Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 26 kwietnia 2025 16:50
  • Data zakończenia: 26 kwietnia 2025 17:07

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W urządzeniu elektronicznym narażonym na drgania może dojść do

A. uszkodzenia obwodów drukowanych
B. utraty danych w pamięci wewnętrznej
C. zmniejszenia pojemności kondensatorów
D. spadku efektywności zasilacza
Uszkodzenie obwodów drukowanych w urządzeniach elektronicznych narażonych na wibracje jest rzeczywiście problemem technicznym, który może prowadzić do poważnych awarii sprzętowych. Wibracje mechaniczne mogą wpływać na integralność fizyczną ścieżek prowadzących sygnały w obwodach drukowanych, co w konsekwencji prowadzi do przerwania połączeń lub zwarć. Przykładem mogą być urządzenia stosowane w przemyśle motoryzacyjnym, gdzie komponenty elektroniczne są wystawione na stałe drgania podczas jazdy. Standardy takie jak IPC-A-600 dotyczące akceptacji obwodów drukowanych podkreślają znaczenie projektowania z myślą o takich warunkach, oferując wytyczne dotyczące materiałów i technik montażu, aby zminimalizować ryzyko uszkodzeń. Wysokiej jakości projektowanie obwodów, stosowanie odpowiednich technologii lutowania oraz użycie materiałów odpornych na wibracje są kluczowe w zapewnieniu trwałości urządzeń. Dodatkowo, testy w warunkach ekstremalnych, takie jak testy wibracyjne zgodne z normą MIL-STD-810, mogą pomóc w ocenie odporności urządzeń na drgania, zapewniając ich niezawodność w trudnych warunkach operacyjnych.

Pytanie 2

Przełącznik satelitarny pozwala na podłączenie

A. dwóch transponderów do jednej anteny satelitarnej
B. jednego konwertera do dwóch tunerów
C. jednego transpondera do dwóch anten satelitarnych
D. dwóch konwerterów do jednego tunera
Wybór opcji, która sugeruje podłączenie dwóch transponderów do jednej anteny satelitarnej, jest błędny. Transpondery są komponentami znajdującymi się bezpośrednio na satelitach, które odbierają sygnały radiowe z Ziemi i przesyłają je z powrotem. Antena satelitarna nie może obsługiwać dwóch transponderów jednocześnie, ponieważ transpondery działają na różnych częstotliwościach i mają swoje unikalne parametry sygnałowe. Podobna pomyłka występuje w przypadku opcji, która mówi o podłączeniu jednego konwertera do dwóch tunerów. Tuner to urządzenie, które odbiera sygnał od konwertera, a jeden konwerter jest w stanie obsługiwać tylko jeden tuner w danym momencie, chyba że użyje się specjalnych rozwiązań, jak multiswitch. Z kolei możliwość podłączenia jednego transpondera do dwóch anten satelitarnych jest technicznie nieosiągalna, ponieważ transponder nie wysyła sygnału w sposób, który pozwalałby na jednoczesne odbieranie przez różne anteny. Kluczowe jest zrozumienie, że każdy komponent w systemie satelitarnym ma swoje specyficzne zadania i ograniczenia, a ich błędne zestawienie może prowadzić do degradacji jakości sygnału lub całkowitej jego utraty. Takie pomyłki mogą wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu satelitarnego.

Pytanie 3

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Wody
B. Kwasu
C. Alkoholu
D. Benzyny
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 4

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Oscyloskopem o podstawie czasu 100 ns/cm
B. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
C. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
D. Częstościomierzem o maksymalnym zakresie 50 MHz
Pomiary amplitudy przebiegu sygnału z generatora taktującego o częstotliwości 25 MHz przy pomocy woltomierza prądu zmiennego o rezystancji wewnętrznej 100 kOhm/V nie są odpowiednie, ponieważ woltomierze nie są przeznaczone do pomiarów sygnałów o tak dużych częstotliwościach. Woltomierz może nie zarejestrować pełnej amplitudy sygnału, zwłaszcza w przypadku sygnałów o wysokiej częstotliwości, ze względu na swoje ograniczenia pasmowe, co prowadzi do znacznie zaniżonych wyników pomiarów. Podobnie, użycie amperomierza prądu zmiennego z szeregowym rezystorem 10 kOhm jest niewłaściwe, ponieważ amperomierze są zaprojektowane do pomiaru natężenia prądu, a nie napięcia, co w kontekście analizy sygnałów cyfrowych jest nieodpowiednie. Dodatkowo, szeregowe połączenie z rezystorem może wpływać na działanie układu, wprowadzając dodatkowe straty i zmieniając charakterystykę obwodu. Na koniec, częstościomierz o maksymalnym zakresie 50 MHz teoretycznie mógłby być użyty do określenia częstotliwości, lecz nie dostarczyłby żadnych informacji na temat amplitudy sygnału, co jest kluczowe w analizie sygnałów cyfrowych. Typowe błędy myślowe to przekonanie, że jakiekolwiek urządzenie do pomiarów elektrycznych nadaje się do pomiaru amplitudy sygnału o wysokiej częstotliwości, co jest niezgodne z zasadami inżynierii elektronicznej. Praktyką w takich sytuacjach jest zawsze wybór sprzętu dostosowanego do specyfikacji sygnału, co jest fundamentalne dla uzyskania rzetelnych wyników.

Pytanie 5

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. woltomierz cyfrowy
B. analyzer widma
C. oscyloskop jednokanałowy
D. miernik zniekształceń
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 6

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. zasilacza
B. głośnika
C. wzmacniacza mocy
D. potencjometru
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 7

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. w pionie oraz poziomie
B. wyłącznie w pionie
C. tylko w poziomie
D. najkrótszą trasą
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 8

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. SATA
B. HDMI
C. LAN
D. USB
Złącze SATA (Serial ATA) jest standardem interfejsu, które umożliwia podłączenie dysków twardych oraz napędów SSD do systemów komputerowych. W kontekście archiwizacji materiału wideo w rejestratorze, złącze SATA jest preferowanym rozwiązaniem, ponieważ zapewnia wysoką przepustowość i niskie opóźnienia w transferze danych. Dyski twarde podłączone przez SATA mogą osiągać prędkości transferu danych rzędu 6 Gbps, co jest kluczowe przy pracy z dużymi plikami wideo, które wymagają szybkiego dostępu do przechowywanych informacji. Przykładowo, podczas nagrywania materiału w wysokiej rozdzielczości, jak 4K, niezbędne jest, aby system był w stanie szybko zapisywać i odczytywać duże ilości danych. Współczesne rejestratory wideo często wykorzystują napędy SATA, aby zapewnić optymalną wydajność oraz niezawodność w długoterminowym przechowywaniu danych. Ponadto, zgodność z tym standardem sprawia, że wymiana lub modernizacja dysków jest znacznie prostsza i tańsza, co jest zgodne z dobrymi praktykami w dziedzinie zarządzania infrastrukturą IT.

Pytanie 9

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. z internetu
B. naziemnych
C. satelitarnych
D. kablowych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 10

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. pirometru
B. multimetru
C. luksomierza
D. kalorymetru
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 11

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Szarego
B. Brązowego
C. Czarnego
D. Niebieskiego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 12

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odbiornika TV
B. odtwarzacza DVD
C. nadajnika TV
D. rejestratora DVR
Rejestrator DVR (Digital Video Recorder) to urządzenie, którego parametry techniczne w tabeli są zgodne z jego funkcjami. Tryb pracy pentaplex, który pozwala na jednoczesne nagrywanie, odtwarzanie, podgląd na żywo oraz zdalne zarządzanie, jest kluczowy w kontekście monitoringu oraz zabezpieczeń. Kompresja H.264 zapewnia efektywne przechowywanie danych wideo, co jest istotne w kontekście ograniczonej pojemności dysków twardych. Możliwość nagrywania z prędkością 25 kl/s w rozdzielczości 1080p świadczy o wysokiej jakości nagrania, co jest wymogiem w profesjonalnych systemach CCTV. Wyjścia HDMI i VGA umożliwiają podłączenie do nowoczesnych monitorów i telewizorów, co zwiększa wszechstronność urządzenia. Obsługa przez dedykowane oprogramowanie, takie jak BCS View Manager, pozwala na łatwe zarządzanie nagraniami oraz konfigurację urządzenia. Znajomość tych parametrów jest kluczowa dla profesjonalistów zajmujących się systemami monitoringu wizyjnego.

Pytanie 13

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 117,60 zł
B. 146,40 zł
C. 122,00 zł
D. 100,00 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 14

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
B. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 15

Na podstawie dołączonej tabeli błędów testu POST BIOS-u firmy AMI określ, który element uniemożliwia uruchomienie komputera, jeżeli wydaje on 3 krótkie sygnały dźwiękowe.

Kod dźwiękowyZnaczenie
1 krótkibłąd odświeżania pamięci RAM
2 krótkiebłąd parzystości pamięci RAM
3 krótkiebłąd pierwszych 64 kB pamięci RAM
4 krótkiebłąd zegara systemowego
5 krótkichbłąd procesora
6 krótkichbłąd kontrolera klawiatury
7 krótkichbłąd trybu wirtualnego procesora
8 krótkichbłąd wejścia/wyjścia pamięci karty graficznej
9 krótkichbłąd sumy kontrolnej biosu
10 krótkichbłąd pamięci CMOS
11 krótkichbłąd pamięci podręcznej cache procesora
1 długi, 2 krótkiebłąd karty graficznej
1 długi, 3 krótkiebłąd pamięci RAM
1 długi, 8 krótkichproblem z wyświetlaniem obrazów przez kartę graficzną
ciągły sygnałbrak pamięci w bankach lub brak podłączonej karty graficznej
1 długizakończony pomyślnie test post

A. Pamięć operacyjna.
B. Zegar systemowy.
C. Karta graficzna.
D. Karta sieciowa.
Odpowiedź "Pamięć operacyjna" jest poprawna, ponieważ zgodnie z dokumentacją BIOS-u AMI, trzy krótkie sygnały dźwiękowe oznaczają problem z pamięcią RAM, konkretnie z pierwszymi 64 kB tej pamięci. To krytyczny obszar, który jest niezbędny do podstawowej funkcjonalności systemu operacyjnego oraz uruchomienia samego komputera. W praktyce, jeśli komputer nie może uzyskać dostępu do pamięci operacyjnej w tej części, nie jest w stanie zainicjować systemu ani wykonywać żadnych innych operacji. Diagnostyka błędów pamięci RAM jest istotnym krokiem przy uruchamianiu nowych systemów, a także przy naprawie istniejących. Dlatego ważne jest, aby regularnie monitorować stan pamięci RAM, stosując odpowiednie narzędzia diagnostyczne, które mogą pomóc w identyfikacji problemów przed ich eskalacją. Zrozumienie tego błędu jest kluczowe, aby uniknąć potencjalnych przestojów i kosztownych napraw.

Pytanie 16

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. uziemienie robocze
B. uziemienie ochronne
C. wyłącznik różnicowoprądowy
D. zerowanie
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które ma na celu automatyczne odłączenie zasilania w przypadku wystąpienia nadmiernego prądu doziemnego. Działa na zasadzie monitorowania różnicy między prądem wpływającym a wpływającym do obwodu. W momencie, gdy ta różnica przekroczy ustalony próg (zazwyczaj 30 mA dla obwodów ochrony), wyłącznik natychmiast przerywa obwód, co znacząco redukuje ryzyko porażenia prądem elektrycznym. RCD jest szczególnie istotny w miejscach, gdzie używane są urządzenia elektryczne w wilgotnym lub mokrym otoczeniu, takich jak łazienki czy kuchnie. W stosunku do standardów, takich jak norma PN-EN 61008, wyłączniki różnicowoprądowe są zalecane do stosowania w instalacjach elektrycznych jako element zwiększający bezpieczeństwo użytkowników. W praktyce montaż RCD może być również wymagany podczas przeglądów technicznych i modernizacji instalacji elektrycznych, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa elektrycznego.

Pytanie 17

Aby zapobiec aktywacji sabotażu podczas wymiany elektroniki w czujniku ruchu w prawidłowo funkcjonującym systemie alarmowym, należy wykonać następujące kroki:

A. otworzyć obudowę czujki, włączyć tryb serwisowy, wyłączyć system alarmowy, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
B. otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć tryb serwisowy w celu zapisania danych
C. włączyć tryb serwisowy, wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
D. wyłączyć system alarmowy, otworzyć obudowę czujki, wymienić elektronikę, zamknąć obudowę czujki, włączyć zasilanie systemu alarmowego
Podczas analizy błędnych odpowiedzi, kluczowym błędem jest brak zrozumienia sekwencji działań, które są niezbędne do prawidłowego wykonania wymiany elektroniki w czujce ruchu. W sytuacji, gdy użytkownik otworzy obudowę czujki przed wyłączeniem systemu alarmowego, stwarza ryzyko uruchomienia alarmu, co skutkuje niepotrzebną paniką oraz fałszywymi powiadomieniami. Włączenie trybu serwisowego po otwarciu obudowy czujki również nie jest zalecane, ponieważ w tym momencie system może być nadal aktywny, co nie zabezpiecza przed nieautoryzowanymi operacjami. Kolejny istotny błąd to pominięcie wyłączenia systemu alarmowego w odpowiednim momencie, co może prowadzić do negatywnych konsekwencji, takich jak uszkodzenie nowej elektroniki lub wywołanie alarmu. Ostatecznie, nieprawidłowe zamknięcie obudowy po wymianie komponentów, bez wcześniejszego włączenia zasilania, może skutkować niewłaściwym działaniem systemu. W branży zabezpieczeń istnieją standardy dotyczące procedur serwisowych, które jasno określają, że przemyślane i staranne podejście do wymiany komponentów jest podstawą zapewnienia bezpieczeństwa i niezawodności systemu. Zrozumienie tych zasad jest kluczowe dla każdej osoby zajmującej się instalacją i serwisowaniem systemów alarmowych.

Pytanie 18

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. kamer HD.
B. kabelka HDMI.
C. zasilania kamer.
D. dysku twardego.
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.

Pytanie 19

Terminologie takie jak Fullband, Twin, Quad, Monoblock odnoszą się do

A. filtrów
B. multiswitchów
C. rozgałęźników antenowych
D. konwerterów satelitarnych
Wybór odpowiedzi dotyczącej multiswitchów, filtrów lub rozgałęźników antenowych wskazuje na pewne nieporozumienie związane z terminologią i funkcjami tych urządzeń. Multiswitch to urządzenie, które pozwala na podłączenie wielu tunerów do jednego źródła sygnału satelitarnego. Nie jest to jednak konwerter, a raczej element, który dystrybuuje sygnał z konwertera do kilku odbiorników. Filtry są używane w systemach antenowych do eliminacji niepożądanych częstotliwości, a ich rola jest zupełnie inna niż konwertera, który ma za zadanie przekształcenie sygnału. Rozgałęźniki antenowe działają na podobnej zasadzie jak multiswitch, pozwalając na podział sygnału z jednego źródła na kilka urządzeń, ale nie mają zdolności przekształcania sygnału, co jest kluczową funkcją konwerterów. Wybierając niewłaściwy termin, można mylić funkcjonalności urządzeń, co prowadzi do błędnych decyzji przy projektowaniu systemów satelitarnych. Ważne jest, aby dokładnie zrozumieć rolę każdego z tych komponentów, aby prawidłowo skonfigurować system i zapewnić jego prawidłowe działanie. W kontekście projektowania i instalacji systemów satelitarnych, ignorowanie specyfiki poszczególnych urządzeń może prowadzić do poważnych problemów związanych z jakością sygnału oraz zadowoleniem klienta.

Pytanie 20

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. multimetr cyfrowy
B. wobulator i oscyloskop
C. mostek pomiarowy
D. miernik magnetoelektryczny
Miernik magnetoelektryczny, mostek pomiarowy i multimetr cyfrowy to urządzenia, które mają swoje zastosowania w pomiarach elektrycznych, ale do strojenia toru pośredniej częstotliwości w radiu się nie nadają. Miernik magnetoelektryczny jest głównie do pomiaru prądu i napięcia, więc jest przydatny w prostych pomiarach, ale nie pokaże nam, co dzieje się z sygnałami częstotliwościowymi. Mostek pomiarowy przydaje się do sprawdzania impedancji, ale to też nie jest narzędzie do strojenia toru IF, gdzie kluczowa jest analiza dynamiki sygnału. Multimetr cyfrowy jest wszechstronny, ale robi tylko podstawowe pomiary elektryczne, jak napięcie, prąd, czy rezystancja, a to za mało, by dokładnie dostroić parametry częstotliwościowe odbiornika. Więc pomysł, że te urządzenia mogą być zastępstwem dla wobulatora czy oscyloskopu, wynika z braku zrozumienia różnicy pomiędzy pomiarami statycznymi a analizą sygnałów w czasie rzeczywistym. Efektywne strojenie toru wymaga specjalistycznych narzędzi, które potrafią jednocześnie generować sygnały i je wizualizować, co jest kluczowe dla dobrego odbioru radiowego.

Pytanie 21

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
B. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
C. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
D. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
Wybór innej kolejności czynności montażowych może prowadzić do wielu problemów związanych z jakością sygnału oraz ogólną funkcjonalnością anteny satelitarnej. Ustawienie kąta elewacji i azymutu przed zamocowaniem anteny w odpowiednim miejscu jest błędnym podejściem, ponieważ może okazać się, że antena nie jest stabilnie umocowana, co może prowadzić do jej przemieszczania się pod wpływem wiatru lub innych czynników atmosferycznych. Zmontowanie anteny, a następnie instalacja kablowej bez wcześniejszego zamocowania anteny jest kolejnym błędem, ponieważ może spowodować problemy z właściwym podłączeniem kabli, co w konsekwencji wpłynie na jakość odbioru sygnału. W praktyce, każde z tych działań powinno być przeprowadzane w odpowiedniej kolejności, aby zminimalizować ryzyko błędów. Ignorowanie tej zasady może prowadzić do sytuacji, w której konieczne będzie wielokrotne dostosowywanie i korygowanie ustawień anteny, co zabiera czas i zwiększa koszty związane z montażem. Co więcej, takie podejście może narazić na szwank gwarancję produktów, jeżeli nie zostaną one zainstalowane zgodnie z instrukcją producenta. Dlatego ważne jest, aby przestrzegać ustalonej kolejności montażu, co jest elementem dobrej praktyki w branży instalacji satelitarnych.

Pytanie 22

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. przegrzaniem rejestratora
B. zmianą parametrów działania kamer
C. obniżeniem efektywności rejestratora
D. zawieszeniem pracy systemu
Krótkotrwałe zaniki napięcia zasilającego system CCTV mogą prowadzić do "zawieszenia" pracy systemu, ponieważ urządzenia te wymagają stabilnego i ciągłego zasilania, aby prawidłowo funkcjonować. W przypadku spadków napięcia, rejestratory i kamery mogą utracić synchronizację, co skutkuje przerwą w rejestrowaniu obrazu lub brakiem możliwości przesyłania danych. W praktyce oznacza to, że podczas dużych wichur, gdy zasilanie może być niestabilne, system CCTV może całkowicie przestać działać. Dobrą praktyką w zabezpieczeniu systemów monitoringu przed takimi zdarzeniami jest zastosowanie zasilaczy UPS, które zapewniają ciągłość zasilania w przypadku zaniku prądu. Zgodnie z normami branżowymi, regularne testowanie tych systemów zasilania awaryjnego oraz ich odpowiednia konserwacja są kluczowe dla efektywności i niezawodności systemów CCTV.

Pytanie 23

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. czterożyłowym z jednym rezystorem
B. dwużyłowym bez rezystorów
C. sześciożyłowym z dwoma rezystorami
D. czteroparowym UTP z dwoma rezystorami
Wszystkie niepoprawne odpowiedzi opierają się na błędnych założeniach dotyczących wymagań dotyczących przewodów do czujek kontaktronowych w konfiguracji NC. Na przykład zastosowanie sześciożyłowego przewodu z dwoma rezystorami może wynikać z mylnego przekonania, że czujki wymagają bardziej złożonego okablowania i dodatkowych elementów dla zapewnienia poprawnego działania. W rzeczywistości, czujki kontaktronowe działają na zasadzie bezpośredniego zamykania obwodu, a dodatkowe rezystory nie są potrzebne. Podobnie, czterożyłowy przewód z jednym rezystorem sugeruje, że użytkownik myli się co do podstawowych zasad działania czujek. Rezystory są często stosowane w bardziej skomplikowanych systemach, które wymagają monitorowania stanu obwodów, a nie w prostych konfiguracjach NC. Zastosowanie dwużyłowego bez rezystorów jest zgodne z najlepszymi praktykami branżowymi, które uwzględniają efektywność kosztową i prostotę instalacji. Kolejnym błędnym podejściem jest pomysł użycia czteroparowego UTP z dwoma rezystorami, co sugeruje, że użytkownik nie rozumie, że czujki kontaktronowe nie wymagają skomplikowanego okablowania. W praktyce, im prostsze połączenie, tym lepiej dla niezawodności systemu alarmowego. Na koniec, zaburzony związek między liczbą żył a funkcjonalnością czujki może prowadzić do mylnych wniosków dotyczących wymagań instalacyjnych, co jest częstym błędem wśród osób nieposiadających odpowiedniego doświadczenia w dziedzinie elektroniki zabezpieczeń.

Pytanie 24

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. licznika wewnętrznych impulsów zegarowych mikroprocesora
B. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
C. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
D. słowa sterującego, na przykład układem czasowo-licznikowym
Pojęcie stosu w technice mikroprocesorowej odnosi się do specjalnego obszaru pamięci, który jest wykorzystywany do przechowywania danych i powrotów z podprogramów oraz do obsługi przerwań. Stos działa na zasadzie LIFO (Last In, First Out), co oznacza, że ostatni element dodany do stosu jest pierwszym, który zostanie usunięty. Przykładem zastosowania stosu jest przechowywanie adresów powrotu podczas wywoływania funkcji. Gdy program wchodzi w funkcję, adres następnej instrukcji jest zapisywany na stosie, co pozwala na powrót do tego miejsca po zakończeniu funkcji. Dodatkowo, w mikroprocesorach, obsługa przerwań może wymagać tymczasowego przechowywania stanu rejestrów na stosie, co jest kluczowe dla zachowania ciągłości pracy programu. W praktyce, umiejętne zarządzanie stosem jest istotne dla zapewnienia stabilności i efektywności działania aplikacji. Programiści muszą być świadomi limitów pamięci stosu oraz potencjalnych ryzyk związanych z przepełnieniem stosu, co może prowadzić do błędów krytycznych w oprogramowaniu.

Pytanie 25

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. większej pojemności i mniejszym napięciu znamionowym
B. mniejszej pojemności i mniejszym napięciu znamionowym
C. większej pojemności i większym napięciu znamionowym
D. mniejszej pojemności i większym napięciu znamionowym
Wybór kondensatora o mniejszej pojemności oraz mniejszym napięciu znamionowym jest często mylnie postrzegany jako wystarczający w wielu aplikacjach. Mniejsza pojemność prowadzi do niewystarczającego wygładzania napięcia, co może skutkować zwiększonym tętnieniem na wyjściu zasilacza. Wyższe tętnienia mogą wpływać negatywnie na działanie podłączonych urządzeń, takich jak komputery czy urządzenia audio, powodując szumy czy zniekształcenia. Zastosowanie kondensatora o mniejszym napięciu znamionowym zmniejsza margines bezpieczeństwa, co zwiększa ryzyko przebicia. Przykładem błędnych rozważań może być założenie, że kondensator o niższej pojemności będzie pracował w podobny sposób, co jego odpowiednik o wyższej pojemności. W rzeczywistości, różnice te mogą prowadzić do poważnych problemów, takich jak uszkodzenie komponentów w zasilaczu, co narusza standardy jakości obowiązujące w branży. Dobrą praktyką jest zawsze dobierać kondensatory zgodnie z wymogami aplikacji oraz zapewniać odpowiednie parametry, aby uniknąć potencjalnych usterek i zapewnić długotrwałą niezawodność systemu.

Pytanie 26

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 22 kΩ
B. 0,22 kΩ
C. 0,22 Ω
D. 22 Ω
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 27

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. bezpośredniego wpływu promieni słonecznych
C. obniżenia napięcia zasilającego poniżej 2,5 V
D. niesprawnego układu odświeżającego
Bezpośrednie działanie promieni słonecznych może prowadzić do uszkodzenia pamięci EPROM, ponieważ te układy są wrażliwe na promieniowanie UV. EPROM (Erasable Programmable Read-Only Memory) stosuje się w sytuacjach, w których potrzebne jest wielokrotne programowanie układu, a jego zawartość można usunąć poprzez naświetlanie promieniami UV. W praktyce oznacza to, że jeśli pamięć EPROM jest wystawiona na działanie intensywnego światła słonecznego, istnieje ryzyko, że dane zostaną przypadkowo usunięte. Z tego powodu w zastosowaniach przemysłowych i elektronicznych często stosuje się obudowy chroniące te pamięci przed bezpośrednim działaniem światła. Warto również zaznaczyć, że standardy dotyczące przechowywania urządzeń elektronicznych zalecają unikanie ekspozycji na silne źródła światła, aby zapewnić trwałość i wiarygodność przechowywanych danych. Zrozumienie tego zjawiska jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektronicznych, w których wykorzystuje się pamięci EPROM.

Pytanie 28

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. EPROM
B. EEPROM
C. DRAM
D. SDRAM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 29

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YDY 2 x 1,5 mm2
B. YDY 3 x 1,5 mm2
C. YTDY 2 x 0,75 mm2
D. YTDY 4 x 0,75 mm2
Odpowiedź YDY 3 x 1,5 mm2 jest poprawna, ponieważ przewód ten cechuje się odpowiednią konstrukcją i parametrami technicznymi, które idealnie nadają się do podłączenia transformatora w metalowej obudowie centralki alarmowej. Przewód YDY jest przewodem o podwyższonej odporności na działanie czynników zewnętrznych oraz na uszkodzenia mechaniczne, co jest kluczowe w zastosowaniach związanych z systemami alarmowymi. Posiada trzy żyły o przekroju 1,5 mm2, co zapewnia dostateczną wydajność prądową oraz minimalizuje straty energii. W praktyce, zastosowanie przewodu YDY 3 x 1,5 mm2 jest zgodne z wytycznymi norm PN-IEC 60364, które regulują instalacje elektryczne, a także z zasadami dotyczącymi ochrony przeciwporażeniowej. Przewód ten pozwala na bezpieczne i efektywne połączenie transformatora z siecią energetyczną, co jest kluczowe dla prawidłowego działania systemu alarmowego.

Pytanie 30

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. uniwersalny (samouczący)
B. jedynie dostarczony przez producenta szlabanu
C. jakikolwiek zmiennokodowy
D. jakikolwiek stałokodowy
Wybór odpowiedzi "wyłącznie dostarczony przez producenta szlabanu" jest właściwy, ponieważ systemy zdalnego sterowania, takie jak Keeloq, często są zaprojektowane do pracy z określonymi pilotami, które są dostarczane przez producenta. System Keeloq oparty jest na technologii kodowania zmiennego, co oznacza, że piloty są programowane do współpracy z danym urządzeniem, zapewniając maksymalne bezpieczeństwo i niezawodność. Użycie uniwersalnych pilotów lub pilotów stałokodowych może prowadzić do problemów z kompatybilnością, a nawet do naruszenia bezpieczeństwa, ponieważ mogą nie być w stanie poprawnie zidentyfikować sygnałów lub mogą być podatne na nieautoryzowane kopiowanie sygnałów. Przykładem zastosowania tego podejścia jest system zabezpieczeń w parkingach, gdzie korzystanie z pilotów dostarczonych przez producenta zapobiega nieautoryzowanemu dostępowi. W przypadku uszkodzenia pilota, zaleca się kontakt z producentem w celu uzyskania oryginalnych komponentów, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 31

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. dostosować napięcie w kasecie rozmownej
B. zwiększyć napięcie zasilania elektrozaczepu
C. zwiększyć poziom głośności w panelu
D. dostosować poziom głośności w unifonie
Wyregulowanie poziomu głośności w unifonie jest kluczowym krokiem w sytuacji, gdy po podłączeniu domofonu pojawiają się niepożądane piski. Tego rodzaju odgłosy często są wynikiem ustawienia zbyt wysokiego poziomu głośności, co prowadzi do zjawiska zwane sprzężeniem akustycznym. Poprawne dostosowanie głośności może znacznie poprawić komfort użytkowania systemu domofonowego. W praktyce, odpowiednia regulacja głośności może obejmować zarówno zmniejszenie poziomu dźwięku w unifonie, jak i dostosowanie ustawień w kasecie rozmownej. Warto również sprawdzić, czy nie występują inne źródła zakłóceń, takie jak kiepskiej jakości przewody lub nieodpowiednie połączenia. Ważne jest, aby przed przystąpieniem do regulacji głośności, zapoznać się z instrukcją obsługi urządzenia, aby zrozumieć, gdzie znajduje się potencjometr lub przycisk głośności. W kontekście norm branżowych, właściwe ustawienie głośności w urządzeniach audio powinno być zgodne z zaleceniami producenta, co zapewnia optymalną jakość dźwięku i minimalizuje ryzyko wystąpienia nieprzyjemnych odgłosów.

Pytanie 32

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. bezpiecznika aparatowego
B. prostownika
C. podzespołów pasywnych
D. dioda elektroluminescencyjna
Bezpiecznik aparatu to taki kluczowy element, który chroni obwody elektryczne przed zbyt dużym prądem. To ważne, bo jak prąd jest za wysoki, to może zniszczyć różne części w układzie. Gdy korzystasz z laboratoryjnego zasilacza regulowanego i zauważysz, że dioda LED nie świeci, a gniazdo zasilające działa normalnie, to pierwszą rzeczą, którą warto sprawdzić, jest bezpiecznik. Jeśli jest przepalony, to zasilacz w ogóle nie będzie działał, co może być frustrujące. Regularne sprawdzanie bezpieczników i ich wymiana na właściwe wartości to dobra praktyka, żeby sprzęt działał bez problemu. A jak już znajdziesz uszkodzony bezpiecznik, to pamiętaj, żeby go wymienić z zachowaniem zasad bezpieczeństwa. Warto też zapisywać, kiedy i co się wymienia, bo to pomaga w lepszym zarządzaniu sprzętem elektronicznym.

Pytanie 33

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. symetryzatorami
B. dyrektorami
C. fiderami
D. dipolami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 34

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. NAND
B. EX-OR
C. NOT
D. OR
Wybór bramek takich jak NOT, EX-OR czy OR nie jest wystarczający do realizacji dowolnej funkcji logicznej. Chociaż każda z tych bramek ma swoje zastosowania, ich ograniczenia sprawiają, że nie mogą one samodzielnie zrealizować wszystkich możliwych operacji logicznych. Na przykład, bramka NOT, która neguje sygnał, jest podstawową jednostką, ale sama w sobie nie pozwala na tworzenie bardziej złożonych funkcji logicznych, takich jak AND czy OR. Z kolei bramka EX-OR, stosowana głównie w operacjach arytmetycznych i porównaniach, również nie jest wystarczająca, aby zrealizować pełny zestaw funkcji logicznych, ponieważ jej działanie opiera się na porównywaniu wartości wejściowych, co czyni ją nieuniwersalną. W przypadku bramki OR, chociaż jest przydatna do realizacji funkcji logicznych, nie jest w stanie zrealizować negacji czy operacji AND bez dodatkowych komponentów. Błędem jest myślenie, że można stworzyć pełen zestaw funkcji logicznych, polegając tylko na tych bramkach. Taki sposób rozumowania prowadzi do ograniczeń w projektowaniu układów cyfrowych, które wymagają elastyczności i wszechstronności. W rzeczywistości, projektanci muszą łączyć różne typy bramek, aby uzyskać pożądane wyniki, co podkreśla znaczenie bramek uniwersalnych, takich jak NAND, w nowoczesnym inżynierii cyfrowej.

Pytanie 35

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 24 V/V
B. KUMAX = 2,4 V/V
C. KUMAX = 12 V/V
D. KUMAX = 260 V/V
Wybór odpowiedzi innej niż KUMAX = 12 V/V może wynikać z kilku nieporozumień dotyczących pomiarów wzmocnienia napięciowego. Na przykład, jeżeli ktoś obliczał wzmocnienie na podstawie niewłaściwych wartości napięcia, mógł dojść do błędnych wniosków. W przypadku pomiaru wzmocnienia ważne jest, aby korzystać z dokładnych danych, w tym właściwych wartości napięcia wejściowego i wyjściowego. Użycie napięcia wyjściowego 2,4 V w połączeniu z napięciem wejściowym 200 mV jest kluczowe, a błędne wartości mogą prowadzić do znaczących różnic w obliczeniach. Przykładowe pomyłki to mylenie jednostek – np. przeliczenie napięcia z miliwoltów na wolty lub odwrotnie, co może prowadzić do znacznych błędów w obliczeniach. Ważne jest również zrozumienie, że wzmocnienie napięciowe nie jest stałe dla wszystkich częstotliwości; może się zmieniać w zależności od charakterystyki układu oraz zastosowanych komponentów. Niekiedy osoby oceniające wzmocnienie mogą również zapominać, że wzmocnienie napięciowe jest wartością bezwymiarową, co oznacza, że nie wiąże się z jednostkami, a jego interpretacja wymaga starannego podejścia do analizy sygnałów. Dlatego kluczowe jest przeanalizowanie wszystkich danych i zastosowanie odpowiednich metod obliczeniowych, aby uzyskać prawidłowy wynik.

Pytanie 36

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Koder
B. Transkoder
C. Dekoder
D. Enkoder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 37

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. podbicia niskich tonów w urządzeniu
B. korekcji amplitudowej dźwięku
C. redukcji szumów
D. wzmocnienia sygnałów o małej amplitudzie
Koncepcje związane z podbiciem niskich tonów, korekcją amplitudową dźwięku oraz wzmocnieniem sygnałów o małej amplitudzie nie mają zastosowania w kontekście funkcji systemów Dolby. Podbicie niskich tonów odnosi się do procesów equalizacji, które mają na celu zmiany w charakterystyce dźwięku, a nie redukcję szumów. Korekcja amplitudowa dźwięku, z kolei, dotyczy zmiany poziomów głośności sygnałów audio, co również nie jest bezpośrednio związane z eliminacją niepożądanych zakłóceń. Wzmocnienie sygnałów o małej amplitudzie odnosi się do technologii wzmacniaczy, które nie są specyficzne dla systemów Dolby. Co więcej, błędne przekonania na temat tych zagadnień często wynikają z nieodpowiedniego zrozumienia funkcji różnych systemów audio. Użytkownicy mogą mylić pojęcia związane z analogowym przetwarzaniem dźwięku, co może prowadzić do fałszywych wniosków dotyczących roli i zastosowania systemów redukcji szumów. Zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania technologii audio oraz dla osiągnięcia pożądanej jakości dźwięku w różnych kontekstach.

Pytanie 38

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. obuwie elektroizolacyjne
B. odzież ochronną
C. rękawice elektroizolacyjne
D. hełm ochronny
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 39

Na ekranie odbiornika OTV widoczna jest bardzo jasna linia pozioma, podczas gdy reszta ekranu pozostaje ciemna. W którym module odbiornika doszło do awarii?

A. W module odchylania pionowego
B. We wzmacniaczu p.cz. różnicowym fonii
C. W dekoderze kolorów
D. W module odchylania poziomego
Wszystkie pozostałe odpowiedzi są błędne, ponieważ zajmują się innymi aspektami działania odbiornika OTV. Blok odchylania poziomego odpowiada za przesuwanie obrazu w poziomie. Problemy w tym obszarze objawiają się najczęściej zniekształceniem poziomego skanowania, co nie jest zgodne z opisanym symptomem, który dotyczy wyłącznie płaszczyzny pionowej. Wzmacniacz p.cz. różnicowej fonii ma na celu przetwarzanie sygnałów audio i nie ma wpływu na obraz, co wyklucza tę odpowiedź jako przyczynę problemu. Z kolei dekoder kolorów jest odpowiedzialny za rozdzielanie sygnałów kolorów, a jego uszkodzenie zazwyczaj skutkuje zniekształceniem kolorów na ekranie, a nie pojawieniem się jasnej linii. Typowym błędem myślowym jest mylenie funkcji bloków w odbiorniku oraz zrozumienie ich roli w przetwarzaniu sygnałów. Właściwe ustalenie lokalizacji uszkodzenia wymaga znajomości schematów blokowych oraz funkcjonalności poszczególnych komponentów, co jest kluczowe dla efektywnej diagnozy i naprawy urządzeń elektronicznych. Dlatego znajomość architektury odbiornika oraz umiejętność interpretacji objawów uszkodzenia są niezbędne dla każdego technika zajmującego się naprawą sprzętu RTV.

Pytanie 40

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. wzrost mocy wyjściowej
B. zmniejszenie pasma przenoszenia
C. podwyższenie napięcia zasilającego
D. spadek mocy wyjściowej
Wzrost rezystancji obciążenia we wzmacniaczach rezystancyjnych prowadzi do spadku mocy wyjściowej, co wynika z prawa Ohma oraz zasady zachowania energii. W praktyce, gdy rezystancja obciążenia rośnie, prąd przepływający przez obciążenie maleje, co z kolei przekłada się na spadek mocy, która jest definiowana jako iloczyn napięcia i prądu (P = U * I). Przykładem takiego zachowania może być wzmacniacz audio podłączony do głośnika. Jeśli głośnik ma wysoką impedancję (duża rezystancja), to z uwagi na ograniczenie prądu, moc wyjściowa wzmacniacza zmniejsza się. Dla zastosowań w audio, aby uzyskać optymalne wzmocnienie, zmiany rezystancji obciążenia powinny być kontrolowane, aby uniknąć niepożądanych efektów, takich jak zniekształcenia dźwięku. W praktyce inżynierowie często dostosowują parametry układów, aby zapewnić odpowiednią współpracę ze standardowymi obciążeniami, co jest zgodne z dobrymi praktykami branżowymi.