Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 08:59
  • Data zakończenia: 3 kwietnia 2025 09:14

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 12 V; 9 A; 0,75 mm2
B. 230 V; 1,25 A; 0,4 mm2
C. 30 V; 9 A; 0,75 mm2
D. 30 V; 3 A; 0,5 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 5

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Analogowy na zakresie I = 10 A i RWE = 50 Ω
B. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
C. Analogowy na zakresie I = 1 A i RWE = 50 Ω
D. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 6

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. różnicowoprądowy
B. nadprądowy
C. podnapięciowy
D. czasowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 7

Jakie działania powinny być podjęte jako pierwsze, gdy przystępuje się do naprawy telewizyjnego odbiornika?

A. Odłączenie kabla antenowego od odbiornika, a następnie wyłączenie zasilania odbiornika
B. Wyłączenie odbiornika pilotem, a następnie zdemontowanie tylnej obudowy
C. Wyłączenie odbiornika, a następnie odłączenie go od zasilania przez wyjęcie wtyczki z gniazda sieci elektrycznej
D. Wyłączenie napięcia w budynku, a następnie odłączenie kabla antenowego od odbiornika
Prawidłowa odpowiedź opiera się na fundamentalnych zasadach bezpieczeństwa przy pracy z urządzeniami elektrycznymi. Wyłączenie odbiornika telewizyjnego to pierwszy krok, który powinien być zawsze realizowany przed przystąpieniem do jakiejkolwiek naprawy. Oprócz tego, odłączenie go od zasilania poprzez wyjęcie wtyczki z gniazda sieci elektrycznej jest kluczowe dla uniknięcia ryzyka porażenia prądem lub uszkodzenia sprzętu. Standardy BHP oraz zasady pracy z urządzeniami elektrycznymi sugerują, aby zawsze upewnić się, że urządzenie jest całkowicie odłączone od źródła zasilania. W praktyce, przed rozpoczęciem naprawy warto również sprawdzić, czy nie ma widocznych uszkodzeń kabla zasilającego i gniazdka, co może zapobiec dalszym problemom. Na przykład, w przypadku wystąpienia zakłóceń obrazu, pierwszym działaniem powinno być zawsze włączenie procedury wyłączania odbiornika, a następnie odłączenie go od prądu, co pozwala na bezpieczne przeprowadzenie dalszych działań diagnostycznych lub serwisowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Symetrycznego
B. Koncentrycznego
C. Skrętki nieekranowanej
D. Skrętki ekranowanej
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 29 dBµV, MER 14 dB
B. Poziom 25 dBµV, MER 29 dB
C. Poziom 55 dBµV, MER 24 dB
D. Poziom 65 dBµV, MER 12 dB
Wartości poziomu sygnału i MER są kluczowymi wskaźnikami dla oceny jakości sygnału telewizyjnego. W przypadku poziomu 65 dBµV oraz MER 12 dB, pomimo że poziom sygnału jest na wyższym poziomie, MER jest zbyt niski, co sugeruje znaczne zakłócenia w sygnale. Wysoki poziom sygnału nie zawsze przekłada się na dobrą jakość odbioru. W rzeczywistości, zbyt wysoki poziom sygnału w połączeniu z niskim MER może prowadzić do przesterowania odbiornika, co skutkuje niestabilnym obrazem lub jego całkowitym brakiem. Z kolei poziom 25 dBµV z MER 29 dB wydaje się być dobry pod względem jakości, jednak poziom sygnału jest zdecydowanie za niski dla stabilnego odbioru telewizji naziemnej. Odbiorniki telewizyjne wymagają minimalnego poziomu sygnału, aby mogły prawidłowo przetwarzać dane. Podobnie, poziom 29 dBµV z MER 14 dB jest również nieodpowiedni. Niski MER przy jednocześnie niskim poziomie sygnału wskazuje na poważne problemy z zakłóceniami, co również prowadzi do nieprzewidywalnych efektów w odbiorze. W kontekście praktycznym, dla zapewnienia odpowiedniej jakości sygnału, istotne jest, aby zarówno poziom sygnału, jak i MER były zgodne z najlepszymi praktykami branżowymi. Użytkownicy często mylą te wskaźniki, sądząc, że wyższy poziom sygnału zawsze oznacza lepszą jakość, co w rzeczywistości nie jest prawdą. Z tego względu, kluczowe jest zrozumienie synergii pomiędzy poziomem sygnału a jakością odbioru oraz dostosowanie instalacji do tych wymagań.

Pytanie 15

Termin "licznik mikrorozkazów" odnosi się do

A. pętli PLL
B. manipulatora
C. systemu mikroprocesorowego
D. oscyloskopu cyfrowego
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 16

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 500 V DC
B. 200 V AC
C. 100 V DC
D. 750 V AC
Wybór niewłaściwego zakresu pomiarowego może prowadzić do niepoprawnych wyników i uszkodzenia sprzętu. Odpowiedzi takie jak 100 V DC i 500 V DC są całkowicie nieodpowiednie do pomiaru napięcia przemiennego, ponieważ są one przeznaczone do pomiarów napięcia stałego. Napięcie stałe i przemienne mają różne właściwości, a użycie woltomierza ustawionego na DC do pomiarów AC może skutkować brakiem odczytu lub, co gorsza, uszkodzeniem urządzenia. Zakres 750 V AC, mimo że technicznie jest wystarczający, jest zbyt wysoki w porównaniu do oczekiwanego wyniku, co może prowadzić do obniżonej dokładności pomiaru. W pomiarach elektronicznych, optymalny dobór zakresu jest kluczowy dla uzyskania wiarygodnych wyników. Idealnym podejściem jest wybieranie zakresu, który jest blisko mierzonych wartości, ale nie mniejszy niż 20% większy od maksymalnego przewidywanego napięcia. To podejście gwarantuje zarówno bezpieczeństwo, jak i precyzję pomiaru, co jest zgodne z najlepszymi praktykami w branży. Prawidłowy wybór zakresu pomiarowego jest zatem fundamentem skutecznych pomiarów w inżynierii elektrycznej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. krzyżowym
B. gwiazdkowym
C. czworokątnym
D. płaskim
Wkręty z łbem oznaczonym symbolem PH nie nadają się do użycia z wkrętakami płaskimi, ponieważ ich konstrukcja jest całkowicie niezgodna z profilem łba wkrętu. Wkrętaki płaskie mają prostą, płaską końcówkę, co ogranicza kontakt z rowkiem łba wkrętu i prowadzi do poślizgu narzędzia, a w efekcie do uszkodzenia zarówno wkrętu, jak i materiału, w którym jest osadzony. W kontekście wkrętów czworokątnych, które wymagają zupełnie innego typu wkrętaka, błędne jest stosowanie wkrętaka krzyżowego. Wkrętaki czworokątne mają inny kształt, który nie pasuje do standardu PH, co mogłoby prowadzić do zwiększonego ryzyka uszkodzenia narzędzia i elementów złącznych. Z kolei wkrętaki gwiazdkowe, choć mogą wyglądać podobnie do krzyżowych, różnią się budową, a ich końcówki są przystosowane do innych łbów wkrętów. Użycie niewłaściwego wkrętaka nie tylko zwiększa ryzyko uszkodzenia wkrętów, ale także prowadzi do marnotrawienia czasu i zasobów. W praktyce, stosowanie odpowiednich narzędzi zgodnych z typem wkrętu jest kluczowe dla efektywności i jakości pracy, a także dla unikania problemów związanych z nieodpowiednim doborem narzędzi.

Pytanie 19

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. pomiaru parametrów
B. znajdowania anomalii w działaniu urządzenia
C. uaktualniania oprogramowania
D. kontroli temperatury elementów
Wszystkie pozostałe odpowiedzi wskazują na aspekty, które są istotne w procesie testowania wzmacniaczy akustycznych, jednak niektóre z nich mogą być mylące. Pomiar parametrów jest fundamentalnym krokiem w ocenie wydajności wzmacniacza. Warto pamiętać, że każdy wzmacniacz akustyczny powinien być testowany pod kątem zniekształceń, dynamiki oraz pasma przenoszenia, co pozwala na określenie jego walorów akustycznych oraz zgodności z technicznymi specyfikacjami. Kontrola temperatury elementów jest także kluczowa, ponieważ wzmacniacze mogą generować znaczne ilości ciepła podczas pracy, a przegrzewanie się komponentów może prowadzić do ich uszkodzenia oraz degradacji jakości dźwięku. Zbyt wysoka temperatura może wpływać na parametry pracy wzmacniacza, co prowadzi do nieodwracalnych uszkodzeń. Dodatkowo, kontrola anomalii w działaniu urządzenia jest niezbędna do zapewnienia niezawodności wzmacniacza. Mylne może być jednak myślenie, że uaktualnianie oprogramowania jest kluczowym elementem testowania wzmacniacza akustycznego. Oprogramowanie, choć istotne w kontekście zarządzania funkcjami wzmacniacza, nie stanowi bezpośredniego elementu testowania jego wydajności akustycznej. Warto zauważyć, że w profesjonalnym środowisku audio, testowanie sprzętu akustycznego opiera się na obiektywnych pomiarach i standardach, takich jak normy IEC oraz AES, które określają procedury testowe dla wzmacniaczy. Dlatego ważne jest, aby rozróżniać między funkcjami związanymi z utrzymaniem sprzętu a jego rzeczywistym testowaniem akustycznym.

Pytanie 20

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 10 kΩ
B. 90 kΩ
C. 15 kΩ
D. 60 kΩ
Twoje błędne odpowiedzi pokazują, że rozumiesz temat, ale coś poszło nie tak przy interpretacji zasad dotyczących połączeń równoległych. Rezystory, które są połączone równolegle, nie sumują się jak te w połączeniu szeregowy, co może prowadzić do mylnych wniosków. Przykładowo odpowiedzi takie jak 15 kΩ, 60 kΩ czy 90 kΩ sugerują, że mogłeś myśleć, że te wartości dodajemy bezpośrednio, co jest dość typowym błędem. Przy równoległym połączeniu rezystorów całkowita rezystancja się zmniejsza, bo każdy nowy rezystor daje dodatkową drogę dla prądu. Natomiast w połączeniu szeregowym całkowita rezystancja rośnie. Zrozumienie tych podstawowych różnic między połączeniami jest naprawdę ważne dla analizy obwodów elektrycznych. W praktyce, złe obliczenia rezystancji mogą spowodować, że urządzenia będą działać nieprawidłowo, na przykład w zasilaczach, gdzie złe wartości rezystancji mogą prowadzić do przegrzewania się komponentów. Dobrze jest wrócić do zasad obliczania rezystancji w połączeniach równoległych, żeby unikać podobnych pomyłek w przyszłości.

Pytanie 21

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
B. podniesienie prędkości działania programu
C. określenie tempa przetwarzania poszczególnych instrukcji
D. zablokowanie obsługi przerwań zewnętrznych
Zwiększenie szybkości wykonywania programu to jedna z powszechnych myśli, jednak tryb pracy krokowej nie ma na celu przyspieszenia działania programu. Wręcz przeciwnie, metoda ta polega na analizowaniu poszczególnych instrukcji w sposób sekwencyjny, co naturalnie spowalnia całkowity czas wykonania. Użytkownicy mogą błędnie sądzić, że tryb krokowy jest sposobem na optymalizację wydajności, podczas gdy jego głównym celem jest diagnostyka i analiza błędów. Kolejną nieścisłością jest twierdzenie, że tryb krokowy pozwala na określenie szybkości przetwarzania poszczególnych rozkazów. Choć może on dostarczyć informacji na temat czasu wykonania jednostkowych instrukcji, to nie jest to jego priorytetowa funkcjonalność. Ostatecznie, stwierdzenie, że tryb ten uniemożliwia obsługę przerwań zewnętrznych, wynika z nieporozumienia dotyczącego działania mikroprocesorów. W rzeczywistości, wiele systemów umożliwia przerywanie trybu krokowego, co pozwala na reagowanie na zewnętrzne sygnały przerwań. Zrozumienie tych koncepcji jest kluczowe dla prawidłowego stosowania technik programowania oraz dla efektywnego debugowania, co jest fundamentem w tworzeniu wysokiej jakości oprogramowania.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie złącze służy do podłączenia projektora multimedialnego do komputera PC?

A. SATA
B. PS-2
C. LPT
D. VGA
Złącze VGA (Video Graphics Array) jest standardowym interfejsem stosowanym do przesyłania sygnału wideo z komputera do projektora multimedialnego. To złącze, wprowadzone w 1987 roku, stało się powszechnie stosowanym rozwiązaniem w branży komputerowej i audiowizualnej. Jego główną zaletą jest możliwość przesyłania analogowego sygnału wideo w rozdzielczości do 640x480 pikseli, co w praktyce wystarcza do wyświetlania obrazu w wielu zastosowaniach, w tym prezentacjach czy wykładach. VGA korzysta z 15-pinowego złącza D-sub, które umożliwia łatwe podłączenie do różnych urządzeń. Warto również zwrócić uwagę, że wiele nowoczesnych projektorów i monitorów nadal obsługuje standard VGA, co czyni go kompatybilnym rozwiązaniem w wielu środowiskach. Chociaż technologia ta zaczyna ustępować miejsca nowocześniejszym standardom, takim jak HDMI czy DisplayPort, to VGA wciąż odgrywa istotną rolę w wielu sytuacjach, gdzie wymagana jest prostota i łatwość podłączenia.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. amperomierza
B. omomierza
C. częstotliwościomierza
D. woltomierza
Wybór innych przyrządów pomiarowych, takich jak częstościomierz, woltomierz czy amperomierz, w kontekście pomiaru rezystancji, jest błędny z kilku powodów. Częstościomierz służy do pomiaru częstotliwości sygnałów elektrycznych, co nie ma zastosowania w przypadku analizy rezystancji. Jest to narzędzie ukierunkowane na zupełnie inny aspekt analizy sygnałów, więc jego wykorzystanie do pomiaru rezystancji nie przyniesie żadnych wartościowych wyników. Woltomierz, z drugiej strony, mierzy napięcie elektryczne w obwodzie, co również nie jest odpowiednie, ponieważ nie pozwala na bezpośrednie określenie rezystancji, chyba że na podstawie pomiarów napięcia i prądu za pomocą prawa Ohma, co czyni to narzędzie mniej wygodnym w tej konkretnej sytuacji. Amperomierz z kolei mierzy natężenie prądu, a jego użycie do pomiaru rezystancji wymagałoby dodatkowego pomiaru napięcia, co czyni proces bardziej skomplikowanym i czasochłonnym. Błędem logicznym jest zakładanie, że każde narzędzie pomiarowe może być stosowane zamiennie. W praktyce, do analizy i diagnostyki elektronicznych układów, omomierz jest niezbędny, podczas gdy inne narzędzia mają swoje wyspecjalizowane zastosowania. Użycie niewłaściwego przyrządu może prowadzić do błędnych wniosków i nieefektywnej diagnostyki, dlatego kluczowe jest posiadanie odpowiednich narzędzi dostosowanych do konkretnego zadania pomiarowego.

Pytanie 30

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. zgrzewarka
B. zaciśniacz
C. który służy do lutowania
D. spawarka
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 31

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. łączami światłowodowymi
B. kablami koncentrycznymi
C. skretkami telefonicznymi
D. drogą radiową
Odpowiedzi 'skrótkami telefonicznymi', 'drogą radiową' oraz 'kabli koncentrycznymi' są nieprawidłowe, ponieważ każda z tych technologii nie jest odpowiednia do przesyłania sygnałów na duże odległości w telewizji kablowej. Skrętki telefoniczne, choć stosowane w telekomunikacji, mają ograniczoną przepustowość i są podatne na zakłócenia elektromagnetyczne. W praktyce, ich użycie w transmisji telewizyjnej na dużą skalę wiązałoby się z znacznymi stratami sygnału i nieefektywnością. Z kolei transmisja drogą radiową, mimo że może być użyteczna w niektórych zastosowaniach, wymaga silnych sygnałów i widoczności linii, co utrudnia stabilne przesyłanie sygnału w gęsto zaludnionych obszarach miejskich, gdzie przeszkody terenowe mogą prowadzić do znacznych strat jakości. Kable koncentryczne, chociaż były szeroko stosowane w telewizji kablowej, mają swoje ograniczenia w kontekście wydajności na dużych odległościach. Przesyłają sygnały analogowe lub cyfrowe, ale przy większych odległościach doświadczają znacznych spadków sygnału. Dodatkowo, kable koncentryczne są bardziej podatne na zakłócenia i interferencje w porównaniu z systemami światłowodowymi. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiedniej technologii dla efektywnej transmisji sygnału w nowoczesnych systemach telewizyjnych.

Pytanie 32

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. ołówek i poziomica
B. wiertarka i kołki rozporowe
C. gwoździe oraz młot
D. śruby i śrubokręt
Użycie wkrętów i wkrętaka, wiertarki i kołków, lub gwoździ i młotka do wyznaczania trasy przewodów na ścianie betonowej jest koncepcją, która nie odnosi się do rzeczywistych wymagań i zasad profesjonalnej instalacji. Wkręty i wkrętak mogą być używane do mocowania elementów, ale nie służą do precyzyjnego wyznaczania tras. W przypadku wkrętów konieczne byłoby wcześniejsze zaznaczenie linii, co wymagałoby użycia innego narzędzia, a więc nie są one narzędziem właściwym do samego wyznaczania tras. Wiertarka z kolei, mimo że jest niezbędna do wykonywania otworów w betonie, również nie dostarcza informacji o prawidłowym ułożeniu przewodów. Zastosowanie kołków jest związane z mocowaniem, a nie z wyznaczaniem tras, więc nie spełnia ono głównej funkcji w tym procesie. Gwoździe i młotek również są narzędziami, które nie mają zastosowania w kontekście wyznaczania trasy przewodów, gdyż ich użycie wiąże się z innymi rodzajami prac budowlanych. Typowe błędy w myśleniu polegają na pomyleniu narzędzi do wyznaczania linii z tymi do mocowania, co prowadzi do nieefektywnych praktyk i potencjalnych problemów w późniejszych etapach instalacji. Aby zapewnić nie tylko estetykę, ale także funkcjonalność, konieczne jest stosowanie odpowiednich narzędzi, co podkreślają standardy branżowe dotyczące instalacji elektrycznych.

Pytanie 33

Charakterystykę amplitudowo-częstotliwościową wzmacniacza mocy można określić przy użyciu generatora funkcyjnego oraz

A. miernik częstotliwości
B. miernik prądu
C. rezystor
D. oscyloskop
Wybór omomierza, amperomierza lub częstotliwościomierza jako narzędzi do analizy amplitudowo-częstotliwościowej wzmacniacza mocy jest niewłaściwy z kilku powodów. Omomierz służy do pomiaru oporu elektrycznego w obwodach, co ma niewielkie znaczenie w kontekście analizy sygnałów AC. Nie jest on w stanie zarejestrować zmian w amplitudzie czy kształcie fali, co jest kluczowe dla oceny charakterystyki wzmacniacza. Amperomierz, choć przydatny do pomiaru prądu, również nie dostarcza informacji o kształcie sygnału czy jego amplitudzie w funkcji częstotliwości. Użycie amperomierza w tym kontekście mogłoby prowadzić do błędnych wniosków na temat efektywności wzmacniacza, ponieważ nie mierzy on zmian sygnału w sposób, który jest potrzebny do szczegółowej analizy. Częstotliwościomierz, choć użyteczny w pomiarze częstotliwości sygnału, nie dostarcza informacji na temat jego amplitudy. Dlatego jego zastosowanie w tym kontekście jest ograniczone. Często pojawiają się błędne przekonania, że można zastąpić oscyloskop innymi przyrządami, jednak oscyloskop jest jedynym narzędziem, które oferuje kompleksowy wgląd w zachowanie sygnałów elektrycznych, umożliwiając inżynierom precyzyjną ocenę charakterystyki wzmacniaczy mocy oraz ich optymalny dobór do zastosowań w różnych dziedzinach. W związku z tym, wybór oscyloskopu jako najbardziej odpowiedniego narzędzia jest zgodny z powszechnie stosowanymi praktykami inżynieryjnymi.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.