Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 08:22
  • Data zakończenia: 10 czerwca 2025 08:47

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować zestaw do filtracji, należy zebrać

A. biuretę, statyw metalowy, zlewkę
B. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
C. bagietkę, zlewkę, łapę metalową, statyw metalowy
D. szkiełko zegarkowe, tryskawkę, kolbę stożkową
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. koniecznością dokładnego wymieszania roztworu
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. opóźnieniem w osiągnięciu równowagi dysocjacji
D. opóźnieniem w ustaleniu się kontrakcji objętości
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 9±1°C
B. 16±2°C
C. 12±1°C
D. 5±3°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste do badań
B. czyste
C. czyste chemicznie
D. spektralnie czyste
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 8

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. do analizy
B. laboratoryjną
C. wtórną
D. ogólną
Odpowiedzi takie jak ogólna, wtórna czy do analizy mogą wydawać się poprawne w kontekście pobierania próbek, ale w rzeczywistości nie oddają istoty klasyfikacji próbek w kontekście laboratoryjnym. Próbka ogólna jest zbiorem różnych elementów, które mogą nie odzwierciedlać dokładnych warunków danego miejsca, co może prowadzić do błędnych wniosków. Próbki wtórne z kolei są pobierane z już przetworzonych lub istniejących próbek, co uniemożliwia ich bezpośrednią analizę w pierwotnych warunkach. Odpowiedź sugerująca próbkę do analizy odnosi się do ogólnego pojęcia, które nie precyzuje, w jaki sposób próbka ma być wykorzystana ani jakie są jej wymagania. Błędne przekonanie może prowadzić do mylnego założenia, że każda próbka nadaje się do analizy, podczas gdy rzeczywistość wymaga rygorystycznych standardów pobierania, transportu i przechowywania, aby zapewnić integralność wyników. Prawidłowe określenie rodzaju próbki jest kluczowe dla sukcesu analitycznego, ponieważ różne typy próbek wymagają różnych metod przygotowania i analizy. W związku z tym, zrozumienie różnicy między próbą laboratoryjną a innymi typami próbek jest niezbędne dla praktyków zajmujących się analityką środowiskową.

Pytanie 9

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czysty
B. Czystość spektralna
C. Czystość chemiczna
D. Czystość do analizy
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 10

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. Na2C2O4
C. NaOH
D. Na2B4O7·10H2O
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 11

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 3,60 mol/dm3
B. 3,49 mol/dm3
C. 5,30 mol/dm3
D. 6,30 mol/dm3
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia procesu obliczania stężenia molowego i roli gęstości roztworu. Na przykład, odpowiedzi sugerujące zbyt wysokie stężenia molowe mogą być wynikiem braku uwzględnienia objętości roztworu. Kluczowym krokiem w obliczeniach jest zrozumienie, że stężenie molowe definiuje ilość moli substancji w jednostce objętości roztworu. W przypadku roztworu 20% kwasu azotowego(V) istotne jest, aby poprawnie obliczyć masę kwasu w roztworze oraz odpowiednią objętość tego roztworu, której wartość można uzyskać poprzez podzielenie masy roztworu przez jego gęstość. Pomijanie tego kroku prowadzi do błędnych wniosków. Na przykład, jeśli ktoś obliczy masę 20 g kwasu, ale błędnie przyjmie objętość roztworu jako 1 dm³, uzyskałby stężenie molowe znacznie zawyżone, co nie ma odzwierciedlenia w rzeczywistości. Dodatkowo, przy obliczeniach warto pamiętać o odpowiednich jednostkach; każdy etap obliczeń powinien być dokładnie sprawdzany pod kątem jednostek, aby uniknąć pomyłek. W kontekście praktycznym, znajomość poprawnych metod obliczeniowych jest niezbędna w laboratoriach chemicznych, gdzie precyzyjne stężenia mają bezpośredni wpływ na wyniki eksperymentów, a błędy mogą prowadzić do niepoprawnych wyników analitycznych.

Pytanie 12

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 200 g
B. 100 g
C. 50 g
D. 400 g
Aby uzyskać roztwór nasycony w temperaturze 20°C, należy rozpuścić w 200 gramach wody około 400 gramów cukru. Zjawisko nasycenia roztworu oznacza, że w danej temperaturze nie można już rozpuścić większej ilości substancji. W przypadku cukru rozpuszczalność w wodzie jest znaczna, a przy 20°C wynosi około 2000 g na 1 litr wody. Woda w tej temperaturze ma zatem zdolność rozpuszczenia znacznej ilości cukru, co sprawia, że 400 g w 200 g wody to zaledwie 20% maksymalnej ilości, jaką dałoby się rozpuścić. Praktyczne zastosowanie tej wiedzy można zauważyć w przemyśle spożywczym, gdzie dokładne parametry roztworu są kluczowe dla produkcji napojów słodzonych, syropów czy innych produktów zawierających cukier. Zrozumienie rozpuszczalności substancji jest niezbędne w wielu procesach chemicznych i technologicznych, co podkreśla znaczenie tej umiejętności w praktyce laboratoryjnej i przemysłowej.

Pytanie 13

Sód metaliczny powinien być przechowywany w laboratorium

A. w butelkach plastikowych
B. w szklanych pojemnikach wypełnionych naftą
C. w butlach metalowych z wodą destylowaną
D. w szklanych naczyniach
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 14

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. zlewka z bagietką
B. krystalizator ze szpatułką metalową
C. moździerz z tłuczkiem
D. parownica z łyżeczką porcelanową
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 1:2
B. 1:1
C. 2:1
D. 3:7
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 17

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. toksyczne, palne
B. stałe, niepalne
C. stałe, palne
D. bardzo toksyczne, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 18

Jaką próbkę stanowi woreczek gleby pobranej zgodnie z instrukcją?

Instrukcja pobierania próbek glebowych
Próbki pierwotne pobiera się laską glebową z wierzchniej warstwy gleby 0-20 cm, kolejno wykonując czynności:
– w miejscu pobierania próbki pierwotnej (pojedynczej), rolę świeżo zaoraną przydeptać,
– pionowo ustawić laskę do powierzchni gleby,
– wcisnąć laskę do oporu (na wysokość poprzeczki ograniczającej),
– wykonać pełny obrót i wyjąć laskę,
– zawartość wgłębienia (zasobnika) przenieść do pojemnika skrobaczki.
Po pobraniu próbek pojedynczych, całość wymieszać i napełnić kartonik lub woreczek.

A. Jednostkową.
B. Analityczną.
C. Ogólną.
D. Laboratoryjną.
Woreczek gleby pobrany zgodnie z instrukcją stanowi próbkę ogólną, ponieważ jego celem jest uzyskanie reprezentatywnej analizy gleby z określonego obszaru. Przykładowo, jeżeli pobieramy próbki z pola uprawnego, wykonujemy to w różnych punktach, aby uwzględnić zmienność gleby, jak np. różnice w składzie mineralnym, wilgotności czy strukturze. Próbka ogólna, będąca wynikiem połączenia kilku próbek jednostkowych, pozwala na dokładniejsze zrozumienie średnich właściwości gleby, co jest kluczowe dla rolnictwa, oceny jakości gleby oraz zrównoważonego zarządzania zasobami naturalnymi. Zgodnie z normami ISO, takie podejście do pobierania próbek jest standardem w ocenie jakości gleby, co potwierdza znaczenie próbki ogólnej w badaniach środowiskowych oraz rolniczych.

Pytanie 19

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
B. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
C. rozpuszczanie jodku potasu w wodzie
D. rozpuszczanie azotanu(V) amonu w wodzie
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 20

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 200 dm3
B. 20 dm3
C. 200 cm3
D. 20 ml
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 21

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. losowym
B. dokładności
C. instrumentalnym
D. paralaksy
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 22

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. komplet sit.
B. wytrząsarkę.
C. wirówkę.
D. krystalizator.
Wybór metody oddzielania osadu od cieczy macierzystej ma kluczowe znaczenie dla efektywności analizy. Zastosowanie zestawu sit do separacji nie jest odpowiednie w przypadku osadów takich jak AgCl. Sita stosowane są w procesach mechanicznych oddzielania cząstek o różnej wielkości, jednak w przypadku drobnoziarnistych osadów wirówka jest znacznie bardziej wydajna, ponieważ siła odśrodkowa potrafi skutecznie przemieścić drobiny do dłuższej probówki, podczas gdy sita mogą nie poradzić sobie z tak małymi cząstkami. Również wytrząsarka, która służy do mieszania i homogenizacji próbek, nie ma zastosowania w procesie oddzielania osadu, gdyż jej działanie nie generuje siły odśrodkowej potrzebnej do separacji. Wykorzystanie krystalizatora do oddzielania osadów również jest nieodpowiednie, ponieważ urządzenie to służy do otrzymywania czystych kryształów substancji poprzez odparowanie rozpuszczalnika, a nie do separacji osadów z cieczy. Wybór niewłaściwej metody segregacji może prowadzić do nieprecyzyjnych wyników analiz chemicznych, co jest całkowicie niezgodne z najlepszymi praktykami laboratorialnymi, które kładą nacisk na precyzyjność i rzetelność wyników.

Pytanie 23

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. destylacji
B. odparowywania
C. demineralizacji
D. filtrowania
Sączenie, odparowanie i demineralizacja to metody, które mają swoje zastosowania, jednak nie są odpowiednie do regeneracji rozpuszczalników organicznych. Sączenie to fizyczny proces separacji ciał stałych od cieczy, wykorzystywany głównie w filtracji, a nie w przypadku substancji rozpuszczalnych. Użycie sączenia do regeneracji rozpuszczalników byłoby nieefektywne, ponieważ nie pozwala na odzyskiwanie cieczy w formie czystej. Odparowanie, z kolei, polega na usuwaniu cieczy poprzez podgrzewanie, co może prowadzić do utraty części rozpuszczalnika i jego nieodwracalnego zniszczenia, co jest sprzeczne z ideą regeneracji. Wreszcie, demineralizacja dotyczy usuwania soli i innych minerałów z wody i nie ma zastosowania w kontekście rozpuszczalników organicznych. Często popełnianym błędem jest mylenie różnych metod separacji i regeneracji, co prowadzi do wniosków, które nie są zgodne z charakterystyką danego procesu chemicznego. Kluczowe w regeneracji rozpuszczalników organicznych jest zrozumienie, iż efektywne odzyskiwanie zależy od właściwego doboru metod, a destylacja pozostaje najskuteczniejszą z nich.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Kalibracja pH-metru nie jest potrzebna po

A. wymianie elektrody.
B. każdym pomiarze w danej serii.
C. dłuższej przerwie w pomiarach.
D. długotrwałym używaniu tej samej elektrody.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 28

Próbka, której celem jest ustalenie poziomu składników, dla których oznaczenia przygotowane przez różne laboratoria są niezgodne, to próbka

A. laboratoryjna
B. jednostkowa
C. rozjemcza
D. do badań
Odpowiedź "rozjemcza" jest poprawna, ponieważ odnosi się do próbki, która ma na celu uzyskanie obiektywnego obrazu zawartości składników, w sytuacji gdy wyniki z różnych laboratoriów mogą się różnić. Próbki rozjemcze są kluczowe w kontekście zapewnienia zgodności i rzetelności wyników analitycznych. Przykładem może być analiza jakości produktów spożywczych, gdzie różne laboratoria mogą stosować różne metody badawcze prowadzące do niezgodnych wyników. W standardach jakości, takich jak ISO 17025, podkreśla się znaczenie reprezentatywności próbki oraz procedur stosowanych w celu uzyskania spójnych wyników. W praktyce, wykorzystanie próbki rozjemczej umożliwia także potwierdzenie lub obalenie hipotez dotyczących jakości materiałów, co jest szczególnie ważne w branżach takich jak przemysł farmaceutyczny czy chemiczny, gdzie zgodność z normami jest niezbędna. Analiza próbki rozjemczej pozwala także na lepsze zrozumienie zmienności składników i ich wpływu na końcowy produkt.

Pytanie 29

Proces oddzielania cieczy od osadu nazywa się

A. sublimacji
B. aeracji
C. sedymentacji
D. dekantacji
Dekantacja to proces, który polega na oddzieleniu cieczy od osadu, co jest kluczowym krokiem w wielu dziedzinach, takich jak chemia, biotechnologia czy inżynieria środowiska. W praktyce dekantacja jest często stosowana w laboratoriach do oczyszczania roztworów, a także w przemyśle, na przykład w produkcji wina, gdzie dekantowanie polega na oddzieleniu klarownego wina od osadu, który może powstawać w czasie fermentacji. Proces ten polega na powolnym wylewaniu cieczy z naczynia, co pozwala na pozostawienie osadu na dnie. Zastosowanie dekantacji jest zgodne z dobrymi praktykami laboratoryjnymi i przemysłowymi, które zalecają efektywne i bezpieczne separowanie substancji, minimalizując straty materiałowe. Warto również zauważyć, że dekantacja może być stosowana jako wstępny krok przed innymi metodami rozdziału, takimi jak filtracja czy centrifugacja, co zwiększa jej znaczenie w kontekście procesów technologicznych.

Pytanie 30

W urządzeniu Soxhleta wykonuje się

A. ługowanie
B. krystalizację
C. dekantację
D. sublimację
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. zielonym
B. czerwonym
C. żółtym
D. niebieskim
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 33

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
B. 18,02 mol/dm3
C. 0,18 mol/dm3
D. 18,02 mol/cm3
Odpowiedź 18,02 mol/dm3 jest poprawna, ponieważ obliczenie stężenia molowego kwasu siarkowego(VI) można przeprowadzić na podstawie jego stężenia wagowego oraz gęstości. Kwas siarkowy(VI) o stężeniu 96% oznacza, że w 100 g roztworu znajduje się 96 g kwasu siarkowego. Molarność (stężenie molowe) obliczamy dzieląc liczbę moli substancji przez objętość roztworu w litrach. W przypadku kwasu siarkowego molarność obliczamy przez zdefiniowanie masy molowej, która wynosi 98 g/mol (H: 1 g/mol, S: 32 g/mol, O: 16 g/mol × 4 = 64 g/mol). Zatem obliczamy ilość moli w 96 g: 96 g / 98 g/mol = 0,98 mol. Aby obliczyć objętość roztworu, używamy gęstości: 100 g / 1,84 g/cm3 = 54,35 cm3 = 0,05435 dm3. Teraz możemy obliczyć stężenie molowe: 0,98 mol / 0,05435 dm3 = 18,02 mol/dm3. Takie obliczenia są niezwykle istotne w praktyce chemicznej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla wyników eksperymentów oraz procesów przemysłowych.

Pytanie 34

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. umytych wodorotlenkiem sodu
B. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
C. sterylnych
D. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3

A. 1,2,5
B. 2,3,4
C. 1,2,4
D. 1,2,3
Aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm3. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 38

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w kartonowych opakowaniach
B. w pojemnikach na odpady komunalne
C. w workach z polietylenu i oznaczyć zawartość
D. w szklanych słoikach z plastikowym wieczkiem
Umieszczanie odpadów stałych typu resztki sączków oraz zbitego szkła w pojemnikach na odpady komunalne jest zgodne z obowiązującymi normami i regulacjami dotyczącymi gospodarki odpadami. Tego rodzaju odpady, ze względu na swoje właściwości, powinny być segregowane i składowane w odpowiednich pojemnikach, które są przystosowane do tego celu. Zgodnie z dyrektywami unijnymi i krajowymi, odpady te nie mogą być wrzucane do ogólnych pojemników, ponieważ mogą stwarzać zagrożenie dla ludzi oraz środowiska. Na przykład, zbite szkło w laboratoriach analitycznych wymaga szczególnej uwagi, ponieważ może powodować urazy. Praktyczne podejście do zarządzania tymi odpadami obejmuje nie tylko ich odpowiednie pakowanie, ale także prowadzenie dokumentacji dotyczącej ich pochodzenia i rodzaju. Odpowiednia segregacja i składowanie odpadów są kluczowe dla ich późniejszego przetwarzania oraz recyklingu, co pozwala na minimalizację negatywnego wpływu na środowisko i zdrowie publiczne.

Pytanie 39

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 7 miesięcy
B. 1 miesiąc
C. 5 miesięcy
D. 3 miesiące
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 40

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
B. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
C. Kolba miarowa, lejek szklany, bagietka
D. Kolba stożkowa, lejek z sitkiem, bagietka
Wybór sprzętu laboratoryjnego, który nie obejmuje kolby ssawkowej, lejka z sitowym dnem oraz pompki wodnej, świadczy o niepełnym zrozumieniu procesu sączenia pod zmniejszonym ciśnieniem. Odpowiedzi takie jak kolba miarowa, lejek szklany lub bagietka, choć przydatne w różnych kontekstach laboratoryjnych, nie są właściwe w tej sytuacji. Kolba miarowa służy głównie do dokładnego pomiaru objętości cieczy, co jest kluczowe w procesach chemicznych, ale nie ma zastosowania w kontekście sączenia. Lejek szklany, mimo że może być używany do filtracji, nie zapewnia odpowiedniego wsparcia w uzyskiwaniu podciśnienia, które jest istotne dla efektywności procesu. Bagietka, używana do przenoszenia cieczy, nie jest narzędziem odpowiednim do tworzenia warunków próżniowych. Zrozumienie zasad działania sprzętu i ich zastosowania jest kluczowe w laboratoriach, gdzie błędne podejście do doboru narzędzi może prowadzić do nieefektywności lub wręcz zanieczyszczenia próbek. Dlatego istotne jest, aby nie tylko znać funkcję poszczególnych elementów, ale także umieć je odpowiednio zestawić w kontekście danego procesu technologicznego.