Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 11:50
  • Data zakończenia: 4 kwietnia 2025 12:17

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu kierowniczego
B. systemu napędowego
C. systemu hamulcowego
D. systemu zapłonowego
Wybór układu hamulcowego, kierowniczego lub napędowego jako obszaru diagnozy za pomocą lampy stroboskopowej jest błędny, ponieważ te układy nie są związane z funkcjonowaniem systemu zapłonowego silnika. Układ hamulcowy opiera się na mechanizmach hydraulicznych i pneumatycznych, a jego skuteczność można ocenić przez testy ciśnienia, zużycia klocków hamulcowych, a także poprzez wizualną inspekcję komponentów. Diagnoza układu kierowniczego polega głównie na ocenie luzy oraz stanu elementów takich jak drążki kierownicze czy przekładnie, co również nie ma związku z użyciem lampy stroboskopowej. Układ napędowy wymaga analizy zużycia elementów takich jak sprzęgło, skrzynia biegów czy półosie, co jest realizowane za pomocą innych narzędzi diagnostycznych. Wybierając odpowiednie metody, mechanicy muszą kierować się specyfiką każdego z układów, ponieważ każda metoda ma swoje miejsce i zastosowanie. Typowym błędem myślowym jest założenie, że lampa stroboskopowa może być używana w diagnostyce wszystkich układów pojazdu, co prowadzi do nieefektywnego wykorzystania narzędzi i nieprawidłowych diagnoz. Właściwe zrozumienie, jakie narzędzia są adekwatne do konkretnego układu, jest kluczowe w procesie diagnostycznym.

Pytanie 2

W współczesnych silnikach benzynowych stopień kompresji to mniej więcej

A. 1:6
B. 1:11
C. 6:1
D. 11:1
Stopień sprężania w silnikach benzynowych to bardzo ważny parametr, który ma wpływ na efektywność i wydajność silnika. Odnośnie do pierwszych dwóch odpowiedzi, 1:11 i 6:1, to wartości, które nie pasują do obecnych silników. 1:11 jest błędny, bo sugeruje, że sprężanie paliwa jest zbyt wysokie dla typowego silnika, co mogłoby prowadzić do detonacji. Z kolei 6:1 to coś, co było standardem kiedyś, ale teraz mamy wyższe stopnie sprężania, żeby poprawić wydajność i osiągi. Odpowiedź 1:6 w ogóle nie ma sensu, bo sugeruje coś zupełnie odwrotnego do sprężania, co pokazuje, że można się pomylić. Jeśli się tego nie rozumie, to może być problem z użytkowaniem i serwisowaniem aut. Ważne, żeby zrozumieć, że wysoki stopień sprężania w nowych silnikach to efekt zaawansowanej inżynierii i dążenie do lepszej mocy i efektywności paliwowej.

Pytanie 3

Do metod ilościowych stosowanych przy weryfikacji elementów samochodowych należy metoda

A. magnetyczna
B. penetrująca
C. objętościowa
D. ultradźwiękowa
Metoda objętościowa to jedna z ważniejszych metod, jeśli chodzi o ilościową ocenę jakości części samochodowych. Chodzi tutaj o mierzenie objętości materiału, co daje nam możliwość oceny jakości odlewów i innych elementów, jak te z metali czy tworzyw sztucznych. Na przykład, w przypadku odlewów silnikowych, dokładne pomiary objętości mogą ujawnić wady, takie jak pęknięcia czy zanieczyszczenia. W inżynierii, zgodnie z normami ISO 9001 i innymi standardami jakości, ważne jest, żeby te pomiary były dokładne i powtarzalne. Dzięki temu zapewniamy bezpieczeństwo i niezawodność pojazdów. Połączenie metody objętościowej z innymi technikami, na przykład badaniami nieniszczącymi, daje nam pełniejszy obraz jakości części samochodowych, co z kolei minimalizuje ryzyko awarii.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Częścią układu hamulcowego nie jest

A. hamulec ręczny
B. pompa ABS
C. korektor siły hamowania
D. wysprzęglik
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.

Pytanie 6

Proces odpowietrzania hamulców w pojeździe, który nie jest wyposażony w system ABS, powinien być realizowany

A. rozpoczynając od najdalszego koła od pompy hamulcowej
B. rozpoczynając od najbliższego koła do pompy hamulcowej
C. zgodnie z ruchem wskazówek zegara
D. w przeciwnym kierunku do ruchu wskazówek zegara
Odpowietrzanie układu hamulcowego pojazdu nie wyposażonego w układ ABS powinno być przeprowadzane, zaczynając od najdalszego koła od pompy hamulcowej. Taki sposób działania jest zgodny z zasadami hydrauliki oraz praktykami stosowanymi w branży motoryzacyjnej. W układzie hamulcowym, powietrze gromadzi się w miejscach, gdzie ciśnienie jest najniższe, a więc najczęściej w najdalszym kole od pompy. Przy odkręcaniu odpowietrznika w tym kole, powietrze, które wpływa do układu, jest usuwane, co pozwala na poprawne działanie hydrauliki hamulcowej. Przykładowo, jeśli odpowietrzanie zaczniemy od najbliższego koła, powietrze nie zostanie całkowicie usunięte, co może prowadzić do słabszej efektywności hamulców oraz wydłużenia drogi hamowania. Przy odpowiednim odpowietrzaniu układu, podczas serwisowania pojazdu, można zapewnić jego bezpieczeństwo oraz prawidłowe działanie, co jest kluczowe dla każdego kierowcy.

Pytanie 7

Aby przeprowadzić demontaż półosi napędowej z pojazdu, najpierw trzeba usunąć przegub

A. zewnętrzny z półosi napędowej
B. wewnętrzny z przekładni głównej
C. zewnętrzny z piasty koła
D. wewnętrzny z półosi napędowej
Demontaż półosi napędowej wymaga zrozumienia struktury układu napędowego oraz kolejności działań, które prowadzą do bezpiecznego i efektywnego rozłączenia poszczególnych elementów. Odpowiedzi, które sugerują demontaż przegubów wewnętrznych lub z innych części pojazdu, mogą prowadzić do nieporozumień i błędów w procesie naprawczym. Przegub wewnętrzny z półosi napędowej oraz przegub wewnętrzny z przekładni głównej są elementami, które nie są bezpośrednio związane z demontażem półosi w pierwszej kolejności. Ich demontaż może być konieczny w późniejszym etapie, jednak nie jest to zalecana metoda przy rozłączaniu półosi. Przegub wewnętrzny nie jest łatwo dostępny bez wcześniejszego zdjęcia zewnętrznego przegubu, co zwiększa ryzyko uszkodzenia konstrukcji. Podejście do demontażu powinno być zawsze przemyślane i zgodne z manualami producentów pojazdów oraz ogólnymi standardami branżowymi. W praktyce, ignorowanie właściwej kolejności demontażu może prowadzić do uszkodzeń elementów, a także do wydłużenia czasu pracy. Zrozumienie właściwych procedur jest kluczowe, aby uniknąć kosztownych błędów i zapewnić odpowiednią jakość napraw.

Pytanie 8

W trakcie prowadzenia pojazdu zaświeciła się kontrolka ładowania. Jakie mogą być tego powody?

A. wadliwy akumulator
B. zerwanie paska napędowego alternatora
C. uszkodzony przekaźnik kontrolki
D. zbyt wysokie napięcie podczas ładowania
Uszkodzony akumulator, zbyt wysokie napięcie ładowania oraz uszkodzony przekaźnik lampki to koncepcje, które mogą być mylące w kontekście problemu z lampką kontrolną ładowania. Uszkodzony akumulator może rzeczywiście przyczynić się do problemów z ładowaniem, ale jego uszkodzenie zazwyczaj prowadzi do innych objawów, takich jak trudności z uruchomieniem silnika czy spadek mocy akumulatora. W przypadku zapalenia się lampki kontrolnej, akumulator może być w dobrym stanie, ale nie otrzymuje energii, ponieważ alternator nie działa z powodu zerwanego paska. Zbyt wysokie napięcie ładowania może powodować uszkodzenia elektroniki, ale zazwyczaj objawia się innymi symptomami, takimi jak intensywne nagrzewanie się akumulatora czy awaria diod prostowniczych w alternatorze, a niekoniecznie zapaleniem lampki kontrolnej. Jeżeli chodzi o uszkodzony przekaźnik lampki, to taka usterka mogłaby prowadzić do nieprawidłowych sygnałów, jednak nie jest to bezpośrednia przyczyna zapalenia lampki kontrolnej ładowania. Właściwe podejście do diagnostyki problemów elektrycznych w samochodzie wymaga zrozumienia, że każdy element układu ładowania ma swoje specyficzne funkcje, a ich awaria wpływa na działanie całości. Dlatego kluczowe jest, aby diagnostyka była dokładna i oparta na rzeczywistych objawach, a nie na przypuszczeniach.

Pytanie 9

Jakie elementy można naprawić stosując metodę lutowania?

A. uszkodzoną końcówkę drążka kierowniczego
B. nieszczelną chłodnicę
C. zużyte łożysko ślizgowe wału korbowego
D. pęknięty wał napędowy
Lutowanie to super metoda, jeśli chodzi o naprawę nieszczelnych chłodnic. Dzięki temu można skutecznie połączyć różne elementy metalowe, bo materiał lutowniczy się topi i załatwia sprawę. Chłodnice zazwyczaj są z aluminium albo miedzi, więc lutowanie naprawdę daje radę w naprawie wycieków płynu chłodzącego. Z mojego doświadczenia ważne jest, żeby najpierw dokładnie oczyścić uszkodzone miejsce, a potem nałożyć topnik. To zapewnia lepsze trzymanie się lutowia. Potem całość musi się podgrzać, co topi materiał i łączy elementy. Dobrze zrobione lutowanie jest trwałe i wytrzymuje wysokie ciśnienie oraz temperaturę, co jest mega istotne w układach chłodzenia w samochodach. Warto mieć na uwadze, że są standardy, jak ISO 14731, które wskazują, jak ogarniać lutowanie, by mieć pewność, że połączenia są na najwyższym poziomie. Regularne kontrolowanie nieszczelności chłodnic też nie zaszkodzi – lepiej zapobiegać problemom niż je potem łatać.

Pytanie 10

Wzmożone zużycie wewnętrznych pasów rzeźby bieżnika jednej z opon, może być wynikiem

A. niewłaściwego ustawienia kąta pochylenia koła
B. nadmiernego luzu w układzie kierowniczym
C. nieprawidłowego ustawienia zbieżności kół
D. zbyt niskiego ciśnienia w ogumieniu
Niewłaściwe ustawienie zbieżności kół może prowadzić do problemów z prowadzeniem pojazdu, jednak nie jest to bezpośrednia przyczyna zwiększonego zużycia wewnętrznych pasów rzeźby bieżnika opon. Zbieżność odnosi się do ustawienia kół w poziomie i może wpływać na stabilność toru jazdy, ale nie ma tak silnego wpływu na zużycie bieżnika, jak kąt pochylenia. Zbyt duży luz w układzie kierowniczym, choć również jest problemem, który może wpływać na bezpieczeństwo jazdy oraz precyzję prowadzenia, nie jest bezpośrednio związany z nierównym zużyciem bieżnika. Luz w układzie kierowniczym często prowadzi do wibracji i trudności w manewrowaniu, ale niekoniecznie powoduje lokalne zużycia opon. Z kolei zbyt niskie ciśnienie w ogumieniu jest istotnym czynnikiem wpływającym na całkowite zużycie opon, jednak jego wpływ jest bardziej globalny, a nie specyficzny dla wewnętrznych pasów rzeźby. Zbyt niskie ciśnienie prowadzi do zwiększonego oporu toczenia i przegrzewania się opon, co w dłuższej perspektywie prowadzi do ich szybszego zużycia, ale niekoniecznie koncentruje się na jednej części bieżnika. Zrozumienie tych aspektów geometrii kół oraz ich wpływu na zużycie opon jest kluczowe dla zapewnienia bezpieczeństwa i efektywności eksploatacji pojazdów. Właściwe ustawienie geometrii kół zgodnie z normami producenta oraz regularne przeglądy stanu technicznego pojazdu pomagają w unikaniu problemów związanych z zużyciem opon.

Pytanie 11

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. ze zwiększenia zawartości wody w płynie
B. ze zmiany składu chemicznego płynu
C. z zapowietrzenia układu hamulcowego
D. z zanieczyszczenia płynu cząstkami i osadami
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 12

Podczas instalacji nowej uszczelki pod głowicą, co należy zrobić w pierwszej kolejności?

A. sprawdzić ciśnienie sprężania w cylindrach
B. dokręcić śruby głowicy w odpowiedniej sekwencji
C. dokręcić śruby przy użyciu klucza oczkowego
D. sprawdzić ustawienie luzów zaworowych
Dokręcanie śrub głowicy w odpowiedniej kolejności jest kluczowym krokiem w montażu nowej uszczelki pod głowicą. Proces ten ma na celu zapewnienie równomiernego rozkładu sił na uszczelce, co w konsekwencji zapobiega jej nieszczelności i umożliwia prawidłowe działanie silnika. Dobre praktyki wskazują na zastosowanie sekwencji dokręcania, która zazwyczaj zaczyna się od śrub centralnych i przechodzi w stronę zewnętrznych, co pozwala na stopniowe i kontrolowane napięcie. Właściwe dokręcenie śrub zgodnie z zaleceniami producenta, które często są podane w dokumentacji technicznej lub książkach serwisowych, jest niezbędne dla zachowania integralności silnika. Niewłaściwe dokręcenie może prowadzić do przemieszczenia głowicy, co w efekcie skutkuje uszkodzeniem uszczelki, a nawet całej jednostki napędowej. Dlatego też przed przystąpieniem do dokręcania konieczne jest dokładne zapoznanie się z instrukcjami i użycie odpowiedniego klucza dynamometrycznego, aby stosować właściwy moment obrotowy. Przykładem może być dokręcanie głowicy w silnikach typu DOHC, gdzie precyzyjne napięcie jest kluczowe dla utrzymania właściwego ciśnienia sprężania.

Pytanie 13

Na tarczy hamulcowej pojawiło się widoczne uszkodzenie. Jaką metodę naprawy wybierzesz?

A. Regeneracja poprzez chromowanie
B. Szlifowanie na wymiar naprawczy
C. Regeneracja poprzez napawanie
D. Wymiana dwóch tarcz na nowe
Wymiana dwóch tarcz hamulcowych na nowe jest najbardziej zalecaną praktyką w przypadku, gdy na tarczy powstało widoczne pęknięcie. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów z bezpieczeństwem, w tym do utraty efektywności hamowania oraz zwiększonego ryzyka awarii. Nowe tarcze zapewniają integralność materiału oraz optymalne parametry pracy, co przyczynia się do lepszego rozpraszania ciepła i minimalizacji odkształceń. Dodatkowo, wymiana tarcz zapewnia zgodność z normami i standardami branżowymi, takimi jak dyrektywy ECE R90, które wymagają, aby zamiennikiach części hamulcowych miały porównywalne parametry do oryginalnych części. Wymiana dwóch tarcz jednocześnie jest także zalecana, aby uniknąć nierównomiernego zużycia i potencjalnych problemów z stabilnością hamowania w przyszłości. W praktyce, jeśli jedna tarcza uległa uszkodzeniu, warto rozważyć wymianę obu, aby zapewnić jednorodność i pełną efektywność systemu hamulcowego.

Pytanie 14

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z jednym wałkiem rozrządu w głowicy
B. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
C. górnozaworowy z dwoma wałkami rozrządu w głowicy
D. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
Odpowiedź wskazująca na górnozaworowy układ z dwoma wałkami rozrządu w głowicy (DOHC) jest poprawna, ponieważ skrót ten pochodzi z angielskiego 'Double Overhead Camshaft'. Ta konstrukcja silnika zapewnia lepsze osiągi i wyższą efektywność pracy, co jest szczególnie istotne w nowoczesnych jednostkach napędowych. Dwa wałki rozrządu umożliwiają niezależne sterowanie zaworami ssącymi i wydechowymi, co przekłada się na lepsze parametry silnika, wyższe obroty oraz efektywne spalanie mieszanki paliwowo-powietrznej. W praktyce oznacza to zwiększenie mocy i momentu obrotowego, a także redukcję emisji spalin. Konstrukcje DOHC są powszechnie stosowane w silnikach sportowych oraz w nowoczesnych samochodach osobowych, co czyni je standardem w branży motoryzacyjnej. Zastosowanie systemu VVT (Variable Valve Timing) w połączeniu z DOHC może dodatkowo zwiększyć wydajność silnika w różnych warunkach pracy, co jest zgodne z trendami w inżynierii silników. Wysoka jakość wykonania i precyzyjne dopasowanie elementów są kluczowe w tej technologii.

Pytanie 15

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. klucz serwisowy
B. multimetr
C. komputerowy zestaw diagnostyczny
D. czytnik kodów błędów
Komputerowy zestaw diagnostyczny to zaawansowane narzędzie wykorzystywane w diagnostyce silników, które umożliwia odczyt i interpretację błędów zapisanych w pamięci sterownika. Tego typu zestawy są standardem w warsztatach samochodowych i są niezbędne do skutecznej diagnostyki nowoczesnych pojazdów, które są coraz bardziej skomputeryzowane. Dzięki nim można uzyskać szczegółowe informacje o stanie różnych układów pojazdu, co pozwala na szybką identyfikację problemów oraz dokładne określenie koniecznych napraw. Na przykład, przy użyciu takiego zestawu diagnostycznego można odczytać kody błędów związane z systemem zarządzania silnikiem, a także monitorować parametry pracy silnika w czasie rzeczywistym. Zestawy te często oferują także funkcje takie jak testowanie komponentów, przeprowadzanie kalibracji oraz resetowanie błędów, co czyni je niezastąpionym narzędziem dla profesjonalnych mechaników. Warto również zauważyć, że korzystanie z komputerowego zestawu diagnostycznego jest zgodne z najlepszymi praktykami branżowymi, zalecanymi przez producentów pojazdów.

Pytanie 16

Jak dokonuje się pomiaru mocy użytecznej silnika?

A. na kołach napędzanych pojazdu
B. w przekładni głównej pojazdu
C. na końcówce napędowej wału korbowego
D. na wale rozrządu silnika
Pomiar mocy silnika w niewłaściwych miejscach, takich jak wał rozrządu, przekładnia główna czy koła napędzane, prowadzi do błędnych interpretacji wyników i nieefektywnej oceny wydajności jednostki napędowej. Na wale rozrządu mierzenie mocy nie jest adekwatne, ponieważ nie oddaje rzeczywistego obciążenia silnika, które jest modyfikowane przez układ rozrządu oraz inne elementy. Podobnie, pomiar w przekładni głównej nie uwzględnia strat mechanicznych i energetycznych, które powstają w wyniku oporów tarcia czy przekładni. W przypadku pomiaru na kołach napędzanych pojazdu, wyniki mogą być zaburzone przez różne czynniki, takie jak stan opon, ciśnienie powietrza oraz opory toczenia, co komplikuje czytanie wyników. Tego typu błędy myślowe wynikają z niewłaściwego zrozumienia zasad działania silników oraz układów przeniesienia napędu. Zrozumienie rzeczywistej lokalizacji pomiaru mocy jest kluczowe, aby uniknąć mylnych wniosków i umożliwić właściwą diagnostykę oraz optymalizację silnika. Właściwe podejście do pomiaru mocy na końcówce napędowej wału korbowego pozwala na dokładniejszą i bardziej wiarygodną ocenę mocy użytecznej, co jest fundamentem inżynierii silnikowej i efektywności pojazdów.

Pytanie 17

System kontroli trakcji ma na celu utrzymanie przyczepności

A. poprzeczną opon napędowych
B. wzdłużną wszystkich opon.
C. wzdłużną i poprzeczną opon napędowych.
D. wzdłużną opon napędowych.
Układ kontroli trakcji (TCS) jest kluczowym elementem systemów bezpieczeństwa w nowoczesnych pojazdach, którego głównym celem jest zapewnienie optymalnej przyczepności kół napędowych w trakcie przyspieszania. Poprawna odpowiedź, dotycząca zachowania przyczepności wzdłużnej kół napędowych, jest istotna, ponieważ to właśnie te koła są odpowiedzialne za przenoszenie mocy silnika na nawierzchnię drogi. W sytuacjach, gdy występuje poślizg, na przykład na śliskiej nawierzchni, system TCS automatycznie kontroluje moc silnika oraz, w niektórych przypadkach, hamuje poszczególne koła, aby zminimalizować poślizg i poprawić stabilność pojazdu. Przykładowo, w przypadku samochodów osobowych, podczas nagłego przyspieszania na mokrej nawierzchni, TCS może ograniczyć moc silnika lub wprowadzić delikatne hamowanie, co pozwala na zachowanie pełnej kontroli nad pojazdem. Zastosowanie układów TCS jest zgodne z normami bezpieczeństwa, co czyni je standardem w branży motoryzacyjnej, przyczyniając się do zmniejszenia liczby wypadków związanych z utratą kontroli nad pojazdem.

Pytanie 18

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. gdy temperatura płynu chłodzącego jest niska
B. gdy temperatura płynu chłodzącego jest wysoka
C. tuż po uruchomieniu silnika
D. po uruchomieniu ogrzewania wnętrza
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 19

Pojawianie się pęcherzyków gazów na powierzchni cieczy chłodzącej w trakcie pracy silnika wskazuje na uszkodzenie

A. uszczelki kolektora wylotowego
B. chłodnicy
C. uszczelki pod głowicą
D. pompy cieczy chłodzącej
Prawidłowa odpowiedź to uszczelki pod głowicą, ponieważ pęcherzyki gazu wydobywające się z cieczy chłodzącej wskazują na możliwość przedostawania się spalin do układu chłodzenia. Uszczelka pod głowicą jest kluczowym elementem silnika, który zapobiega mieszaniu się oleju, płynu chłodzącego oraz spalin. W przypadku jej uszkodzenia, ciśnienie w komorze spalania może wpłynąć na układ chłodzenia, co prowadzi do pojawienia się pęcherzyków gazu. Zidentyfikowanie tego problemu jest istotne, ponieważ może prowadzić do dalszych uszkodzeń silnika, takich jak przegrzewanie lub zatarcie. W praktyce, jeśli zauważymy pęcherzyki w zbiorniku wlewowym cieczy chłodzącej, najczęściej wymagana jest wymiana uszczelki, co powinno być przeprowadzone zgodnie z zaleceniami producenta, aby zapewnić długotrwałość i efektywność działania silnika. Regularne kontrolowanie stanu uszczelki pod głowicą i układu chłodzenia to kluczowe działania w prewencji kosztownych napraw.

Pytanie 20

Wskaźnikiem zdolności akumulatora do magazynowania energii jest

A. pojemność
B. najwyższe napięcie
C. szybkość obrotów alternatora
D. maksymalny czas wyładowania
Pojemność akumulatora to kluczowa miara zdolności do gromadzenia energii, która jest wyrażana w amperogodzinach (Ah). Im większa pojemność, tym więcej energii akumulator jest w stanie zmagazynować i dostarczyć podczas rozładowania. Przykładowo, akumulator o pojemności 100 Ah jest w stanie dostarczać prąd o natężeniu 5 amperów przez 20 godzin, co pokazuje, jak istotna jest ta wartość w praktyce. Pojemność jest również ważna przy doborze akumulatorów do różnych zastosowań, takich jak pojazdy elektryczne, systemy fotowoltaiczne czy zasilanie awaryjne. Dobrze skonstruowany akumulator, zgodny z normami IEC 60896 lub DIN 43539, powinien mieć określoną pojemność, co pozwala na przewidywanie jego wydajności oraz czasu pracy pod różnym obciążeniem. Właściwy dobór pojemności akumulatora zapewnia optymalną wydajność i żywotność systemów energetycznych, w których jest zastosowany.

Pytanie 21

Po zrealizowanej naprawie systemu hamulcowego powinno się przeprowadzić

A. pomiar długości drogi hamowania pojazdu
B. odczyt danych z kodów błędów sterownika ABS
C. test na stanowisku rolkowym
D. test na szarpaku
Odczyt kodów błędów sterownika ABS, pomiar długości drogi hamowania oraz test na szarpaku, chociaż mogą być użyteczne w niektórych kontekstach diagnostycznych, nie są wystarczające ani odpowiednie jako jedyne działania po naprawie układu hamulcowego. Odczyt kodów błędów ABS może dostarczyć informacji o ewentualnych problemach z systemem, jednakże nie ocenia rzeczywistej efektywności hamulców. Koncentruje się jedynie na elektronicznych aspektach działania układu, co nie daje pełnego obrazu stanu hamulców po naprawie. Pomiar długości drogi hamowania, mimo że może być użyteczny, nie odzwierciedla kompleksowej reakcji układu hamulcowego w różnych warunkach eksploatacyjnych. Test na szarpaku, który mierzy siły działające podczas hamowania, również nie dostarcza pełnych informacji o równomierności i skuteczności hamulców na nawierzchni drogi. Właściwa diagnostyka układu hamulcowego po naprawie wymaga zastosowania metod, które uwzględniają rzeczywiste warunki pracy pojazdu, a test na stanowisku rolkowym jest w tym aspekcie zdecydowanie najskuteczniejszy. Dlatego opieranie się na tych innych metodach może prowadzić do błędnych wniosków i niewystarczającego zabezpieczenia pojazdu przed awarią układu hamulcowego.

Pytanie 22

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Tłumik
B. Zakończenie drążka kierowniczego
C. Łącznik stabilizatora
D. Resor piórowy
Wybierając inne odpowiedzi, można wpaść w pułapkę błędnego rozumienia funkcji poszczególnych elementów zawieszenia. Końcówka drążka kierowniczego nie pełni roli sprężynującej; jest to komponent odpowiedzialny za przenoszenie ruchów kierownicy na koła, a jej zadaniem jest zapewnienie precyzyjnego prowadzenia pojazdu. Jej uszkodzenie wpłynie na sterowność, ale nie na absorpcję wstrząsów. Amortyzator również nie jest elementem sprężynującym, a jego główną funkcją jest tłumienie drgań, co pozwala na stabilizację ruchu. Amortyzatory współpracują z resorami, ale nie mają zdolności do sprężenia obciążenia, co oznacza, że ich rola jest zdecydowanie inna. Łącznik stabilizatora, z kolei, jest odpowiedzialny za utrzymanie stabilności nadwozia podczas pokonywania zakrętów i nie ma właściwości sprężynujących. Wybór nieprawidłowych odpowiedzi pokazuje typowy błąd wynikający z mylenia funkcji elementów zawieszenia. Kluczowe jest zrozumienie, że każdy element ma swoje specyficzne zadania, a ich prawidłowe działanie jest kluczowe dla bezpieczeństwa i komfortu jazdy. Warto przy tym pamiętać, że zrozumienie tych podstawowych różnic przyczynia się do lepszego podejmowania decyzji podczas diagnostyki i serwisowania pojazdów.

Pytanie 23

Po wykonaniu naprawy tłumika końcowego, trzeba przeprowadzić kontrolę pojazdu przy użyciu

A. sonometru
B. testera diagnostycznego
C. refraktometru
D. miernika uniwersalnego
Sonometr to instrument, który służy do pomiaru poziomu hałasu, a jego zastosowanie w kontroli tłumika końcowego pojazdu jest niezwykle istotne. Po naprawie tłumika, który ma na celu redukcję hałasu emitowanego przez silnik, ważne jest, aby upewnić się, że jego działanie jest zgodne z normami akustycznymi. W wielu krajach istnieją przepisy dotyczące dopuszczalnych poziomów hałasu emitowanego przez pojazdy, dlatego pomiar za pomocą sonometru jest kluczowy. Przykładowo, w Europie normy te są określane przez dyrektywy unijne, które regulują poziomy hałasu w pojazdach silnikowych. Używając sonometru, mechanik może określić, czy poziom hałasu mieści się w zalecanych granicach, co jest niezbędne dla zgodności z przepisami oraz dla komfortu użytkowników dróg. Przeprowadzone pomiary mogą również pomóc w identyfikacji niewłaściwych napraw, które mogą prowadzić do nadmiernego hałasu, co w konsekwencji może wpłynąć na dalsze działanie pojazdu oraz jego trwałość.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Podczas pokonywania zakrętu przez pojazd, stabilizator w układzie zawieszenia zapobiega

A. utracie przyczepności kół wewnętrznych.
B. przemieszczaniu się bocznemu kół.
C. blokowaniu kół.
D. przesunięciu geometrycznemu osi drogi.
Utrata przyczepności kół wewnętrznych podczas pokonywania zakrętu jest kluczowym aspektem, który stabilizator w układzie zawieszenia ma na celu minimalizować. Stabilizatory, znane również jako stabilizatory poprzeczne, działają poprzez połączenie dwóch przeciwnych kół wzdłuż osi pojazdu, co umożliwia równomierne rozłożenie obciążeń. Kiedy samochód wchodzi w zakręt, siły odśrodkowe powodują przechylanie się nadwozia, co może prowadzić do utraty przyczepności kół wewnętrznych. Stabilizator ogranicza to przechylenie, utrzymując koła w optymalnej pozycji na drodze, co zwiększa przyczepność i stabilność pojazdu, szczególnie w zakrętach. Przykłady zastosowania stabilizatorów można znaleźć w samochodach osobowych, sportowych, a także w pojazdach użytkowych, gdzie stabilność i bezpieczeństwo są kluczowe. Dobór odpowiedniego stabilizatora jest zgodny z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie jakości i bezpieczeństwa w projektowaniu układów zawieszenia.

Pytanie 26

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt bogatą mieszankę paliwową
B. uszkodzenie zaworów silnikowych
C. zbyt wysoki poziom oleju
D. zbyt ubogą mieszankę paliwową
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 27

Jaką funkcję pełni termostat w silniku spalinowym?

A. chłodzenia powietrza
B. wtrysku paliwa
C. dopalania paliwa
D. regulowania obiegu cieczy chłodzącej
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podczas przeglądu okresowego pojazdu samochodowego z silnikiem ZS wykonano czynności ujęte w tabeli. Jaki był koszt wykonania tej usługi, bez materiałów, jeżeli cena roboczogodziny w zakładzie wynosi 80 zł brutto.

Lp.CzynnośćCzas wykonania
w godzinach
1.Wymiana przegubu kulowego napędowego z osłoną gumową1,6
2.Wymiana 1 szt. końcówki drążka kierowniczego0,5

A. 168 zł
B. 186 zł
C. 200 zł
D. 146 zł
Poprawna odpowiedź to 168 zł, co wynika z precyzyjnego obliczenia kosztu robocizny na podstawie stawek obowiązujących w branży. W analizowanym przypadku całkowity czas pracy wynosił 2,1 godziny, a stawka za roboczogodzinę ustalona jest na 80 zł. Aby obliczyć koszt usługi, należy pomnożyć czas pracy przez stawkę: 2,1 h x 80 zł/h = 168 zł. Takie obliczenia są kluczowe w codziennej pracy warsztatów samochodowych, gdyż pozwalają na dokładne wycenienie świadczonych usług, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej. Właściwe ustalanie kosztów robocizny zapewnia nie tylko rentowność zakładu, ale również transparentność dla klientów. Warto również pamiętać o tym, że przy formułowaniu wyceny, należy uwzględnić dodatkowe czynniki, takie jak złożoność usługi, a także czas wymagany na ewentualne naprawy czy regulacje, co wpływa na ogólną cenę usługi.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakim urządzeniem dokonuje się pomiaru temperatury zamarzania cieczy chłodzącej?

A. multimetrem
B. wakuometrem
C. refraktometrem
D. pirometrem
Pomiar temperatury krzepnięcia cieczy chłodzącej za pomocą refraktometru jest powszechnie stosowaną metodą w przemyśle oraz laboratoriach. Refraktometr mierzy współczynnik załamania światła cieczy, który zmienia się w zależności od jej temperatury oraz stężenia rozpuszczonych substancji. W momencie krzepnięcia temperatury cieczy zmieniają się drastycznie, co wpływa na jej właściwości optyczne. Dlatego refraktometr jest w stanie dokładnie określić punkt krzepnięcia. Przykładem zastosowania tej metody jest kontrola jakości płynów chłodzących w układach chłodzenia silników, gdzie dokładne pomiary temperatury krzepnięcia pozwalają na zapobieganie uszkodzeniom w niskotemperaturowych warunkach pracy. Warto również zauważyć, że refraktometr, zgodnie z normami ASTM D1218, powinien być kalibrowany w celu osiągnięcia wysokiej dokładności pomiarów, co jest kluczowe w zapewnieniu niezawodności systemów chłodzenia.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Przed zamontowaniem nowych tarcz hamulcowych w pojeździe należy

A. przeszlifować tarcze papierem ściernym.
B. zmierzyć grubość tarcz.
C. sprawdzić bicie tarcz.
D. tarcze odtłuścić.
Pomiar bicia tarcz hamulcowych, pomiar grubości tarcz oraz przeszlifowanie ich papierem ściernym to działania, które, choć mogą być istotne w kontekście ogólnego serwisowania układu hamulcowego, nie są kluczowe przed samym montażem nowych tarcz. Pomiar bicia tarcz jest ważny w sytuacjach, gdy tarcze są używane i wymagają oceny ich stanu, zwłaszcza w przypadku, gdy pojazd wykazuje drgania podczas hamowania. Tego rodzaju pomiar wymaga specjalistycznego sprzętu i wiedzy, aby określić, czy tarcze są wypaczone. Z kolei zmierzenie grubości tarcz jest istotne, gdy oceniamy zużycie istniejących tarcz, ale nie ma zastosowania, gdy instalujemy nowe. W przypadku nowych tarcz, grubość jest co do zasady zgodna z normami producentów. Przeszlifowanie tarcz papierem ściernym może wprowadzać niepożądane zarysy i zmieniać parametry pracy tarczy, co prowadzi do nierównomiernego zużycia i spadku efektywności hamowania. Zamiast tego, kluczowe jest, aby nowe tarcze były czyste, co sprawia, że odtłuszczenie przed montażem jest najważniejszym krokiem. Zrozumienie tego procesu jest kluczowe dla zapewnienia efektywności i bezpieczeństwa układu hamulcowego.

Pytanie 34

Jazda z uszkodzonym amortyzatorem skutkuje

A. poprawą przyczepności ogumienia do nawierzchni drogi
B. lepszym prowadzeniem pojazdu w zakrętach
C. wydłużeniem drogi hamowania
D. skróceniem drogi hamowania
Jazda z uszkodzonym amortyzatorem wpływa negatywnie na zdolność pojazdu do absorpcji wstrząsów oraz stabilność podczas hamowania. Amortyzatory odgrywają kluczową rolę w zapewnieniu kontaktu opon z nawierzchnią, co jest niezbędne do skutecznego hamowania. Uszkodzone amortyzatory mogą prowadzić do sytuacji, w której koła nie są w stanie utrzymać optymalnej przyczepności. Przykładowo, podczas hamowania na nierównościach lub w warunkach deszczowych, amortyzatory nie będą w stanie właściwie zredukować drgań, co wydłuży drogę hamowania. Standardy bezpieczeństwa, takie jak te ustanowione przez organizacje zajmujące się testowaniem pojazdów, wskazują na znaczenie sprawnych amortyzatorów dla zachowania bezpieczeństwa jazdy. Utrzymywanie amortyzatorów w dobrym stanie jest zatem kluczowe dla bezpieczeństwa, a także komfortu jazdy, co przekłada się na lepsze doświadczenia kierowcy oraz pasażerów.

Pytanie 35

Zanim przystąpisz do badania spalin, powinieneś podgrzać silnik, aby temperatura oleju w misie olejowej wyniosła około

A. 50 °C
B. 30 °C
C. 70 °C
D. 90 °C
Odpowiedź 70 °C jest prawidłowa, ponieważ przed przystąpieniem do analizy spalin istotne jest, aby silnik osiągnął optymalną temperaturę roboczą. Osiągnięcie temperatury 70 °C pozwala na pełne rozgrzanie oleju silnikowego, co jest kluczowe dla zapewnienia jego odpowiedniej lepkości oraz właściwego smarowania elementów silnika. W praktyce, silniki spalinowe są zaprojektowane tak, aby pracować najefektywniej w temperaturach zbliżonych do 90 °C, jednak dla testów emisji spalin minimalna temperatura 70 °C jest wystarczająca, aby uzyskać reprezentatywne wyniki. Wiele standardów branżowych, takich jak normy Euro dotyczące emisji spalin, podkreśla, że analiza spalin powinna być przeprowadzana w odpowiednich warunkach temperaturowych, aby uzyskać dokładne i wiarygodne dane. Przykładowo, w przypadku diagnostyki pojazdów, pomiar spalin w niewłaściwej temperaturze może prowadzić do błędnych wniosków dotyczących stanu silnika oraz jego emisji, co może mieć konsekwencje zarówno dla ekologii, jak i dla przepisów prawnych dotyczących ochrony środowiska.

Pytanie 36

Mimo że wał korbowy jest obracany przez rozrusznik, silnik nie uruchamia się. W tej sytuacji nie należy sprawdzać

A. ciśnienia sprężania
B. pompy paliwa
C. zaworu recyrkulacji spalin
D. ustawienia rozrządu silnika
Przy diagnozowaniu problemów z uruchomieniem silnika ważne jest zrozumienie roli każdego z wymienionych podzespołów. Ustawienie rozrządu silnika jest kluczowe dla synchronizacji pracy zaworów z ruchem tłoków. Niewłaściwe ustawienie może prowadzić do kolizji między tłokami a zaworami, co z pewnością uniemożliwi uruchomienie silnika. Dlatego ważne jest, aby przed przystąpieniem do uruchamiania silnika upewnić się, że rozrząd jest poprawnie ustawiony. Pompa paliwa z kolei odpowiada za dostarczenie paliwa do silnika, a jej uszkodzenie skutkuje brakiem ciśnienia paliwa, co również uniemożliwia uruchomienie. Ciśnienie sprężania to kolejny kluczowy parametr; odpowiedni poziom sprężania jest niezbędny do efektywnego zapłonu mieszanki paliwowo-powietrznej. Niskie ciśnienie sprężania może wskazywać na uszkodzone uszczelniacze, pierścienie lub zawory, co skutkuje znacznymi problemami z uruchomieniem silnika. Dlatego ignorowanie tych elementów podczas diagnozowania problemu z uruchomieniem silnika może prowadzić do błędnych wniosków i opóźnień w naprawie. Należy pamiętać, że każdy z tych komponentów odgrywa istotną rolę w procesie uruchamiania silnika, a ich nieprawidłowe działanie może wprowadzić w błąd podczas diagnostyki.

Pytanie 37

Podczas zakupu panewek łożysk głównych wału korbowego warto zwrócić uwagę na

A. sekwencję montowanych korbowodów
B. zastosowanie odpowiedniego luzu montażowego umożliwiającego obrót panewek w korpusie
C. instalację tylko nowych panewek
D. właściwe osadzenie panewek względem otworów olejowych
Odpowiednie osadzenie panewek w stosunku do otworów olejowych jest kluczowe dla prawidłowego funkcjonowania łożysk głównych wału korbowego. Paneweczki, jako elementy współpracujące z wałem korbowym, muszą być właściwie ustawione, aby zapewnić odpowiedni przepływ oleju smarującego, co jest niezbędne dla zmniejszenia tarcia i zapobiegania zużyciu. W przypadku niewłaściwego osadzenia, możliwe są zastoje oleju, co prowadzi do przegrzewania się komponentów oraz ich przedwczesnego uszkodzenia. Praktyczne zastosowanie tej zasady obejmuje dokładne wyrównanie panewek z otworami olejowymi podczas montażu, co można osiągnąć poprzez użycie specjalnych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry, które pozwalają na precyzyjne dopasowanie. Zgodnie z wytycznymi producentów silników, ważne jest również, aby przed montażem sprawdzić czystość powierzchni oraz stan panewek, co przyczynia się do ich długotrwałej eksploatacji i efektywności działania silnika.

Pytanie 38

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. spadku stopnia sprężania
B. wzrostu zużycia paliwa
C. wzrostu zużycia oleju silnikowego
D. wzrostu ciśnienia sprężania
Luz pierścieni tłokowych nie wpływa bezpośrednio na ciśnienie sprężania w silniku, co jest mylnym przekonaniem. Zwiększone ciśnienie sprężania jest wynikiem efektywnego uszczelnienia komory spalania, co osiąga się poprzez prawidłowo dopasowane pierścienie. Nadmierny luz pierścieni może prowadzić do ich niewłaściwego przylegania do ścian cylindrów, co z kolei obniża ciśnienie sprężania, a nie je zwiększa. Takie nieprawidłowe zrozumienie roli pierścieni prowadzi do niebezpiecznych błędów w diagnostyce usterek silników. Z kolei zmniejszony stopień sprężania również nie jest bezpośrednio związany z luzem pierścieni, choć może być skutkiem ich zużycia. Kluczowe jest zrozumienie, że stopień sprężania zależy od wielu czynników, w tym geometrii komory spalania oraz stanu zaworów. Warto również zauważyć, że nadmierny luz pierścieni nie prowadzi automatycznie do większego zużycia paliwa; to zjawisko może być spowodowane innymi czynnikami, takimi jak ustawienia wtrysku paliwa czy problemy z układem zapłonowym. W praktyce, zamiast diagnozować problemy na podstawie niepoprawnych założeń, inżynierowie powinni korzystać z systematycznych metod analizy, takich jak testy ciśnienia sprężania oraz inspekcje wizualne stanu pierścieni i tłoków.

Pytanie 39

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. porażenia prądem
B. oparzenia spalinami
C. urazów rąk
D. zatrucia spalinami
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 40

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. białym
B. czarnym
C. niebieskim
D. czerwonym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.