Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 15 maja 2025 15:42
  • Data zakończenia: 15 maja 2025 15:54

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który przewód jest oznaczony literami PE?

A. Fazowy
B. Ochronno-neutralny
C. Ochronny
D. Neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 2

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 2,5 kV
B. 4,0 kV
C. 1,5 kV
D. 6,0 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 3

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Niebieski
B. Zielony
C. Czerwony
D. Żółty
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 4

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Przekrój poprzeczny przewodów
B. Długość zamontowanych przewodów
C. Metoda ułożenia przewodów
D. Rodzaj materiału izolacyjnego
Długość ułożonych przewodów nie ma bezpośredniego wpływu na dopuszczalną obciążalność długotrwałą przewodów w instalacji elektrycznej. Dopuszczalna obciążalność jest przede wszystkim związana z innymi parametrami, takimi jak przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów. Długość przewodów może wpływać na spadek napięcia w instalacji, ale nie zmienia zasadniczo obciążalności przewodów pod względem ich zdolności do przewodzenia prądu. W praktyce oznacza to, że przy zachowaniu odpowiednich standardów, takich jak normy PN-IEC 60364, można stosować dłuższe odcinki przewodów, o ile są one odpowiednio dobrane pod względem innych parametrów. Przykładowo, przy projektowaniu obwodów elektrycznych w budynkach mieszkalnych, istotniejsze jest zapewnienie odpowiedniego przekroju żył oraz zastosowanie właściwych materiałów izolacyjnych, aby zapewnić bezpieczeństwo i wydajność instalacji.

Pytanie 5

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
B. Podczas zasilania silnika jego wirnik będzie stał
C. Silnik będzie pracować na biegu jałowym
D. Silnik będzie zasilany prądem w kierunku przeciwnym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 6

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Zamiana zużytych urządzeń na nowe
B. Przesunięcie miejsc montażu opraw oświetleniowych
C. Wymiana uszkodzonych gniazd wtyczkowych
D. Instalacja nowych punktów świetlnych
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 7

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. szary
C. niebieski
D. czerwony
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 8

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 9

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 750 V
B. 1 000 V
C. 500 V
D. 250 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 10

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
B. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
C. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
D. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
Odpowiedź w sprawie prac na wysokości powyżej 2 metrów jest jak najbardziej trafiona. Przepisy BHP jasno mówią, że takie zadania powinny być wykonywane przez co najmniej dwie osoby. Dlaczego? Bo ryzyko upadku jest po prostu za duże. Nie wyobrażam sobie, żeby jedna osoba mogła w pełni zareagować, jeśli na przykład straci równowagę, zwłaszcza przy czymś takim jak montaż lamp na wysokich budynkach. Gdy jedna osoba zajmuje się np. sprzętem, to druga powinna mieć oko na bezpieczeństwo. Również zgodnie z normą PN-EN 50110-1 trzeba dobrze zaplanować takie prace i wyposażyć się w odpowiednie zabezpieczenia, jak uprzęże czy liny. Gdy obie osoby pracują razem, to zwiększa to bezpieczeństwo i sprawia, że wszystko idzie sprawniej. Bez tego można narazić się na niebezpieczeństwo, a zdrowie i życie zawsze powinno być na pierwszym miejscu.

Pytanie 11

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Napowietrznych
B. Nadtynkowych
C. Podtynkowych
D. Wtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 12

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
B. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
C. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
D. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 13

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Przerwa w uzwojeniu fazy W
B. Zwarcie międzyzwojowe w fazie W
C. Przerwa w uzwojeniu fazy V
D. Zwarcie międzyzwojowe w fazie V
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 14

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, zestaw kluczy
B. Lutownicę, zestaw wkrętaków, ściągacz izolacji
C. Nóż monterski, praskę, ściągacz izolacji
D. Ściągacz izolacji, nóż monterski, wkrętak
Odpowiedź, którą zaznaczyłeś, to 'Nóż monterski, praskę, komplet kluczy'. Nóż monterski jest super ważny do precyzyjnego cięcia kabli i ich przygotowania do podłączenia. Praska to kluczowe narzędzie, które pozwala na solidne łączenie przewodów elektrycznych z użyciem złączek. Przecież jakość tych połączeń jest mega istotna w instalacjach elektrycznych, bo ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemu. No i kompletny zestaw kluczy też się przydaje, bo czasami trzeba dokręcić lub odkręcić śruby mocujące przy podłączaniu kabli do rozdzielnicy. Używanie odpowiednich narzędzi według branżowych norm, jak PN-IEC 60364, zapewnia, że prace montażowe są bezpieczne i efektywne. Kiedy korzystasz z tych narzędzi, monter ma możliwość szybkiego i dokładnego wykonania podłączeń, co jest ważne, zwłaszcza przy realizacji projektów budowlanych czy modernizacyjnych.

Pytanie 15

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator wsporczy.
B. Izolator przepustowy wysokiego napięcia.
C. Wkładkę topikową bezpiecznika mocy.
D. Bezpiecznik aparatowy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 16

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. zamiana miejscami dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia dwóch faz
D. brak podłączenia jednej fazy
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 17

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie pracował w stanie jałowym
C. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
D. Silnik będzie zasilany prądem przeciwnym
Ujemny poślizg silnika indukcyjnego występuje, gdy wirnik jest dopędzany powyżej prędkości synchronicznej, co oznacza, że wirnik obraca się szybciej niż pole magnetyczne wytwarzane przez stojan. W takiej sytuacji silnik działa w trybie generacyjnym, co jest wykorzystywane w aplikacjach, gdzie odzyskuje się energię, na przykład w systemach hamowania regeneracyjnego w pojazdach elektrycznych. W praktyce, jeśli wirnik osiągnie prędkość większą niż wartość synchroniczna, to wytwarzane przez niego napięcie indukowane jest dodatnie w stosunku do napięcia zasilającego, co prowadzi do odwrotnego kierunku przepływu prądu. Ta zasada jest istotna w zastosowaniach takich jak elektrownie wiatrowe, gdzie turbiny mogą pracować zarówno jako silniki, jak i generatory. Zrozumienie zjawiska poślizgu jest kluczowe dla inżynierów projektujących systemy napędowe oraz dla operatorów utrzymujących ich działanie w optymalnych warunkach.

Pytanie 18

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Pomiar rezystancji izolacji
D. Weryfikacja braku zwarć międzyzwojowych
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 19

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Ochronnika przepięć
B. Elektronicznego przekaźnika czasowego
C. Wyłącznika różnicowoprądowego
D. Wyłącznika nadprądowego
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 20

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. oznaczenie i zabezpieczenie obszaru roboczego
B. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
C. pisemne polecenie do wykonania prac
D. wyłączenie zasilania z instalacji
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 21

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Żarowej
B. Rtęciowej
C. Sodowej
D. Halogenowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 22

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Przekaźnik priorytetowy.
C. Automat zmierzchowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 23

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Kształt budynku w przestrzeni
B. Liczba urządzeń zasilanych z tej instalacji
C. Warunki zewnętrzne, którym instalacja jest poddawana
D. Metoda montażu instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 24

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 20 mm2
B. 10 mm2
C. 16 mm2
D. 12 mm2
Wybór niewłaściwego przekroju przewodu ochronnego ma istotne konsekwencje dla bezpieczeństwa elektrycznego. Wiele osób może uważać, że mniejszy przekrój, taki jak 10 mm2 czy 12 mm2, jest wystarczający do ochrony przewodów fazowych o większym przekroju. W rzeczywistości, takie podejście ignoruje zasady dotyczące przewodów ochronnych, które muszą być dobierane na podstawie potencjalnych prądów zwarciowych oraz wymagań związanych z czasem wyłączenia w przypadku awarii. Zbyt mały przekrój przewodu ochronnego może prowadzić do jego przegrzania, a w skrajnych przypadkach do uszkodzenia instalacji, a nawet pożaru. Ponadto, przewody ochronne muszą być w stanie przewodzić prądy zwarciowe przez odpowiedni czas, aby skutecznie wyłączyć źródło zasilania i zminimalizować ryzyko porażenia prądem. Obliczenia te są oparte na normach, takich jak PN-IEC 60364, które jasno określają zasady doboru przekrojów. Zrozumienie tych zasad jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Warto również zwrócić uwagę, że wybór zbyt dużego przekroju, np. 20 mm2, również może być nieoptymalny, ponieważ może prowadzić do niepotrzebnych kosztów i zwiększonej sztywności instalacji, co może być problematyczne w kontekście montażu i utrzymania. Dlatego ważne jest, aby stosować się do ustalonych norm i praktyk w branży, aby zapewnić optymalne warunki pracy instalacji elektrycznych.

Pytanie 25

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Czujnik kolejności faz.
C. Przekaźnik czasowy.
D. Regulator temperatury.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 26

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn > UL
B. RA ∙ IΔn ≤ UL
C. RA ∙ IΔn ≥ UL
D. RA ∙ IΔn < UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 27

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
B. ciągłości przewodów ochronnych i neutralnych
C. metody zabezpieczenia przed porażeniem prądem elektrycznym
D. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 28

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
B. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
C. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
D. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 29

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Sprawdzenie układów sterowania i sygnalizacji
C. Sprawdzenie układów rozruchowych i regulacyjnych
D. Pomiar rezystancji izolacji i próbne uruchomienie
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 30

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H03VH-H
B. H05V-K
C. H05V-U
D. H03W-F
Oznaczenie H05V-U odnosi się do przewodów elektrycznych, które są zgodne z europejską normą harmonizowaną. Oznaczenie to oznacza przewody o napięciu roboczym 300/500 V, przeznaczone do instalacji w budynkach, które charakteryzują się dużą elastycznością oraz odpornością na działanie olejów i wysokiej temperatury. Przewody te są powszechnie stosowane w różnorodnych aplikacjach, takich jak instalacje oświetleniowe, sprzęt AGD oraz urządzenia przenośne. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, przewody H05V-U wykazują doskonałe właściwości dielektryczne, co zapewnia ich wysoką niezawodność i bezpieczeństwo użytkowania. Dodatkowo, norma ta podkreśla znaczenie stosowania przewodów, które spełniają rygorystyczne wymogi dotyczące ochrony przed zwarciami i przeciążeniami, co jest kluczowe w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, wybór przewodów zgodnych z oznaczeniem H05V-U gwarantuje wysoką jakość wykonania i długowieczność instalacji elektrycznych oraz minimalizuje ryzyko wystąpienia awarii.

Pytanie 31

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. LY
C. YAKY
D. OMY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 32

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 33

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wykonanie pomiarów natężenia oświetlenia.
B. Wymiana złączki.
C. Wymiana oprawki.
D. Czyszczenie obudowy i styków.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 34

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S192B16
B. S194B10
C. S193B16
D. S193B10
Wyłącznik S193B16 jest właściwym wyborem do zastąpienia bezpieczników typu gG w obwodzie zasilającym trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7 kW. Aby przeanalizować tę decyzję, należy wziąć pod uwagę kilka kluczowych aspektów. Po pierwsze, moc 7 kW przy napięciu 400 V wymaga prądu znamionowego wynoszącego około 10 A (I = P/U, czyli 7 kW / 400 V = 17,5 A). W związku z tym wyłącznik S193B16, który ma wartość 16 A, jest odpowiedni, ponieważ jego wartość znamionowa jest wyższa od obliczonego prądu, co zapewnia odpowiednią ochronę przed przeciążeniem. Po drugie, wyłączniki nadprądowe typu S193 są projektowane z myślą o zastosowaniach w instalacjach trójfazowych, co czyni je bardziej odpowiednimi niż inne opcje, które są mniej uniwersalne. W praktyce, stosując S193B16, zapewniamy nie tylko skuteczną ochronę obwodu przed przeciążeniem, ale także zgodność z normami PN-EN 60898-1, które regulują zasady stosowania takich urządzeń w instalacjach elektrycznych. W przypadku awarii, wyłącznik ten zareaguje szybko, co zwiększy bezpieczeństwo użytkowania grzejnika elektrycznego.

Pytanie 35

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem

A. IN ≤ IB ≤ IZ
B. IZ ≤ IN ≤ IB
C. IB ≤ IN ≤ IZ
D. IB ≤ IZ ≤ IN
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 36

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. gG 16 A
C. aM 20 A
D. gG 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 37

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. IT
C. TN-C
D. TN-S
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 38

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji kabli z izolacją połwinnitową
R20 = K20·Rt
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K200,110,190,250,330,631,001,852,383,13

A. 4,1 MΩ
B. 16,2 MΩ
C. 32,4 MΩ
D. 2,0 MΩ
Wartość rezystancji izolacji kabla w temperaturze 20°C to 2,0 MΩ. Żeby to obliczyć, trzeba pamiętać, że rezystancja zmienia się z temperaturą. Na przykład, jeśli przy 10°C zmierzyłeś 8,1 MΩ, to musisz uwzględnić, że jak temperatura rośnie, to rezystancja maleje. W praktyce, według norm IEC, rezystancja izolacji nie powinna spadać poniżej 1 MΩ na każde 1000 V napięcia roboczego. Wiedza o tym, jak obliczyć rezystancję w wyższej temperaturze, jest ważna, żeby ocenić, w jakim stanie jest kabel i zapobiec awariom. Dobrze jest regularnie kontrolować rezystancję izolacji, bo to daje nam szansę na zauważenie problemów, zanim dojdzie do awarii, co ma ogromne znaczenie dla bezpieczeństwa ludzi.

Pytanie 39

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 10 mA
C. 100 mA
D. 300 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 40

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy równolegle
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy i napięciowy szeregowo
D. Prądowy szeregowo, napięciowy równolegle
Prawidłowe włączenie obwodu prądowego szeregowo oraz obwodu napięciowego równolegle jest kluczowe dla właściwego działania jednofazowego licznika energii elektrycznej. Zastosowanie tego schematu wynika z potrzeby pomiaru prądu płynącego przez odbiornik oraz zjawiska pomiaru napięcia. Obwód prądowy podłączony szeregowo zapewnia, że cały prąd przepływający przez obwód również przepływa przez licznik, co umożliwia dokładny pomiar zużycia energii. Z kolei obwód napięciowy podłączony równolegle do odbiornika gwarantuje, że napięcie na liczniku jest zgodne z napięciem zasilania, co jest niezbędne do prawidłowego wyliczenia wartości energii. Taki sposób podłączenia jest zgodny z normami EN 62053-21 oraz PN-EN 60044-1, które definiują wymagania techniczne dla liczników energii elektrycznej. Przykładem zastosowania tej wiedzy jest instalacja liczników w obiektach komercyjnych, gdzie dokładność pomiarów jest krytyczna dla zarządzania kosztami energii.