Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 6 czerwca 2025 19:25
  • Data zakończenia: 6 czerwca 2025 19:39

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt wysoki poziom oleju
B. zbyt bogatą mieszankę paliwową
C. zbyt ubogą mieszankę paliwową
D. uszkodzenie zaworów silnikowych
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W pojeździe, w którym występuje szarpanie podczas ruszania, należy przede wszystkim zweryfikować stopień zużycia

A. synchronizatora pierwszego biegu
B. układu hamulcowego (blokowanie kół)
C. elementów sprzęgła
D. silnika w związku z "wypadaniem zapłonów"
Szarpanie w czasie ruszania z miejsca może być mylone z wieloma innymi problemami mechanicznymi, co może prowadzić do błędnych diagnoz i niepotrzebnych kosztów naprawy. Synchronizator pierwszego biegu, na przykład, odpowiada za płynne przejście między biegami, jednak jego uszkodzenie najczęściej objawia się trudnościami w zmianie biegów, a nie szarpaniem przy ruszaniu. W praktyce, problemy z synchronizatorem są zauważalne przede wszystkim podczas zmian biegów przy wysokich obrotach silnika, a nie w momencie uruchamiania pojazdu. Układ hamulcowy, z kolei, odpowiedzialny jest za zatrzymywanie pojazdu i nie powinien mieć wpływu na szarpanie podczas ruszania. Blokowanie kół może prowadzić do ślizgania się opon, ale nie jest bezpośrednią przyczyną szarpania, co czyni tę odpowiedź nieodpowiednią. Wreszcie, wypadanie zapłonów w silniku może powodować szarpanie podczas jazdy, ale jest to symptom bardziej zaawansowanego problemu z silnikiem niż bezpośrednia przyczyna szarpania w momencie ruszania. Dlatego ważne jest, aby skupić się na diagnostyce układu sprzęgłowego, który najczęściej jest źródłem problemów przy ruszaniu z miejsca.

Pytanie 4

Wydobywające się z rury wydechowej spaliny o niebieskim zabarwieniu najprawdopodobniej wskazują

A. na zużycie pierścieni tłokowych
B. na zbyt duże wyprzedzenie wtrysku
C. na nieszczelność w układzie wydechowym
D. na zamknięty zawór EGR
Niebieski dym z rury wydechowej jest często mylony z innymi problemami, co prowadzi do błędnych wniosków dotyczących stanu silnika. Nieszczelność układu wydechowego, będąca pierwszą koncepcją, może powodować wydostawanie się spalin, ale nie jest bezpośrednio związana z niebieskim dymem. Zwykle nieszczelności w układzie wydechowym objawiają się głośniejszą pracą silnika oraz nieprzyjemnym zapachem spalin, a nie zmianą koloru dymu. Zawór EGR, odpowiedzialny za recyrkulację spalin, w przypadku zamknięcia lub awarii powoduje zwiększenie emisji NOx, jednak nie jest związany z kolorem dymu, a jego objawy dotyczą raczej wydajności silnika oraz jakości spalin. Przesunięcie wyprzedzenia wtrysku paliwa może wpływać na działanie silnika i jego moc, ale nie jest to przyczyna niebieskiego dymu. Zmiany w wyprzedzeniu wtrysku mogą prowadzić do nieprawidłowego spalania, jednak dym będzie miał inny kolor, najczęściej czarny, wskazujący na nadmiar paliwa. Typowym błędem myślowym jest interpretacja widocznego dymu jako objawu wielu problemów, zamiast dokładnego zrozumienia, że kolor dymu jest kluczowym wskaźnikiem stanu silnika. Wiedza na temat powiązań między objawami, a stanem technicznym pojazdu jest niezbędna do prawidłowej diagnostyki oraz prewencji problemów związanych z silnikiem.

Pytanie 5

Lepki, czerwony płyn eksploatacyjny to

A. płyn klimatyzacji R 134a
B. płyn hamulcowy DOT 4
C. olej silnikowy
D. olej ATT
Odpowiedź na to pytanie jest prawidłowa, ponieważ olej ATT (Automatic Transmission Fluid) jest lepki i często występuje w kolorze czerwonym. Jest to specjalny płyn stosowany w automatycznych skrzyniach biegów, który zapewnia nie tylko smarowanie, ale także chłodzenie oraz przenoszenie mocy. Dzięki odpowiednim właściwościom lepkościowym, olej ATT umożliwia skuteczną pracę przekładni, a jego barwa czerwona jest standardowa w wielu producentach, aby ułatwić identyfikację. Przykładowo, w przypadku awarii skrzyni biegów, mechanicy często sprawdzają poziom i stan oleju ATT, co pozwala na szybką diagnozę problemów. W branży motoryzacyjnej istnieją również normy, takie jak DEXRON lub MERCON, które określają wymagania dotyczące właściwości olejów przekładniowych, co jest kluczowe dla bezpieczeństwa i efektywności działania pojazdów. Właściwy dobór oleju ATT jest fundamentalny, aby zapewnić długowieczność skrzyni biegów oraz zachować optymalną wydajność pojazdu.

Pytanie 6

Jeśli przekładnia w skrzyni biegów wynosi ib=1,0, a przekładnia tylnego mostu to it=4,1, jakie jest całkowite przełożenie układu napędowego?

A. 5,1
B. 1,0
C. 4,1
D. 3,1
W układzie napędowym, przełożenie całkowite jest iloczynem przełożenia skrzyni biegów i przełożenia tylnego mostu. W tym przypadku mamy do czynienia z przełożeniem skrzyni biegów równym ib=1,0 oraz przełożeniem tylnego mostu it=4,1. Aby obliczyć całkowite przełożenie, należy zastosować wzór: \( i_{całkowite} = i_b \times i_t \). Podstawiając wartości, otrzymujemy: \( i_{całkowite} = 1,0 \times 4,1 = 4,1 \). W praktyce oznacza to, że dla każdego obrotu silnika wał przekazuje moc przez skrzynię biegów i tylny most z przełożeniem 4,1:1. Taki wynik jest istotny w kontekście osiągów pojazdu; wyższe przełożenie tylnego mostu może zwiększyć moment obrotowy na kołach, co jest korzystne w sytuacjach wymagających dużej mocy, np. podczas podjazdów. Odpowiednie dobieranie przełożeń jest kluczowe w projektowaniu układów napędowych, aby zbalansować efektywność paliwową i dynamikę jazdy.

Pytanie 7

Większa ilość zaworów ssących w silniku ma bezpośredni wpływ na

A. wolniejsze opróżnianie cylindra
B. szybsze napełnianie cylindra
C. nadmiarowy pobór powietrza
D. większe zużycie paliwa
Wielu użytkowników silników myli wpływ liczby zaworów na różne aspekty pracy silnika, co prowadzi do niepoprawnych wniosków. Odpowiedzi sugerujące, że większa liczba zaworów prowadzi do wolniejszego opróżniania cylindra, są nieprawidłowe, ponieważ więcej zaworów oznacza szybszy przepływ spalin, a zatem efektywniejsze opróżnianie cylindra. Zużycie paliwa niekoniecznie zwiększa się wraz z większą liczbą zaworów. W rzeczywistości, jeśli silnik jest odpowiednio zaprojektowany, większa liczba zaworów może w rzeczywistości poprawić efektywność spalania, co prowadzi do obniżenia zużycia paliwa. Nie jest również prawdą, że większa liczba zaworów powoduje nadmiarowy pobór powietrza; wręcz przeciwnie, umożliwia lepsze i bardziej stabilne napełnianie cylindrów. Przykładem może być silnik V8, który z reguły posiada 16 zaworów, co zapewnia odpowiednie napełnianie i opróżnianie cylindrów, a tym samym lepsze osiągi. Błędne zrozumienie tych zasad może prowadzić do mylnych interpretacji przy doborze silników czy przy modyfikacjach w projektowaniu jednostek napędowych.

Pytanie 8

W systemie klimatyzacyjnym parownik umiejscowiony jest

A. obok sprężarki klimatyzacji
B. obok chłodnicy silnika
C. obok nagrzewnicy
D. za wentylatorem chłodnicy
W układzie klimatyzacji występuje wiele kluczowych komponentów, a jego zrozumienie wymaga znajomości ich roli i umiejscowienia. Wiele osób może mylnie sądzić, że parownik znajduje się przy sprężarce klimatyzacji, jednak to nieprawda. Sprężarka jest odpowiedzialna za sprężanie czynnika chłodniczego i jego cyrkulację w układzie, ale to nie w jej sąsiedztwie odbywa się proces chłodzenia powietrza. Z kolei umiejscowienie parownika przy chłodnicy silnika również jest nieprawidłowe. Chłodnica silnika ma za zadanie odprowadzać ciepło generowane przez silnik, a nie brać udział w procesie klimatyzacji. Ponadto, umiejscowienie parownika za wentylatorem chłodnicy jest również mylne, ponieważ ten wentylator ma na celu wspomaganie chłodzenia cieczy w chłodnicy, co nie ma bezpośredniego związku z funkcjonowaniem parownika. Kluczowym błędem, który prowadzi do tych nieprawidłowych wniosków, jest niezrozumienie, że parownik pełni funkcję eliminacji ciepła z wnętrza pojazdu, a jego lokalizacja przy nagrzewnicy pozwala na skuteczne działanie układu klimatyzacji. Należy pamiętać, że skuteczna wentylacja i klimatyzacja są ze sobą ściśle powiązane, a zrozumienie tych relacji jest niezbędne do prawidłowego funkcjonowania systemu. Właściwe umiejscowienie parownika jest zatem kluczowe dla zapewnienia komfortu w kabinie pojazdu i efektywności całego układu.

Pytanie 9

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Tłumik
B. Łącznik stabilizatora
C. Resor piórowy
D. Zakończenie drążka kierowniczego
Resor piórowy jest kluczowym elementem zawieszenia, który pełni funkcję sprężynującą w pojazdach. Jego zadaniem jest absorpcja sił działających na pojazd podczas jazdy, co poprawia komfort podróżowania oraz stabilność pojazdu. Resory piórowe składają się z kilku warstw sprężystych, które rozkładają obciążenia na większą powierzchnię, co przyczynia się do ich efektywności. W praktyce, resory piórowe są często stosowane w pojazdach użytkowych oraz w samochodach terenowych, gdzie wymagane są wysokie osiągi w trudnych warunkach. Dobrą praktyką jest regularne sprawdzanie stanu resorów, ponieważ ich zużycie może prowadzić do pogorszenia właściwości jezdnych oraz zwiększenia ryzyka awarii. W standardach branżowych, jak ISO 9001, zaleca się prowadzenie systematycznej konserwacji oraz wymiany elementów zawieszenia w celu zapewnienia bezpieczeństwa i wydajności pojazdu.

Pytanie 10

Aby uzupełnić poziom płynu w systemie hamulcowym, należy zastosować płyn oznaczony symbolem

A. 30W10
B. 40W10
C. ŁT4
D. DOT
Prawidłowa odpowiedź to DOT, co odnosi się do standardu klasyfikacji płynów hamulcowych. Płyny te są klasyfikowane na podstawie temperatury wrzenia oraz właściwości chemicznych. DOT (Department of Transportation) to oznaczenie stosowane w Stanach Zjednoczonych, które wskazuje, że dany płyn spełnia wymagania określone w normach dotyczących wydajności i bezpieczeństwa. Płyny hamulcowe oznaczone jako DOT są dostępne w różnych klasach, takich jak DOT 3, DOT 4 i DOT 5.1, które różnią się między sobą temperaturą wrzenia oraz odpornością na wilgoć. W praktyce, używanie odpowiedniego płynu hamulcowego jest kluczowe dla zapewnienia optymalnej wydajności układu hamulcowego, a także bezpieczeństwa pojazdu. Na przykład, podczas wymiany płynu hamulcowego w samochodzie, zaleca się stosowanie płynu zgodnego z odpornością materiałów uszczelniających w układzie. Przykładowo, wiele nowoczesnych systemów hamulcowych, zwłaszcza w pojazdach sportowych, wymaga płynów klasy DOT 4 lub DOT 5.1 ze względu na ich wyższą temperaturę wrzenia.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Do zestawu elementów układu kierowniczego nie należy

A. przekładnia ślimakowa
B. drążek kierowniczy
C. drążek reakcyjny
D. końcówka drążka kierowniczego
Drążek reakcyjny nie wchodzi w skład układu kierowniczego, ponieważ jest to element, który nie jest używany w standardowych systemach kierowniczych samochodów. W przeciwieństwie do przekładni ślimakowej, która przekształca ruch obrotowy na ruch liniowy i jest kluczowym elementem w układach kierowniczych, drążek kierowniczy oraz końcówka drążka kierowniczego, które przewodzą ruch z kierownicy do kół, mają bezpośredni wpływ na sterowność pojazdu. Przykładowo, drążki kierownicze są wykorzystywane w różnych typach pojazdów, w tym w samochodach osobowych i ciężarowych, gdzie ich właściwe działanie jest niezbędne dla bezpieczeństwa i komfortu jazdy. Zrozumienie, które elementy składają się na układ kierowniczy, jest kluczowe dla diagnostyki usterek oraz przeprowadzania odpowiednich napraw, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 13

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. czapkę z daszkiem
B. obuwie ochronne
C. rękawice lateksowe
D. okulary ochronne
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Aby ocenić skuteczność działania systemu bezpieczeństwa aktywnego w pojeździe, należy zweryfikować

A. szczelność systemu paliwowego
B. mechanizmy napinaczy pasów bezpieczeństwa
C. stan oleju w silniku
D. oświetlenie zewnętrzne pojazdu
Weryfikacja działania układu bezpieczeństwa czynnego pojazdu powinna koncentrować się na elementach, które bezpośrednio wpływają na zdolność do bezpiecznego prowadzenia. Poziom oleju w silniku, choć istotny dla ogólnej kondycji silnika, nie jest bezpośrednio związany z systemem bezpieczeństwa czynnego. Odpowiedzialność za prawidłowe smarowanie silnika ma na celu przede wszystkim zapobieganie uszkodzeniom, a nie aktywne zabezpieczenie w sytuacji zagrożenia. Napinacze pasów bezpieczeństwa, mimo iż są elementem, który wpływa na bezpieczeństwo pasażerów, nie stanowią same w sobie aktywnego elementu bezpieczeństwa, który byłby weryfikowany w kontekście ogólnej funkcjonalności pojazdu. Kontrola szczelności układu paliwowego, chociaż istotna dla uniknięcia ryzyka pożaru, również nie należy do czynnych systemów bezpieczeństwa, które obowiązkowo muszą być weryfikowane przed jazdą. Oświetlenie zewnętrzne jest tym elementem, który z jasno określonym celem ma na celu zapewnienie widoczności. Prawidłowe działania w tym zakresie są niezbędne dla bezpieczeństwa na drogach, a zaniedbanie może prowadzić do niebezpiecznych sytuacji. Kierowcy często błędnie oceniają wagę poszczególnych elementów, wybierając te, które nie są kluczowe dla aktywnego bezpieczeństwa, co może prowadzić do poważnych konsekwencji w ruchu drogowym.

Pytanie 16

Specyfikacja techniczna elementu wchodzącego w skład instalacji elektrycznej informuje, że rezystancja uzwojenia pierwotnego wynosi 3 Ohm, natomiast uzwojenia wtórnego 70 Ohm. Co to za element?

A. Czujnik temperatury
B. Czujnik ciśnienia paliwa
C. Cewka zapłonowa
D. Świeca zapłonowa
Cewka zapłonowa to kluczowy element układu zapłonowego w silnikach spalinowych, odpowiedzialny za generowanie wysokiego napięcia potrzebnego do zapłonu mieszanki paliwowo-powietrznej w cylindrze. Wskazane wartości rezystancji uzwojeń pierwotnego (3 Ohm) i wtórnego (70 Ohm) są zgodne z typowymi parametrami cewek zapłonowych. W uzwojeniu pierwotnym przepływa prąd, który generuje pole magnetyczne, a w uzwojeniu wtórnym to pole powoduje indukcję elektryczną, wytwarzając wysokie napięcie. Cewki zapłonowe są projektowane zgodnie z normami branżowymi, aby zapewnić optymalną wydajność i niezawodność, co jest kluczowe w kontekście efektywności pracy silnika. Praktyczne zastosowanie cewki zapłonowej obejmuje nie tylko silniki spalinowe w pojazdach, ale również inne aplikacje, takie jak generatory prądu czy systemy grzewcze. Właściwe zrozumienie działania tego elementu jest niezbędne dla każdego technika zajmującego się diagnostyką i naprawą układów zapłonowych, a także dla inżynierów projektujących systemy elektryczne w motoryzacji.

Pytanie 17

Maksymalna dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych wyprodukowanych po 2004 roku, w czasie biegu jałowego, nie powinna być większa niż

A. 0,3% objętości spalin
B. 3,5% objętości spalin
C. 1,5% objętości spalin
D. 2,5% objętości spalin
Wybór odpowiedzi innych niż 0,3% objętości spalin wskazuje na brak zrozumienia norm emisji zanieczyszczeń oraz regulacji dotyczących silników spalinowych. Na przykład, podanie wartości 1,5% lub 2,5% nie tylko przekracza aktualne normy, ale także nie uwzględnia technologii, które zostały wprowadzone do silników po 2004 roku. Silniki współczesne są wyposażone w zaawansowane systemy oczyszczania spalin, które skutecznie redukują emisję tlenku węgla do poziomów znacznie poniżej 0,3%. Również warto zauważyć, że normy emisji takich jak Euro 5, które zaczęły obowiązywać od 2009 roku, wymuszają dalsze ograniczenie emisji dla nowych pojazdów. Wybierając wartości 3,5% lub inne, można wskazać na typowe błędy myślowe, takie jak mylenie biegu jałowego z innymi warunkami pracy silnika. W rzeczywistości na biegu jałowym emisja powinna być monitorowana w bardzo kontrolowanych warunkach, a wartości przekraczające 0,3% stanowią poważne naruszenie przepisów, które mogą skutkować koniecznością przeprowadzenia naprawy lub modyfikacji układu wydechowego. Należy pamiętać, że zrozumienie tych norm jest kluczowe dla wszystkich, którzy pracują w branży motoryzacyjnej oraz zajmują się diagnostyką silników.

Pytanie 18

Zgięty wahacz w pojeździe należy

A. wymienić na nowy
B. wyprostować w niskiej temperaturze
C. wyprostować w wysokiej temperaturze
D. wzmocnić dodatkowym elementem
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Co może być przyczyną nadmiernego zużycia zewnętrznych krawędzi bieżnika jednej z opon?

A. Zbyt wysokie ciśnienie w oponie
B. Nieodpowiedni kąt nachylenia koła
C. Nieprawidłowa zbieżność kół
D. Zbyt niskie ciśnienie w oponie
Niewłaściwa zbieżność, niewłaściwy kąt pochylenia koła oraz zbyt wysokie ciśnienie w oponie to kwestie, które mogą wpłynąć na zużycie opon, ale nie są one bezpośrednimi przyczynami nadmiernego zużycia bieżnika na zewnętrznych krawędziach. Zbieżność, czyli ustawienie kół w odpowiedniej linii względem osi pojazdu, ma kluczowe znaczenie dla równomiernego zużycia opon. Błędna zbieżność może prowadzić do asymetrycznego zużycia, jednak niekoniecznie ogranicza się jedynie do zewnętrznych krawędzi. Również kąt pochylenia koła, który powinien być dostosowany do specyfikacji producenta, wpływa na kontakt opony z nawierzchnią. Niewłaściwy kąt może spowodować nierównomierne zużycie, ale niekoniecznie odbędzie się to w formie nadmiernego zużycia wyłącznie na zewnętrznych stronach. Z kolei zbyt wysokie ciśnienie w oponie prowadzi do szybszego zużycia środkowej części bieżnika, co jest odwrotnością sytuacji przy zbyt niskim ciśnieniu. Typowe błędy myślowe w analizie zużycia opon obejmują uproszczenia i pomijanie złożoności wpływu różnych parametrów na stan ogumienia. Utrzymanie odpowiednich ciśnień oraz regularne sprawdzanie geometrii kół są kluczowe dla zapewnienia długowieczności opon oraz bezpieczeństwa na drodze.

Pytanie 21

Gdzie wykorzystuje się rezonator Helmholtza?

A. w systemie dolotowym silnika
B. w systemie wylotowym silnika
C. w systemie zapłonowym silnika
D. w systemie zasilania silnika
Pojmowanie roli rezonatora Helmholtza w kontekście układów silnika może prowadzić do nieporozumień, szczególnie jeśli chodzi o jego zastosowanie w układzie wylotowym, zasilania lub zapłonowym. Rezonator Helmholtza jest zaprojektowany do pracy w układzie dolotowym, ponieważ jego funkcja polega na modulacji fal dźwiękowych, które występują w tym obszarze. W układzie wylotowym z kolei mamy do czynienia z innymi zjawiskami akustycznymi, które są związane z usuwaniem spalin, a nie ich wprowadzaniem. Stosowanie rezonatora w układzie wylotowym nie przyniosłoby korzyści, ponieważ nie ma on wpływu na poprawę napełnienia cylindrów. Podobnie, w układzie zasilania, gdzie paliwo jest dostarczane do silnika, a nie powietrze, rola rezonatora nie ma zastosowania, ponieważ nie jest on zaprojektowany do modulacji mieszanki paliwowej. Natomiast w układzie zapłonowym, który odpowiada za inicjację procesu spalania, rezonator również nie ma miejsca, ponieważ nie zajmuje się regulacją czy wsparciem procesu zapłonu mieszanki. Kluczowym błędem myślowym jest utożsamianie rezonatora Helmholtza z innymi elementami układu dolotowego, bez zrozumienia jego specyficznej funkcji i zastosowania. Prawidłowe podejście wymaga zrozumienia, że rezonatory są elementami projektowanymi z myślą o optymalizacji przepływu powietrza w silniku, co jest całkowicie inną funkcją niż te, które pełnią inne układy. Zatem, aby skutecznie wykorzystać potencjał silnika, konieczne jest umiejętne dopasowanie elementów do ich przeznaczenia.

Pytanie 22

Aby zmierzyć ciśnienie oleju w układzie smarowania silnika z zapłonem iskrowym, powinno się zastosować manometr o zakresie pomiarowym

A. 0 - 0,5 MPa
B. 0 - 0,2 MPa
C. 0 - 0,l MPa
D. 0 - 0,4 MPa
Wybór manometru o zakresie pomiarowym 0 - 0,5 MPa do pomiaru ciśnienia oleju w układzie smarowania silnika z zapłonem iskrowym jest właściwy, gdyż ciśnienie oleju w tym typie silnika zazwyczaj wynosi od kilkudziesięciu do około 0,5 MPa (5 bar). Użycie manometru o zbyt wąskim zakresie może prowadzić do nieprawidłowych odczytów, a nawet uszkodzenia przyrządu, jeżeli wartości ciśnienia przekroczą zakres pomiarowy. Standardy branżowe, takie jak ISO 4126, wskazują na konieczność doboru odpowiednich przyrządów pomiarowych do specyfikacji danego systemu. Praktycznym przykładem zastosowania tego manometru może być jego wykorzystanie w czasie rutynowych przeglądów technicznych, gdzie operatorzy mogą monitorować ciśnienie oleju, co pozwala na wczesne wykrywanie problemów w układzie smarowania, takich jak zatarcie czy niewłaściwe działanie pompy olejowej. Utrzymanie optymalnego ciśnienia oleju jest kluczowe dla prawidłowego funkcjonowania silnika, co podkreśla znaczenie stosowania manometrów o odpowiednich parametrach.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Kiedy prędkość obrotowa silnika wzrasta w wyniku nagłego wciśnięcia pedału gazu, prędkość samochodu rośnie w sposób nieproporcjonalny. Taki symptom w pojeździe z mechaniczną skrzynią biegów może sugerować uszkodzenie

A. przekładni głównej
B. sprzęgła
C. mechanizmu różnicowego
D. skrzyni biegów
Odpowiedź dotycząca uszkodzenia sprzęgła jest prawidłowa, ponieważ w przypadku gwałtownego naciśnięcia pedału gazu, jeśli sprzęgło nie działa prawidłowo, nie jest w stanie przekazać mocy z silnika na skrzynię biegów. Sprzęgło ma kluczowe zadanie w synchronizacji obrotów silnika z obrotami kół, co umożliwia płynne przyspieszanie pojazdu. Gdy sprzęgło jest uszkodzone, może dochodzić do poślizgu, co oznacza, że silnik zwiększa obroty, ale nie przekłada się to na proporcjonalny wzrost prędkości pojazdu. Przykładem może być sytuacja, gdy kierowca czuje, że silnik „kręci się” na wysokich obrotach, ale samochód nie przyspiesza w oczekiwany sposób. W takich przypadkach zaleca się natychmiastowe zbadanie stanu sprzęgła, aby uniknąć dalszych uszkodzeń. W praktyce, dobrym standardem jest regularne kontrolowanie stanu elementów układu napędowego, co może zapobiec poważnym awariom i kosztownym naprawom.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Przekroczenie dopuszczalnego przebiegu lub okresu użytkowania paska zębatego w systemie rozrządu może prowadzić do

A. uszkodzenia rolki napinacza paska rozrządu
B. przyspieszonego zużycia koła napędowego rozrządu
C. przeskoczenia paska rozrządu na kole i zmiany faz rozrządu
D. przyspieszonego zużycia koła napędzanego rozrządu
Przekroczenie limitu przebiegu lub czasookresu eksploatacji paska zębatego napędu rozrządu może prowadzić do przeskoczenia paska na kole zębatym. W momencie, gdy pasek nie pracuje zgodnie z założonymi fazami, dochodzi do desynchronizacji między wałem korbowym a wałem rozrządu. Istotne jest, aby pasek rozrządu był regularnie wymieniany zgodnie z wymaganiami producenta, co zapewnia prawidłowe funkcjonowanie silnika. Przykładowo, w silnikach czterosuwowych, które wymagają precyzyjnego synchronizowania czasów otwierania i zamykania zaworów, przeskoczenie paska może prowadzić do kolizji zaworów z tłokami, co skutkuje poważnymi uszkodzeniami silnika. Regularne kontrole i wymiany zgodnie z zaleceniami producentów są kluczowymi praktykami w branży motoryzacyjnej, co pozwala uniknąć kosztownych napraw i zapewnia bezpieczeństwo użytkowników.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby ocenić efektywność działania hamulców poprzez pomiar siły hamowania, należy wykorzystać

A. drogomierz
B. urządzenie rolkowe
C. płytę najazdową
D. opóźnieniomierz
Urządzenie rolkowe jest narzędziem przeznaczonym do pomiaru siły hamowania w pojazdach. Działa na zasadzie przeprowadzenia testu na hamulcach poprzez symulację warunków drogowych. Podczas testu pojazd jest umieszczany na rolkach, które obracają się w ruchu przeciwnym do kierunku jazdy. W momencie aktywacji hamulców, urządzenie mierzy siłę, z jaką hamulce działają na koła, co pozwala na ocenę ich skuteczności. Oprócz pomiaru siły hamowania, urządzenie rolkowe może również oceniać stabilność hamulców oraz ich równomierność działania na poszczególnych kołach. Stosowanie takich urządzeń jest zgodne z normami branżowymi, takimi jak ISO 3888 czy ECE R13. W praktyce, wykorzystanie urządzeń rolkowych podczas przeglądów technicznych i diagnostyki pojazdów pozwala na precyzyjne dostosowanie układów hamulcowych do wymagań bezpieczeństwa ruchu drogowego, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników dróg.

Pytanie 29

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. smar stały
B. płyn hydrauliczny
C. olej przekładniowy
D. olej silnikowy
Płyn hydrauliczny, choć również stosowany w różnych systemach mechanicznych, nie jest odpowiedni do smarowania mechanizmów różnicowych. Jego główną rolą jest przenoszenie siły w układach hydraulicznych, takich jak hamulce czy wspomaganie kierownicy. Charakteryzuje się innymi właściwościami fizykochemicznymi, które nie są odpowiednie dla obciążeń występujących w przekładniach. Stosując płyn hydrauliczny w mechanizmie różnicowym, można napotkać poważne problemy, w tym nadmierne tarcie, co prowadzi do szybszego zużycia części. Porównując to do oleju silnikowego, który również nie nadaje się do tego celu, zauważamy, że jego główną funkcją jest smarowanie silnika spalinowego, a nie przekładni. Olej silnikowy nie zawiera odpowiednich dodatków zapewniających wysoką odporność na wysokie temperatury i ciśnienia występujące w mechanizmach różnicowych. Z kolei smar stały, mimo że skutecznie zmniejsza tarcie w zastosowaniach gdzie jest elementem stałym, nie jest odpowiedni do zastosowań w płynnych środowiskach, takich jak mechanizmy różnicowe, gdzie wymagane jest odpowiednie krążenie smaru. Zastosowanie niewłaściwych substancji smarnych prowadzi do nieefektywności, a w konsekwencji do awarii mechanizmu, co jest fundamentalnym błędem w podejściu do konserwacji i eksploatacji pojazdów.

Pytanie 30

Amortyzatory, które zostały poddane badaniu metodą Eusama, mają współczynnik tłumienia drgań na poziomie 60%

A. są w dobrym stanie
B. kwalifikują się do wymiany
C. są w stanie dostatecznym
D. są w 40% uszkodzone
To, że amortyzatory kwalifikują się do wymiany przy 60% współczynnika tłumienia, to trochę nieporozumienie. Coś tu nie gra, bo taki współczynnik świadczy o tym, że amortyzatory są ok. Zwykle te sprawne mają przynajmniej 50%, więc jak coś mówi, że są w 40% niesprawne, to chyba trzeba to lepiej zrozumieć. Amortyzator z 60% działa normalnie i nie powinien być nazywany niesprawnym. I „dostateczny stan” też nie do końca oddaje rzeczywistość, bo to nie zapewnia odpowiednich parametrów. Musisz pamiętać, że amortyzatory są ważne dla całego zawieszenia i ich sprawność wpływa na bezpieczeństwo. Źle zrozumiane informacje o ich stanie technicznym mogą prowadzić do niepotrzebnych napraw i zagrożeń na drodze. Wiedza o tym, jak działają te rzeczy pod względem technicznym, jest kluczowa, żeby dobrze ocenić stan amortyzatorów.

Pytanie 31

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. szacunkowego poziomu zużycia pojazdu
B. liczby części wymienionych w ramach usługi
C. wartości rynkowej pojazdu
D. czasochłonności naprawy
Odpowiedź dotycząca ilości czasu potrzebnej do naprawy jest kluczowym elementem w procesie tworzenia kosztorysu usługi serwisowej. W praktyce, szacowanie czasu naprawy opiera się na przemyślanej analizie zleceń oraz doświadczeniu technika. Czas naprawy jest bezpośrednio związany z kosztem robocizny, który stanowi znaczącą część całkowitego kosztu usługi. Standardy branżowe, takie jak normy czasowe określone przez producentów pojazdów, umożliwiają technikom dokładne oszacowanie, ile czasu zajmie im wykonanie danej naprawy. Na przykład, serwisanci często korzystają z tzw. 'czasów referencyjnych', które pomagają określić przeciętny czas potrzebny na wykonanie różnych rodzajów napraw. Dodatkowo, umiejętność dokładnego oszacowania czasu naprawy pozwala na lepsze zarządzanie zasobami w warsztacie oraz na zadowolenie klientów poprzez rzetelne informowanie ich o czasie realizacji usługi. Taka praktyka przyczynia się do zwiększenia efektywności operacyjnej serwisu oraz do budowy pozytywnego wizerunku w oczach klientów.

Pytanie 32

Typowe tarcze hamulcowe są produkowane

A. ze stali stopowej
B. ze stali niestopowej
C. z żeliwa białego
D. z żeliwa szarego
Wybór odpowiedzi związanych z żeliwem białym, stalą stopową oraz stalą niestopową nie jest uzasadniony w kontekście klasycznych tarcz hamulcowych. Żeliwo białe, ze względu na swoją twardość, nie jest odpowiednie w zastosowaniach hamulcowych, ponieważ wykazuje niską odporność na uderzenia i małą zdolność do rozpraszania ciepła. Takie materiałowe właściwości mogą prowadzić do szybkiego zużycia tarcz oraz zwiększonego ryzyka pęknięć pod wpływem wysokich temperatur. W przypadku stali stopowej, chociaż może oferować lepsze właściwości mechaniczne w niektórych zastosowaniach, jej produkcja jest droższa, a także może być mniej efektywna w redukcji wagi pojazdów. Stale niestopowe z kolei, mimo że są łatwiejsze w obróbce, nie dysponują odpowiednią odpornością na wysokie temperatury i mają tendencję do deformacji pod dużym obciążeniem. W kontekście dobrych praktyk inżynieryjnych, wybór materiałów do produkcji tarcz hamulcowych powinien opierać się na ich zdolności do pracy w krytycznych warunkach, co jasno wskazuje na preferencje dla żeliwa szarego, spełniającego wszelkie wymagania dotyczące bezpieczeństwa i niezawodności.

Pytanie 33

Jaką czynność należy wykonać w pierwszej kolejności, udzielając pomocy osobie rażonej prądem elektrycznym?

A. zawiadomienie przełożonego o wystąpieniu wypadku.
B. bezpieczne oddzielenie poszkodowanego od źródła prądu.
C. informowanie dostawcy energii elektrycznej o potrzebie odłączenia napięcia.
D. sprawdzenie tętna oraz oddechu osoby poszkodowanej.
Pierwszą czynnością przy udzielaniu pomocy osobie, która została porażona prądem elektrycznym, jest bezpieczne uwolnienie jej od źródła porażenia. W praktyce oznacza to, że pomocnik powinien najpierw zadbać o własne bezpieczeństwo oraz ocenić sytuację. Wyłączenie prądu jest kluczowe, ale nie zawsze jest to możliwe w danym momencie. Dlatego w pierwszej kolejności należy zastosować środki, które minimalizują ryzyko dalszych obrażeń, takie jak użycie izolujących narzędzi (np. kij z materiału nieprzewodzącego) do odsunięcia poszkodowanego od źródła prądu. Ważne jest, aby nie dotykać personelu bezpośrednio, gdyż można również zostać porażonym. Gdy osoba jest już bezpieczna, można przejść do oceny jej stanu zdrowia, takiej jak sprawdzenie tętna i oddychania. W sytuacjach kryzysowych, jak porażenie prądem, dobre praktyki i standardy bezpieczeństwa, np. zgodne z wytycznymi Krajowego Centrum Ratownictwa Medycznego, sugerują, że priorytetem jest zawsze bezpieczeństwo ratownika oraz osoby poszkodowanej.

Pytanie 34

Ryzyko wystąpienia aquaplaningu w pojeździe zwiększa się wraz z

A. zmniejszeniem powierzchni przekroju wzoru bieżnika
B. podwyższeniem ciśnienia w oponach
C. obniżeniem ciśnienia w oponach
D. zmniejszeniem szerokości opony
Niestety, inne odpowiedzi nie trzymają się faktów o tym, jak działają opony w deszczu. Zmniejszenie bieżnika może wprawdzie wpływać na odprowadzanie wody, ale to nie jest najważniejszy powód do obaw w kontekście aquaplaningu. Bieżnik musi być dobrze zaprojektowany, by radzić sobie z wodą, a zmniejszenie rzeźby to może obniżyć przyczepność, ale niekoniecznie od razu prowadzi do aquaplaningu. Co do wzrostu ciśnienia w oponach, to jest to trochę mylące. Odpowiednie ciśnienie to podstawa, ale za wysokie ciśnienie może sprawić, że opony będą zbyt twarde i wtedy kontakt z nawierzchnią będzie gorszy, co może skutkować utratą przyczepności. Zmiana szerokości opony to kolejny błąd – węższe opony czasami lepiej radzą sobie z wodą, ale mogą też zwiększać ryzyko aquaplaningu przez mniejszą powierzchnię kontaktu z drogą. Dlatego warto wiedzieć, jak ciśnienie, bieżnik i szerokość opony się ze sobą wiążą, bo to ważne dla bezpieczeństwa. Dobrym pomysłem jest regularnie sprawdzać stan opon i ich ciśnienie, żeby były zgodne z tym, co mówi producent, bo to może pomóc w unikaniu aquaplaningu.

Pytanie 35

Wzmożone zużycie wewnętrznych pasów rzeźby bieżnika jednej z opon, może być wynikiem

A. niewłaściwego ustawienia kąta pochylenia koła
B. zbyt niskiego ciśnienia w ogumieniu
C. nadmiernego luzu w układzie kierowniczym
D. nieprawidłowego ustawienia zbieżności kół
Niewłaściwe ustawienie kąta pochylenia koła, znane jako kąt camber, może prowadzić do nierównomiernego zużycia bieżnika opon, zwłaszcza wewnętrznej części pasów rzeźby. Kąt camber odnosi się do nachylenia koła w stosunku do pionu, a jego niewłaściwe ustawienie może powodować, że opona styka się z nawierzchnią w sposób, który zwiększa tarcie w określonym obszarze. Przykładowo, jeśli kąt camber jest zbyt negatywny, wewnętrzna część opony będzie bardziej obciążona, co przyspiesza jej zużycie. W praktyce, aby zapobiec takim problemom, ważne jest regularne sprawdzanie ustawienia kół oraz ich geometrii, co powinno być zgodne z zaleceniami producenta. Przykładowo, wiele warsztatów samochodowych korzysta z zaawansowanej technologii pomiarowej, która pozwala na precyzyjne dostosowanie kątów w celu zachowania optymalnych parametrów jezdnych. Wiedza na temat kąta pochylenia kół jest kluczowa nie tylko dla bezpieczeństwa, ale także dla efektywności paliwowej pojazdu oraz trwałości opon.

Pytanie 36

Podczas wymiany wahacza poprzecznego wykonanego z lekkich stopów z nadmiernym luzem w przegubie kulistym, możliwe jest zastosowanie

A. zamiennika spełniającego normy producenta
B. tańszego stalowego zamiennika
C. wyłącznie elementu z logo producenta
D. części powypadkowej
Wymieniając wahacz poprzeczny, naprawdę ważne jest, żeby użyć zamiennika, który spełnia normy producenta. Wahacz to kluczowa część zawieszenia, ma wpływ na to, jak się jeździ i jak stabilny jest samochód. Gdy musisz wymienić część, najlepiej postawić na zamienniki, które są zgodne z tym, co mówi producent. Jeśli zamiennik jest z dobrych materiałów, które są wytrzymałe na różne warunki, to można liczyć na to, że wszystko będzie działać jak należy. Z tego co zauważyłem, dobrze jest też, jak takie zamienniki mają jakieś certyfikaty jakości, bo wtedy można mieć pewność, że są solidne. Generalnie, stosując odpowiednie części, nie tylko poprawiasz bezpieczeństwo jazdy, ale i zmniejszasz ryzyko kolejnych awarii, co w końcu przynosi oszczędności i większy komfort w korzystaniu z auta.

Pytanie 37

Olej oznaczony jako PAG jest wykorzystywany do smarowania części

A. w systemie kierowniczym
B. w systemie klimatyzacji
C. mostu napędowego
D. skrzyni biegów
Olej oznaczony jako PAG (Polyalkylene Glycol) jest stworzony specjalnie do smarowania części w klimatyzacji. Pełni naprawdę ważną rolę w tym, żeby system chłodzenia działał jak najlepiej. Te oleje mają świetne właściwości smarne i są dobrze dopasowane do czynników chłodniczych, takich jak R134a czy R1234yf. Użycie oleju PAG w klimatyzacji pomaga w odpowiednim smarowaniu sprężarek, co przekłada się na ich długowieczność i skuteczniejsze działanie. W praktyce, olej PAG jest używany w wielu miejscach, nie tylko w zwykłych samochodach, ale też w różnych systemach klimatyzacyjnych. Tam, gdzie smarowanie jest kluczowe, żeby zminimalizować tarcie i zużycie. Standardy przemysłowe, jak SAE J2064, pokazują, jak ważne jest dobranie odpowiedniego oleju, żeby uniknąć późniejszych problemów z wydajnością i niezawodnością klimatyzacji.

Pytanie 38

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. maksymalne dopuszczalne obciążenie (nośność opony)
B. typ konstrukcji osnowy opony
C. średnicę opony
D. maksymalną prędkość jazdy
Odpowiedzi dotyczące dopuszczalnego obciążenia (nośności opony) oraz dopuszczalnej prędkości jazdy wskazują na typowe nieporozumienia związane z oznaczeniami opon. Nośność opony jest oznaczona przez odpowiedni indeks nośności, który w tym przypadku to '101'. Oznaczenie to precyzuje maksymalne obciążenie, jakie opona może przenieść przy określonym ciśnieniu powietrza. Z kolei dopuszczalna prędkość jazdy jest określona przez literę w oznaczeniu, która w tym przypadku to 'H', co oznacza, że opona jest przystosowana do jazdy z maksymalną prędkością do 210 km/h. Promień opony także nie jest oznaczony literą R; w rzeczywistości, rozmiar felgi, na której montowana jest opona, wyraża się w calach (17 w tym przypadku) i jest to bezpośrednio związane z wielkością opony. Typowe błędy myślowe wynikają z pomylenia oznaczeń i ich funkcji, co w konsekwencji prowadzi do nieprawidłowych wniosków. Dla prawidłowego doboru opon do pojazdu, ważne jest, aby kierowcy znali zarówno oznaczenia, jak i właściwości opon, co z kolei wpływa na bezpieczeństwo i komfort jazdy.

Pytanie 39

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj

A. 508 ppm.
B. 1.141
C. 3,21 %.
D. 12,60 %.
Analiza spalin w samochodzie to ważny temat, bo wpływa na jego efektywność ekologiczną i ekonomiczną. Odpowiedzi 508 ppm i 1.141, mimo że mogą brzmieć ok, dotyczą innych parametrów i nie odnoszą się do stężenia tlenu w objętości. PPM to jednostka, którą zazwyczaj używamy do gazów, ale w analizie spalin lepiej trzymać się tych samych jednostek, bo inaczej można się pogubić. Odpowiedź 12,60% jest też błędna, bo sugeruje znacznie większe stężenie tlenu niż to, które mamy w analizie. Takie wartości mogą prowadzić do błędnych wniosków o efektywności spalania i wskazywać na problemy z układem dolotowym albo wtryskowym. W branży, błędne interpretacje mogą skutkować źle ustawionym silnikiem, co w dłuższej perspektywie zwiększa zużycie paliwa i emisję. Ważne, żeby podczas analizy wyników zawsze brać pod uwagę jednostki i ich kontekst, bo inaczej możemy się pomylić i źle ocenić stan techniczny samochodu.

Pytanie 40

Jaki jest główny cel stosowania układu ABS w pojazdach?

A. Zwiększenie prędkości maksymalnej pojazdu
B. Zmniejszenie zużycia paliwa
C. Poprawa komfortu jazdy
D. Zwiększenie kontroli nad pojazdem podczas hamowania
Układ ABS, czyli Anti-lock Braking System, jest jednym z najważniejszych systemów bezpieczeństwa w pojazdach samochodowych. Jego głównym celem jest zapobieganie blokowaniu się kół podczas gwałtownego hamowania, co pozwala na utrzymanie kontroli nad pojazdem. Dzięki ABS kierowca ma możliwość jednoczesnego hamowania i manewrowania, co jest kluczowe w sytuacjach awaryjnych. System ten działa poprzez monitorowanie prędkości obrotowej kół i, w przypadku wykrycia ryzyka blokady, modulowanie ciśnienia hamulcowego. To pozwala na utrzymanie optymalnego kontaktu opon z nawierzchnią, co jest szczególnie ważne na śliskich lub mokrych drogach. W praktyce ABS znacznie skraca drogę hamowania na większości nawierzchni, co może dosłownie uratować życie. Wprowadzenie ABS stało się standardem w przemyśle motoryzacyjnym i jest zgodne z międzynarodowymi normami bezpieczeństwa. Układ ten jest również wsparciem dla innych systemów, jak ESP czy TCS, zwiększając ogólne bezpieczeństwo jazdy.