenie iskiernika w tym układzie byłoby zbędne i niewłaściwe. Układ TT również zakłada, że punkt neutralny jest uziemiony, a zatem straciłby sens użycie bezpiecznika iskiernikowego, ponieważ nie zapewnia on właściwej izolacji i bezpieczeństwa. Zrozumienie różnic między tymi systemami jest kluczowe dla prawidłowego projektowania instalacji elektrycznych, gdzie odpowiedni dobór układu ma wpływ na bezpieczeństwo i niezawodność dostaw energii elektrycznej. W praktyce, błędne podejście do klasyfikacji układów może prowadzić do poważnych konsekwencji, zarówno finansowych, jak i zdrowotnych.

Pytanie 20

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. oględzin
B. przyjęcia do eksploatacji
C. przeprowadzania konserwacji i napraw
D. pomiarów napięcia oraz rezystancji izolacji
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 21

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
B. Wymienić wszystkie przewody na nowe o większej średnicy
C. Zaizolować uszkodzoną część izolacji przewodu taśmą
D. Wymienić uszkodzony przewód na nowy o identycznej średnicy
Wymiana wszystkich przewodów na nowe o większym przekroju nie jest właściwym podejściem. Takie działanie jest nie tylko kosztowne, ale również zbędne, ponieważ uszkodzenie dotyczy jednego przewodu, a nie całej instalacji. Ponadto, stosowanie przewodów o większym przekroju może prowadzić do nieprzewidzianych problemów z obciążeniem, a także do zmiany właściwości instalacji, co może być niezgodne z wcześniej ustalonymi parametrami. Zastosowanie taśmy izolacyjnej jako metody naprawy jest również niewłaściwe, ponieważ taśmy nie przywracają elastyczności i nie zabezpieczają przewodu przed dalszymi uszkodzeniami. Izolacja taśmy może nie wytrzymać w trudnych warunkach, takich jak wysoka temperatura, co może prowadzić do ponownego uszkodzenia. Nałożenie koszulki termokurczliwej to tymczasowe rozwiązanie, które nie zastępuje wymiany uszkodzonego przewodu. Może to być pomocne w niektórych sytuacjach, ale nie eliminuje ryzyka, które wiąże się z uszkodzoną izolacją. Użycie takich rozwiązań bez wymiany przewodu naraża użytkowników na elektryczne zagrożenia, a zgodność z normami bezpieczeństwa może być niewystarczająca. Kluczowe jest, aby działać zgodnie z zasadami dobrych praktyk i norm, co w tym przypadku obejmuje pełną wymianę uszkodzonego elementu.

Pytanie 22

Które z oznaczeń literowych dotyczy przewodu przeznaczonego do zasilania odbiorników przenośnych?

A. YAKY
B. LY
C. OMY
D. YDY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 23

Jaką największą wartość może mieć impedancja pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby skuteczna była ochrona przeciwporażeniowa przy uszkodzeniu izolacji, jeśli wiadomo, że wyłączenie zasilania tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 3,8 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 24

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
B. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
C. Wykonując kontrolne doziemienie
D. Naciskając przycisk "TEST"
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 25

Którym symbolem oznacza się przewód jednożyłowy z żyłą z drutu aluminiowego, w izolacji polwinitowej, o przekroju żyły 2,5 mm<sup>2</sup>?

A. YDY 2,5 mm2
B. YLY 2,5 mm2
C. ALY 2,5 mm2
D. ADY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 26

Do ochrony przed dotykiem bezpośrednim (ochrona podstawowa) w domowych instalacjach elektrycznych stosuje się

A. urządzenia II klasy ochronności.
B. połączenia wyrównawcze.
C. izolowanie stanowiska.
D. izolowanie części czynnych.
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 27

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy szeregowo
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy szeregowo, napięciowy równolegle
D. Prądowy i napięciowy równolegle
Prawidłowe włączenie obwodu prądowego szeregowo oraz obwodu napięciowego równolegle jest kluczowe dla właściwego działania jednofazowego licznika energii elektrycznej. Zastosowanie tego schematu wynika z potrzeby pomiaru prądu płynącego przez odbiornik oraz zjawiska pomiaru napięcia. Obwód prądowy podłączony szeregowo zapewnia, że cały prąd przepływający przez obwód również przepływa przez licznik, co umożliwia dokładny pomiar zużycia energii. Z kolei obwód napięciowy podłączony równolegle do odbiornika gwarantuje, że napięcie na liczniku jest zgodne z napięciem zasilania, co jest niezbędne do prawidłowego wyliczenia wartości energii. Taki sposób podłączenia jest zgodny z normami EN 62053-21 oraz PN-EN 60044-1, które definiują wymagania techniczne dla liczników energii elektrycznej. Przykładem zastosowania tej wiedzy jest instalacja liczników w obiektach komercyjnych, gdzie dokładność pomiarów jest krytyczna dla zarządzania kosztami energii.

Pytanie 28

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi pod tynkiem
B. miedzianymi umieszczonymi na tynku
C. aluminiowymi umieszczonymi na tynku
D. miedzianymi umieszczonymi pod tynkiem
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 29

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 30

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko z PVC
B. Metalowe lub gumowe
C. Z PVC lub gumowe
D. Tylko metalowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 31

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Schodowego
B. Dzwonkowego
C. Krzyżowego
D. Hotelowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 32

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
B. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
D. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 33

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. dwie mufy kablowe i odcinek kabla
B. odcinek kabla oraz zgrzewarka
C. mufa rozgałęźna oraz odcinek kabla
D. odcinek kabla zakończony głowicami
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 34

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Neonowym wskaźnikiem napięcia
B. Kluczem płaskim
C. Wkrętakiem
D. Nożem monterskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 35

Sprawdzając warunek samoczynnego wyłączenia zasilania jako środka ochrony przeciwporażeniowej w sieciach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia należy dla zastosowanego wyłącznika określić

A. wartość prądu wyłączającego.
B. czas zadziałania wyzwalacza zwarciowego.
C. próg zadziałania wyzwalacza przeciążeniowego.
D. zwarciową zdolność łączeniową.
Wybór niewłaściwej odpowiedzi może prowadzić do błędnych wniosków dotyczących istoty samoczynnego wyłączenia zasilania w systemach TN-S. Na przykład, określenie zwarciowej zdolności łączeniowej jest ważne, jednak nie jest to parametr, który bezpośrednio wpływa na działanie wyłącznika w kontekście jego reakcji na prąd wyłączający. Zwarciowa zdolność łączeniowa odnosi się do maksymalnego prądu zwarciowego, który dany wyłącznik jest w stanie bezpiecznie przerwać, co jest kluczowe dla bezpieczeństwa instalacji, ale nie ma bezpośredniego związku z szybkością zadziałania na prąd wyłączający. Podobnie, próg zadziałania wyzwalacza przeciążeniowego dotyczy innego aspektu ochrony i nie odnosi się do wyłączenia w przypadku porażenia prądem. Czas zadziałania wyzwalacza zwarciowego również jest istotny, ale to wartość prądu wyłączającego decyduje o tym, czy wyłącznik zadziała w odpowiednim czasie, aby chronić użytkowników przed skutkami porażenia. Niezrozumienie różnicy pomiędzy tymi parametrami może prowadzić do niewłaściwego doboru wyłączników oraz ryzyka nieodpowiedniej ochrony w instalacjach elektrycznych. Kluczowe jest, aby zrozumieć, że wartość prądu wyłączającego musi być dostosowana do specyfikacji danego obwodu oraz wymagań ochrony przeciwporażeniowej, co jest fundamentem bezpieczeństwa w instalacjach elektrycznych.

Pytanie 36

W przypadku instalacji elektrycznej o parametrach U<sub>0</sub> = 230 V i I<sub>a</sub>= 100 A, Z<sub>s</sub> = 3,1 Ω (Z<sub>s</sub>I<sub>a</sub> &lt; U<sub>0</sub>), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja izolacji miejsca pracy jest zbyt duża
B. impedancja sieci zasilającej jest zbyt niska
C. impedancja pętli zwarcia jest zbyt wysoka
D. rezystancja uziemienia jest zbyt niska
W kontekście ochrony przed porażeniem prądem elektrycznym, zrozumienie roli różnych parametrów instalacji jest niezwykle istotne. Rezystancja izolacji stanowiska nie jest bezpośrednio związana z efektywnością ochrony w układzie TN-C. Wysoka rezystancja izolacji może świadczyć o dobrym stanie izolacji, co w teorii zmniejsza ryzyko porażenia prądem, ale nie eliminuje potrzeby niskiej impedancji pętli zwarcia. Z kolei zbyt mała rezystancja uziomu nie gwarantuje właściwej ochrony, ponieważ kluczowym parametrem jest to, jak szybko prąd zwarciowy może przepłynąć przez obwód, co zależy od impedancji pętli zwarcia. Impedancja sieci zasilającej jest także mniej istotna w kontekście bezpośredniego bezpieczeństwa, ponieważ to nie ona decyduje o skuteczności wyłączenia obwodu w przypadku zwarcia. Typowym błędem myślowym jest skupianie się na pojedynczych parametrach, zamiast na całościowym zrozumieniu interakcji między różnymi elementami instalacji. Bez właściwej analizy impedancji pętli zwarcia, jakiekolwiek poprawki dotyczące uziemienia czy rezystancji izolacji mogą nie przynieść oczekiwanych rezultatów, a tym samym zagrażać bezpieczeństwu użytkowników instalacji elektrycznych. Kluczowe jest zatem podejście holistyczne, które uwzględnia wszystkie parametry, aby zapewnić pełną ochronę przed porażeniem prądem elektrycznym.

Pytanie 37

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru rezystancji
B. Woltomierza
C. Amperomierza
D. Miernika z funkcją pomiaru pojemności
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 38

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 3,4%
B. 3,0%
C. 8,3%
D. 6,8%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 39

W której z wymienionych sytuacji poślizg silnika indukcyjnego będzie równy 100%?

A. Wirnik silnika zostanie dopędzony powyżej prędkości synchronicznej.
B. Silnik zasilony zostanie przeciwprądem.
C. Podczas zasilania silnika jego wirnik będzie nieruchomy.
D. Silnik pozostanie na biegu jałowym.
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 40

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód priorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.