Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 9 maja 2025 10:01
  • Data zakończenia: 9 maja 2025 10:14

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas naprawy systemu hamulcowego, mechanik zaobserwował, że jedna z okładzin na klocku hamulcowym jest uszkodzona. Jaką decyzję powinien podjąć mechanik w tej sytuacji?

A. klocków hamulcowych na konkretnym kole pojazdu
B. uszkodzonego klocka hamulcowego na nowy
C. wszystkich klocków na danej osi samochodu
D. klocka hamulcowego na nowy o tej samej grubości okładziny
Wybór wymiany wszystkich klocków hamulcowych na danej osi pojazdu jest zgodny z zaleceniami producentów oraz z najlepszymi praktykami w branży motoryzacyjnej. Klocki hamulcowe są elementem, który zużywa się równomiernie pod wpływem sił działających na nie podczas hamowania. W przypadku, gdy jeden z klocków na osi wykazuje oznaki uszkodzenia, takiego jak wykruszenie okładziny, może to sugerować, że pozostałe klocki na tej samej osi również zbliżają się do końca swojej żywotności. Działania takie jak wymiana tylko jednego klocka mogą prowadzić do niejednolitego działania układu hamulcowego, co zwiększa ryzyko wystąpienia poślizgu lub nieskutecznego hamowania. Dodatkowo, wymiana wszystkich klocków na tej samej osi zapewnia lepszą równowagę i stabilność podczas hamowania, co jest kluczowe dla bezpieczeństwa jazdy. W praktyce, mechanicy powinni zawsze dążyć do wymiany klocków w parze na danej osi, aby utrzymać optymalną funkcjonalność układu hamulcowego oraz wydłużyć ich żywotność. Takie podejście jest również zgodne z zaleceniami wielu standardów branżowych, takich jak normy ISO dotyczące bezpieczeństwa pojazdów.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Która z poniższych czynności musi być wykonana przy wymianie klocków hamulcowych?

A. Sprawdzenie grubości tarcz hamulcowych
B. Zmiana płynu chłodzącego
C. Ustawienie geometrii kół
D. Kalibracja systemu ESP
Sprawdzenie grubości tarcz hamulcowych to kluczowy krok przy wymianie klocków hamulcowych. Tarcze hamulcowe mają określoną minimalną grubość, poniżej której nie powinny być używane, ponieważ ich efektywność hamowania i zdolność do rozpraszania ciepła są znacznie ograniczone. Jeśli tarcze są zbyt cienkie, mogą się przegrzewać, co prowadzi do wydłużenia drogi hamowania i zwiększonego ryzyka awarii układu hamulcowego. Standardową praktyką jest porównanie grubości tarcz z wartościami podanymi przez producenta pojazdu. Często podczas wymiany klocków zaleca się również wymianę tarcz, zwłaszcza jeśli są one bliskie minimalnej grubości. Przy okazji warto sprawdzić powierzchnię tarcz pod kątem nierówności czy pęknięć. Takie działania są zgodne z dobrymi praktykami serwisowymi, które mają na celu zapewnienie bezpieczeństwa i długowieczności układu hamulcowego. Przy odpowiedniej grubości tarcz nowe klocki będą działać efektywnie, co przekłada się na lepsze bezpieczeństwo na drodze.

Pytanie 4

Aby ocenić skuteczność działania systemu bezpieczeństwa aktywnego w pojeździe, należy zweryfikować

A. oświetlenie zewnętrzne pojazdu
B. stan oleju w silniku
C. mechanizmy napinaczy pasów bezpieczeństwa
D. szczelność systemu paliwowego
Weryfikacja działania układu bezpieczeństwa czynnego pojazdu powinna koncentrować się na elementach, które bezpośrednio wpływają na zdolność do bezpiecznego prowadzenia. Poziom oleju w silniku, choć istotny dla ogólnej kondycji silnika, nie jest bezpośrednio związany z systemem bezpieczeństwa czynnego. Odpowiedzialność za prawidłowe smarowanie silnika ma na celu przede wszystkim zapobieganie uszkodzeniom, a nie aktywne zabezpieczenie w sytuacji zagrożenia. Napinacze pasów bezpieczeństwa, mimo iż są elementem, który wpływa na bezpieczeństwo pasażerów, nie stanowią same w sobie aktywnego elementu bezpieczeństwa, który byłby weryfikowany w kontekście ogólnej funkcjonalności pojazdu. Kontrola szczelności układu paliwowego, chociaż istotna dla uniknięcia ryzyka pożaru, również nie należy do czynnych systemów bezpieczeństwa, które obowiązkowo muszą być weryfikowane przed jazdą. Oświetlenie zewnętrzne jest tym elementem, który z jasno określonym celem ma na celu zapewnienie widoczności. Prawidłowe działania w tym zakresie są niezbędne dla bezpieczeństwa na drogach, a zaniedbanie może prowadzić do niebezpiecznych sytuacji. Kierowcy często błędnie oceniają wagę poszczególnych elementów, wybierając te, które nie są kluczowe dla aktywnego bezpieczeństwa, co może prowadzić do poważnych konsekwencji w ruchu drogowym.

Pytanie 5

Powierzchnię uszczelniającą głowicy, która uległa deformacji, naprawia się w wyniku

A. napawania
B. planowania
C. klejenia
D. galwanizacji
Napawanie, będące procesem łączenia metali poprzez dodawanie materiału w postaci spoiwa, nie jest odpowiednią metodą do naprawy powierzchni uszczelniającej głowicy, ponieważ wymaga znacznego podgrzewania, co może prowadzić do dalszych deformacji. W kontekście naprawy silników, napawanie używane jest głównie do odtwarzania zużytych elementów, takich jak wały korbowe czy zębatki, a nie do usuwania odkształceń w krytycznych powierzchniach uszczelniających. Klejenie również nie jest właściwym rozwiązaniem w tym przypadku, ponieważ uszczelki muszą tworzyć idealnie gładką i sztywną powierzchnię, a klej nie zapewnia wystarczającej trwałości i odporności na wysokie temperatury oraz ciśnienia panujące w silniku. Z kolei galwanizacja, proces polegający na pokrywaniu powierzchni metalowych warstwą innego metalu, stosowana jest głównie w celu ochrony przed korozją, a nie do korygowania deformacji. Tego typu błędne decyzje mogą prowadzić do poważnych problemów w działaniu silnika, takich jak przecieki czy zacieranie się elementów, co w konsekwencji pociąga za sobą kosztowne naprawy. Zrozumienie, jak i kiedy stosować odpowiednie metody naprawcze, jest kluczowe dla zachowania integralności i wydajności silnika.

Pytanie 6

Gdzie znajduje zastosowanie sprzęgło wielotarczowe typu Haldex?

A. w tylnym zblokowanym układzie napędowym
B. w klasycznym układzie napędowym
C. w przednim zblokowanym układzie napędowym
D. w układzie napędowym z napędem na cztery koła
Sprzęgło wielotarczowe typu Haldex jest kluczowym elementem w układach napędowych z napędem na cztery koła (4WD), które pozwala na dynamiczne zarządzanie momentem obrotowym między osiami. Jego działanie opiera się na hydraulice oraz elektronicznej kontroli, co umożliwia włączanie napędu na tylne koła w odpowiedzi na zmieniające się warunki drogowe i obciążenie. Przykładem zastosowania sprzęgła Haldex są pojazdy marki Audi, Volkswagen i Seat, gdzie zapewnia ono optymalną trakcję w różnych warunkach, takich jak jazda po śniegu czy błocie. Dzięki technologii Haldex, pojazdy mogą efektywniej rozdzielać moc silnika, co prowadzi do lepszej stabilności oraz bezpieczeństwa. Ponadto, sprzęgło to jest zgodne z najlepszymi praktykami branżowymi, które kładą nacisk na komfort jazdy oraz wydajność energetyczną, a jego konstrukcja umożliwia szybką reakcję na pojawiające się sytuacje, co znacząco zwiększa kontrolę nad pojazdem. W związku z tym, sprzegło Haldex stanowi doskonały przykład innowacji w dziedzinie motoryzacji, łącząc zaawansowaną technologię z praktycznymi rozwiązaniami.

Pytanie 7

Przed przystąpieniem do diagnostyki oraz regulacji zbieżności kół osi przedniej pojazdu, nie jest konieczne przeprowadzenie dokładnej oceny stanu technicznego

A. zawieszenia.
B. kierowniczego.
C. opon.
D. napędu.
Stwierdzenie, że kontrola stanu ogumienia, zawieszenia lub układu kierowniczego przed regulacją zbieżności kół nie jest konieczna, prowadzi do kilku kluczowych nieporozumień w zakresie diagnostyki i obsługi pojazdów. Ogumienie stanowi fundamentalny element bezpieczeństwa, a jego stan ma bezpośredni wpływ na przyczepność, prowadzenie i efektywność hamowania. Niewłaściwe ciśnienie w oponach lub ich uszkodzenia mogą skutkować nierównomiernym zużyciem, co z kolei może prowadzić do problemów z zbieżnością. Podobnie, zawieszenie i układ kierowniczy są krytycznymi komponentami, które wpływają na kontrolę pojazdu. Elementy te często ulegają zużyciu, co może wpływać na geometrię kół oraz stabilność jazdy. Na przykład, uszkodzone tuleje czy zużyte łożyska mogą prowadzić do nieprawidłowego ustawienia kół, co wymaga wcześniejszej diagnostyki. Zasady dobrych praktyk w branży motoryzacyjnej zalecają, aby przed każdą regulacją zbieżności szczegółowo sprawdzić stan tych komponentów. Pomijanie tej kontroli może prowadzić do poważnych konsekwencji, takich jak pogorszenie właściwości jezdnych pojazdu oraz zwiększone zużycie opon. W rezultacie, odpowiedzi wskazujące na pominięcie analizy stanu technicznego tych kluczowych układów są niewłaściwe i mogą być niebezpieczne dla użytkowników dróg.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Niski wynik uzyskany w pomiarze przeprowadzonym metodą Eusama wskazuje na potrzebę wymiany

A. amortyzatory
B. stabilizatory
C. hamulce tarczowe
D. sprężyny śrubowe zawieszenia
Stabilizatory, hamulce tarczowe i sprężyny śrubowe mają różne zadania w zawieszeniu, ale niekoniecznie są związane z tym niskim wynikiem z metody Eusama. Stabilizatory, które też nazywamy stabilizatorami przechyłów, pomagają w utrzymaniu pojazdu w równowadze podczas zakrętów, co wprawdzie wpływa na komfort jazdy, ale ich uszkodzenie nie oznacza, że amortyzatory działają źle. Hamulce tarczowe są oczywiście istotne dla bezpieczeństwa, ale tu także nie mają nic wspólnego z pomiarami amortyzatorów. No i sprężyny śrubowe, to one zbierają energię, ale też nie wpływają bezpośrednio na wyniki amortyzatorów. Często ludzie mylą, jakie funkcje mają poszczególne elementy zawieszenia. Ważne, żeby pamiętać, że amortyzatory tłumią drgania i to jest kluczowe dla stabilności auta. Dobrze zdiagnozowany układ zawieszenia jest niezbędny dla bezpieczeństwa i komfortu jazdy, więc mechanicy muszą wiedzieć, co robią przy każdej części.

Pytanie 10

Jakim narzędziem dokonuje się pomiaru średnicy cylindrów po zakończonej naprawie silnika?

A. mikrometra
B. suwmiarki
C. średnicówki mikrometrycznej
D. średnicówki zegarowej
Użycie suwmiarki do pomiaru średnicy cylindrów po naprawie silnika może wydawać się logiczne, jednak ten przyrząd nie zapewnia wystarczającej precyzji. Suwmiarki, choć wszechstronne, mają ograniczenia związane z dokładnością pomiaru, co w kontekście wymagań dotyczących cylindrów silnika, które muszą mieścić się w ściśle określonych tolerancjach, może prowadzić do błędnych wyników. Przykładowo, w przypadku pomiaru średnicy cylindrów, nawet niewielkie błędy mogą skutkować niewłaściwym dopasowaniem tłoków, co z kolei wpłynie na wydajność i trwałość silnika. Mikrometr, mimo że jest bardziej precyzyjny niż suwmiarka, nadal nie jest najlepszym wyborem do pomiaru średnic cylindrów, ponieważ nie pozwala na łatwe mierzenie przestrzeni wewnętrznych w cylindrze, co jest niezbędne do uzyskania dokładnych wymiarów. Średnicówka mikrometryczna, chociaż użyteczna do pomiarów zewnętrznych, również nie jest idealna do pomiarów cylindrów silnika, gdyż nie jest przystosowana do pomiarów wewnętrznych o skomplikowanej geometrii. Właściwym podejściem w profesjonalnych warsztatach mechanicznych jest korzystanie z narzędzi, które zostały zaprojektowane specjalnie do tej funkcji, jak średnicówki zegarowe, które dzięki swojej budowie pozwalają na dokładne i szybkie pomiary bez ryzyka wprowadzenia błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 11

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. wszystkich śrub w dowolnym ustawieniu zawieszenia
D. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 12

Podczas przeglądu układu zawieszenia, co należy sprawdzić, aby ocenić stan amortyzatorów?

A. Stan przewodów elektrycznych
B. Szczelność i wycieki oleju
C. Kolor płynu chłodzącego
D. Napięcie pasków klinowych
Napięcie pasków klinowych nie ma związku ze stanem amortyzatorów. Paski klinowe są elementem układu napędowego, a ich napięcie wpływa na pracę alternatora, pompy wspomagania czy sprężarki klimatyzacji. Nieprawidłowe napięcie pasków może prowadzić do ich szybszego zużycia lub nawet zerwania, co w konsekwencji unieruchomi niektóre z tych urządzeń, ale nie wpływa bezpośrednio na pracę zawieszenia. Kolor płynu chłodzącego również nie ma związku z amortyzatorami. Płyn chłodzący odnosi się do układu chłodzenia silnika, a jego kolor może wskazywać na ewentualne problemy z układem chłodzenia, takie jak obecność zanieczyszczeń lub mieszanie się płynów. Jednakże, nie wpływa on na stan amortyzatorów. Stan przewodów elektrycznych jest istotny dla działania całego pojazdu, ale nie jest bezpośrednio związany z oceną stanu amortyzatorów. Przewody elektryczne mogą wpływać na funkcjonowanie systemu oświetlenia, elektroniki pokładowej czy systemów wspomagających kierowcę, ale nie mają bezpośredniego wpływu na mechaniczną funkcję układu zawieszenia. W przypadku problemów z amortyzatorami, elektryka pojazdu nie będzie miała znaczenia. Z tego powodu, żadna z tych odpowiedzi nie jest właściwa w kontekście oceny stanu amortyzatorów.

Pytanie 13

Proporcja objętości cylindra powyżej tłoka w pozycjach DMP oraz GMP definiuje

A. ciśnienie sprężonego powietrza
B. długość skoku tłoka
C. objętość jednego skoku silnika
D. stopień sprężania
Skok tłoka, ciśnienie sprężania oraz objętość skokowa silnika to parametry, które często mylone są z pojęciem stopnia sprężania, jednak każdy z nich odnosi się do innego aspektu funkcjonowania silnika. Skok tłoka to odległość, jaką tłok przebywa od GMP do DMP i nie ma bezpośredniego związku z objętościami w tych położeniach, lecz jedynie z długością ruchu tłoka. Ciśnienie sprężania natomiast odnosi się do ciśnienia wewnątrz cylindra na etapie sprężania mieszanki, które zależy od stopnia sprężania, ale nie definiuje go. Objawem wysokiego ciśnienia sprężania może być detonacja, co jest zagrożeniem dla silnika, a nie wartością, którą się określa w kontekście objętości. Dodatkowo, objętość skokowa silnika to objętość jednego cyklu pracy silnika i także różni się od stopnia sprężania, ponieważ odnosi się do całkowitej objętości, jaką tłok przemieszcza w jednym cyklu roboczym silnika. Typowe błędy w zrozumieniu tych pojęć wynikają z braku znajomości podstawowych zasad termodynamiki i mechaniki płynów, co prowadzi do błędnych wniosków na temat działania silników spalinowych. Dlatego kluczowe jest rozwijanie wiedzy technicznej i zrozumienie różnic między tymi parametrami, aby prawidłowo analizować i oceniać osiągi silników.

Pytanie 14

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Płyn do hamulców
B. Płyn chłodzący do silnika
C. Olej silnikowy
D. Płyn do spryskiwaczy
Wybór płynu spryskiwacza jako odpowiedzi na pytanie o symbol 10W/40 jest błędny, ponieważ płyny spryskiwacza nie mają oznaczeń związanych z lepkością. Płyny te są zazwyczaj jednorodne i ich działanie opiera się na innych właściwościach, takich jak zdolność do usuwania zanieczyszczeń z szyby. Z kolei płyn chłodzący silnika i płyn hamulcowy również nie są klasyfikowane na podstawie lepkości SAE, a ich właściwości są oceniane przez różne standardy, takie jak DOT dla płynów hamulcowych czy normy dotyczące płynów chłodzących. Płyn chłodzący jest odpowiedzialny za regulowanie temperatury silnika, a jego skład chemiczny różni się od oleju silnikowego. Zastosowanie nieodpowiednich płynów może prowadzić do poważnych uszkodzeń pojazdu. Powszechny błąd polega na myleniu rodzajów płynów eksploatacyjnych; każdy z nich ma swoje specyficzne właściwości i zastosowania, a ich niewłaściwe stosowanie może prowadzić do awarii. Zrozumienie różnicy między olejem silnikowym a innymi płynami jest kluczowe dla zapewnienia bezpieczeństwa i sprawności pojazdu.

Pytanie 15

Pasek rozrządu silnika powinien być wymieniany

A. po zalecanym przebiegu
B. przy wymianie olejowej pompy
C. przed każdym okresem zimowym
D. w trakcie każdego przeglądu serwisowego
Wymiana paska rozrządu silnika jest kluczowym elementem konserwacji pojazdu, a jej przeprowadzenie po wskazanym przebiegu jest zgodne z zaleceniami producentów samochodów oraz standardami branżowymi. Zazwyczaj interwał wymiany paska rozrządu oscyluje w granicach 60 000 do 150 000 kilometrów, w zależności od marki i modelu pojazdu. Niezwykle istotne jest przestrzeganie tych zaleceń, ponieważ zużycie paska prowadzi do ryzyka jego zerwania, co może skutkować poważnymi uszkodzeniami silnika, w tym uszkodzeniem zaworów czy tłoków. W praktyce, podczas wymiany paska, warto również kontrolować stan rolek prowadzących i napinaczy, a także wymieniać płyn chłodniczy, co zapewni prawidłowe funkcjonowanie układu rozrządu na kolejne kilometry. Przykładowo, w samochodach takich jak Volkswagen Golf V, brak wymiany paska w odpowiednim czasie może prowadzić do kosztownych napraw, co pokazuje, jak istotne jest regularne monitorowanie stanu paska w kontekście całej konserwacji pojazdu.

Pytanie 16

Przegub homokinetyczny zapewnia

A. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
B. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
D. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
Nie do końca jest tak, że przegub równobieżny działa tylko wtedy, gdy osie obrotu są w jednej linii. Wiele osób myśli, że tak jest, ale to nieprawda. On jest stworzony do działania w różnych ustawieniach, nawet gdy osie są pod kątem. Ważne jest, że przegub homokinetyczny utrzymuje stałą prędkość obrotową wałów, co zapobiega wahaniom, które mogą się zdarzyć w innych rodzajach przegubów. Twierdzenie, że przenosi napęd tylko w określonych warunkach, jest błędne. Ludzie powinni wiedzieć, że te przeguby mają ogromne znaczenie dla efektywności w napędach, zwłaszcza w trudnych warunkach drogowych. Dobrze jest też pamiętać, że przy projektowaniu napędów trzeba brać pod uwagę materiały przegubów i to, jak są smarowane, bo to wpływa na ich trwałość.

Pytanie 17

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. schłodzić silnik.
B. podnieść temperaturę silnika do wartości eksploatacyjnej.
C. dodać olej silnikowy do maksymalnego poziomu.
D. uzupełnić zbiornik paliwa.
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zgodnie z aktualnymi regulacjami, maksymalna dopuszczalna różnica w ocenach efektywności tłumienia amortyzatorów na jednej osi wynosi

A. 15%
B. 10%
C. 20%
D. 25%
Maksymalna różnica w skuteczności tłumienia amortyzatorów na jednej osi nie może przekraczać 20%. To istotne, bo sprawia, że samochód zachowuje się stabilnie na drodze. Przykładowo, jeśli w autach osobowych amortyzatory działają nierówno, może to prowadzić do nieprzewidywalnego zachowania się pojazdu, a to już niebezpieczne. No i trzeba pamiętać, że producenci muszą wykazać zgodność ze standardami, żeby ich auta mogły być sprzedawane. Oprócz tego, trzymanie się tej zasady poprawia komfort jazdy i wydłuża żywotność zawieszenia. Dlatego przestrzeganie tego przepisu to kluczowa sprawa dla bezpieczeństwa na drodze i efektywności auta.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. smar stały
B. płyn hydrauliczny
C. olej przekładniowy
D. olej silnikowy
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 23

Jakie narzędzie należy zastosować do pomiaru średnicy czopów wału korbowego?

A. śruby mikrometrycznej
B. przymiaru kreskowego
C. czujnika zegarowego
D. suwmiarki o dokładności 0,1 mm
Suwmiarka, choć powszechnie używana, nie gwarantuje takiej samej precyzji jak śruba mikrometryczna. Jej dokładność wynosi zazwyczaj około 0,1 mm, co w wielu zastosowaniach jest wystarczające, lecz w kontekście pomiarów średnicy czopów wału korbowego, gdzie wymagana jest większa precyzja, może okazać się niewystarczająca. Ponadto, podczas pomiarów suwmiarką istnieje ryzyko błędów wynikających z niewłaściwego ułożenia narzędzia względem mierzonego obiektu. Czujnik zegarowy, z drugiej strony, jest narzędziem stosowanym do pomiarów względnych i służy głównie do oceny tolerancji oraz oceny zużycia, a nie do precyzyjnego pomiaru średnic. Jego zastosowanie w tym kontekście mogłoby prowadzić do błędnych interpretacji danych. Przymiar kreskowy to narzędzie, które, choć może być użyteczne w pomiarze długości, nie jest odpowiednie w przypadku pomiarów średnic, gdzie precyzja jest kluczowa. Użycie błędnych narzędzi pomiarowych, takich jak suwmiarka czy przymiar kreskowy, może prowadzić do błędów w konstrukcji i negatywnie wpłynąć na jakość finalnego produktu. Ważne jest, aby zrozumieć, że precyzyjne pomiary są fundamentem inżynierii, a wybór odpowiednich narzędzi ma kluczowe znaczenie dla sukcesu w tym obszarze.

Pytanie 24

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. DOHC
B. OHV
C. OHC
D. SOHC
Wybór symboli OHV, OHC lub SOHC wskazuje na brak zrozumienia różnic pomiędzy tymi układami rozrządu. OHV, czyli Overhead Valve, to system, w którym zawory są sterowane z wałka rozrządu umieszczonego w bloku silnika, co prowadzi do większych wymiarów silnika oraz sprawia, że układ jest mniej skomplikowany. Choć OHV może być bardziej kompaktowy w niektórych zastosowaniach, nie zapewnia takiej kontroli nad pracą zaworów jak DOHC. Z kolei OHC, czyli Overhead Camshaft, oznacza, że silnik ma tylko jeden wałek rozrządu, co zazwyczaj ogranicza liczbę zaworów na cylinder. System SOHC, czyli Single Overhead Camshaft, to rozwinięcie tego rozwiązania, jednak również nie dorównuje DOHC pod względem wydajności i precyzji sterowania zaworami. W praktyce, te starsze układy są mniej powszechnie stosowane w nowoczesnych silnikach, które często wymagają większej dynamiki, efektywności paliwowej i osiągów. Dla inżynierów i mechaników kluczowe jest zrozumienie, że wybór odpowiedniego systemu rozrządu ma bezpośredni wpływ na osiągi silnika i jego zdolność do pracy w różnych warunkach. Dlatego też, brak znajomości tych różnic może prowadzić do błędnych decyzji w projektowaniu silników oraz ich późniejszej eksploatacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W systemie klimatyzacyjnym parownik umiejscowiony jest

A. obok sprężarki klimatyzacji
B. za wentylatorem chłodnicy
C. obok chłodnicy silnika
D. obok nagrzewnicy
W układzie klimatyzacji występuje wiele kluczowych komponentów, a jego zrozumienie wymaga znajomości ich roli i umiejscowienia. Wiele osób może mylnie sądzić, że parownik znajduje się przy sprężarce klimatyzacji, jednak to nieprawda. Sprężarka jest odpowiedzialna za sprężanie czynnika chłodniczego i jego cyrkulację w układzie, ale to nie w jej sąsiedztwie odbywa się proces chłodzenia powietrza. Z kolei umiejscowienie parownika przy chłodnicy silnika również jest nieprawidłowe. Chłodnica silnika ma za zadanie odprowadzać ciepło generowane przez silnik, a nie brać udział w procesie klimatyzacji. Ponadto, umiejscowienie parownika za wentylatorem chłodnicy jest również mylne, ponieważ ten wentylator ma na celu wspomaganie chłodzenia cieczy w chłodnicy, co nie ma bezpośredniego związku z funkcjonowaniem parownika. Kluczowym błędem, który prowadzi do tych nieprawidłowych wniosków, jest niezrozumienie, że parownik pełni funkcję eliminacji ciepła z wnętrza pojazdu, a jego lokalizacja przy nagrzewnicy pozwala na skuteczne działanie układu klimatyzacji. Należy pamiętać, że skuteczna wentylacja i klimatyzacja są ze sobą ściśle powiązane, a zrozumienie tych relacji jest niezbędne do prawidłowego funkcjonowania systemu. Właściwe umiejscowienie parownika jest zatem kluczowe dla zapewnienia komfortu w kabinie pojazdu i efektywności całego układu.

Pytanie 27

Zanim rozpoczniesz diagnostykę układu hamulcowego na stanowisku rolkowym, na początku należy zweryfikować

A. stan płynu hamulcowego.
B. obciążenie pojazdu.
C. ciśnienie w ogumieniu.
D. szczelność układu.
Przed przystąpieniem do diagnostyki układu hamulcowego, niektórzy mogą błędnie uznać, że najpierw należy sprawdzić szczelność układu, stan płynu hamulcowego lub obciążenie pojazdu. Jednak te aspekty, choć ważne, powinny być oceniane po upewnieniu się, że ciśnienie w oponach jest na prawidłowym poziomie. W przypadku sprawdzania szczelności układu hamulcowego, kluczowe jest, aby zrozumieć, że nawet jeśli sam układ jest szczelny, to niewłaściwe ciśnienie w oponach może prowadzić do nieprawidłowego działania hamulców. Stan płynu hamulcowego, równie istotny, nie ma sensu kontrolować, jeśli pojazd nie jest stabilny z powodu niewłaściwego ciśnienia w oponach. Każda z tych czynności ma swoje miejsce i kolejność w diagnostyce, a ich pominięcie może prowadzić do błędnych diagnoz i decyzji. Dodatkowo, obciążenie pojazdu, chociaż istotne z perspektywy oceny jego zdolności do hamowania, nie jest pierwszym krokiem w diagnostyce. Niewłaściwe ciśnienie w oponach wpływa na zachowanie pojazdu na drodze, co ma kluczowe znaczenie dla efektywności hamowania. W praktyce, nieprzestrzeganie tej kolejności może prowadzić do poważnych konsekwencji, w tym do wypadków drogowych, co podkreśla znaczenie przestrzegania protokołów diagnostycznych i norm branżowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Reparacja zużytego wału korbowego polega na jego

A. honowaniu
B. tulejowaniu
C. polerowaniu
D. szlifowaniu
Tulejowanie wału korbowego to technika, która odnosi się głównie do wymiany uszkodzonych lub zużytych łożysk w silniku, a nie do samego naprawiania wału. Proces ten polega na dodaniu tulejek bądź wkładek, które poprawiają pasowanie pomiędzy wałem a łożyskiem. Zastosowanie tulejowania w przypadku wału korbowego, który jest już zużyty, nie rozwiązuje podstawowego problemu, jakim jest jego deformacja i zużycie powierzchni, które należy wyeliminować poprzez szlifowanie. Polerowanie to kolejny zabieg, który ma na celu poprawę gładkości powierzchni, jednak nie eliminuje ono większych uszkodzeń ani nie przywraca wymaganych tolerancji do wymiarów fabrycznych. Polerowanie stosuje się głównie w przypadku elementów, które wymagają jedynie kosmetycznych poprawek. Honowanie, natomiast, jest techniką, która idealnie nadaje się do poprawy gładkości cylindrów, a nie wałów korbowych. Jest to proces, który polega na wprowadzeniu narzędzi honujących do wnętrza cylindrów, co pozwala na tworzenie mikroskopijnych rowków, które zatrzymują olej, ale nie ma zastosowania w kontekście wału korbowego. Wszelkie te nieprawidłowe koncepcje mogą wynikać z niepełnego zrozumienia procesów obróbczych. Ważne jest, aby w procesie naprawczym kierować się zasadami inżynierii i praktycznymi doświadczeniami, aby uniknąć błędnych rozwiązań, które mogą prowadzić do dalszych uszkodzeń silnika.

Pytanie 31

Do zadań tarczy sprzęgłowej należy przekazywanie momentu obrotowego?

A. z wałka pośredniego na wałek sprzęgłowy
B. z wałka sprzęgłowego na koło zamachowe
C. z wałka sprzęgłowego na wałek atakujący
D. z koła zamachowego na wałek sprzęgłowy
Tarcza sprzęgłowa odgrywa kluczową rolę w przenoszeniu momentu obrotowego z koła zamachowego na wałek sprzęgłowy. To połączenie jest niezbędne do efektywnego przekazywania energii mechanicznej w układzie napędowym pojazdu. W praktyce, tarcza sprzęgłowa działa na zasadzie tarcia, co pozwala na synchronizację obrotów silnika z ruchem kół. W momencie, gdy kierowca naciska pedał sprzęgła, tarcza sprzęgłowa odłącza silnik od skrzyni biegów, co umożliwia zmianę biegów. Dobre praktyki w zakresie konserwacji sprzęgła obejmują regularne sprawdzanie stanu tarczy oraz odpowiednie użytkowanie, aby zminimalizować zużycie. Zrozumienie działania tarczy sprzęgłowej jest kluczowe dla diagnozowania problemów z układem napędowym oraz dla świadomego użytkowania pojazdu, co może poprawić jego wydajność i żywotność podzespołów.

Pytanie 32

W systemie smarowania silnika najczęściej wykorzystuje się pompy

A. tłoczkowe
B. nurnikowe
C. membranowe
D. zębate
Pompy nurnikowe, tłoczkowe i membranowe, chociaż mają swoje zastosowania, nie są powszechnie używane w układach smarowania silników spalinowych z kilku powodów. Pompy nurnikowe bazują na mechanizmie, który przemieszcza nurniki w cylindrach, co może powodować zmiany ciśnienia w systemie smarowania, a ich złożona budowa może prowadzić do większej awaryjności. W silnikach wymagających stabilnego i ciągłego ciśnienia oleju, takie odchylenia mogą negatywnie wpływać na smarowanie, co z kolei może prowadzić do szybszego zużycia części silnika. Z kolei pompy tłoczkowe, choć efektywne w innych zastosowaniach, mogą być mniej trwałe w kontekście zmiennych warunków pracy silnika. Wysokie ciśnienie generowane przez te pompy może prowadzić do uszkodzeń uszczelnień oraz innych elementów w układzie smarowania. Pompy membranowe, z drugiej strony, są stosowane głównie w aplikacjach, gdzie wymagane jest podawanie cieczy o znacznie niższej lepkości, co czyni je nieodpowiednimi dla olejów silnikowych. Typowe błędy w myśleniu dotyczące doboru pomp do układów smarowania polegają na nieodpowiednim zrozumieniu prinzipu działania różnych typów pomp i ich wpływu na wydajność oraz trwałość silnika. Warto podkreślić, że dobór pompy w układzie smarowania powinien być zgodny z zasadami inżynieryjnymi oraz wymaganiami producentów silników, co zapewnia optymalną pracę i trwałość jednostki napędowej.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. jedynie tarczę hamulcową koła lewego przedniego
B. wyłącznie tarcze hamulcowe kół osi przedniej
C. tarcze oraz klocki hamulcowe osi przedniej
D. tarcze i klocki hamulcowe wszystkich kół
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 35

Podczas naprawy układu hamulcowego pojazdu obowiązkowo należy

A. zawsze wymieniać klocki hamulcowe na nowe
B. ustawić geometrię kół, jeśli to konieczne po naprawie zawieszenia
C. odpowietrzyć układ po wymianie płynu hamulcowego
D. sprawdzić ciśnienie w oponach pod kątem bezpiecznej jazdy
Odpowietrzanie układu hamulcowego po wymianie płynu hamulcowego jest kluczowym krokiem w procesie naprawy hamulców. Płyn hamulcowy jest nieściśliwy, co oznacza, że przenosi siłę z pedału hamulca na klocki hamulcowe bez strat energii. Powietrze w układzie działa inaczej, ponieważ jest ściśliwe, co prowadzi do utraty efektywności hamowania. Dlatego też, po każdej wymianie płynu, układ musi być odpowietrzony, aby usunąć wszelkie pęcherzyki powietrza. Jest to standardowa procedura zgodna z najlepszymi praktykami branżowymi, zapewniająca bezpieczeństwo na drodze. W praktyce oznacza to, że technik musi używać specjalistycznych narzędzi i przestrzegać procedur, aby skutecznie odpowietrzyć układ. Nieprawidłowe odpowietrzenie może prowadzić do sytuacji, w której pedał hamulca staje się miękki, co jest niebezpieczne podczas jazdy. Prawidłowe wykonanie tej czynności zapewnia, że układ hamulcowy działa z pełną efektywnością, co jest kluczowe dla bezpieczeństwa kierowcy i pasażerów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Wysokość bieżnika opony letniej została zmierzona na poziomie 2 mm powyżej TWI. Jak interpretujemy ten wynik?

A. oponę można nadal użytkować, pod warunkiem zwiększenia ciśnienia w kole
B. oponę można dalej wykorzystywać
C. oponę można nadal użytkować, pod warunkiem zmniejszenia ciśnienia w kole
D. oponę trzeba wymienić na nową
Wymiana opony na nową w sytuacji, gdy wysokość bieżnika wynosi 2 mm ponad TWI, nie jest konieczna, ponieważ bieżnik jest wciąż w dobrym stanie. Odpowiedzi sugerujące wymianę opony mogą wynikać z niepełnego zrozumienia zasad bezpieczeństwa dotyczących zużycia opon. Warto wiedzieć, że opony powinny być wymieniane, gdy bieżnik osiągnie minimalny poziom 1,6 mm, a nie na podstawie subiektywnych odczuć czy nadmiernych obaw. Zwiększanie lub zmniejszanie ciśnienia w kole nie ma wpływu na zużycie bieżnika jako takiego i jest to mylne podejście. Opony powinny być eksploatowane w zalecanym zakresie ciśnienia, które jest określone przez producenta, aby zapewnić optymalną przyczepność i stabilność pojazdu. Niekiedy, na przykład w przypadku opon nadmiernie zużytych, może być konieczne ich wymienienie, ale w tym przypadku, przy 2 mm zapasu, opona jest jeszcze w dobrym stanie. Przyjmowanie niewłaściwych praktyk eksploatacyjnych, takich jak manipulacja ciśnieniem, może prowadzić do niebezpiecznych sytuacji na drodze. Należy również pamiętać, że opony letnie mają specyficzne właściwości, które sprawiają, że ich użytkowanie jest bezpieczne w określonych warunkach, a regularne kontrole stanu opon powinny stać się normą w każdej eksploatacji pojazdu.

Pytanie 39

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zmniejszenie zużycia paliwa
B. Zapewnienie stabilności prowadzenia pojazdu
C. Zwiększenie mocy silnika
D. Poprawa wyglądu pojazdu
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 40

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. skokowej do objętości całkowitej cylindra
B. komory spalania do objętości całkowitej cylindra
C. całkowitej cylindra do objętości komory spalania
D. całkowitej cylindra do objętości skokowej
Wszystkie niepoprawne odpowiedzi opierają się na nieprecyzyjnych definicjach związanych z objętościami stosowanymi do obliczeń stopnia sprężania w silnikach spalinowych. Stwierdzenie, że stopień sprężania to stosunek objętości całkowitej cylindra do objętości skokowej, jest błędne, ponieważ objętość skokowa odnosi się do objętości, jaką tłok przemieszcza w czasie swojego ruchu, a nie do objętości komory spalania. Komora spalania to przestrzeń, w której zachodzi proces spalania mieszanki paliwowo-powietrznej, a nie objętość skokowa, która dotyczy ruchu tłoka. Podobnie, stwierdzenie o stosunku komory spalania do objętości całkowitej cylindra nie oddaje prawidłowego znaczenia stopnia sprężania, ponieważ to właśnie objętość całkowita cylindra, a nie komora spalania, powinna być w mianowniku tego stosunku. Kolejna nieprawidłowa koncepcja to pojęcie odwrotności objętości całkowitej cylindra do objętości skokowej, co jest mylące, ponieważ nie uwzględnia podstawowego znaczenia komory spalania w procesie sprężania. Właściwe zrozumienie tych pojęć jest niezbędne dla prawidłowej analizy działania silników spalinowych oraz ich parametrów, a błędne interpretacje mogą prowadzić do nieefektywnego projektowania silników oraz zwiększonego zużycia paliwa, co jest sprzeczne z nowoczesnymi standardami wydajności energetycznej.