Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 4 kwietnia 2025 11:33
  • Data zakończenia: 4 kwietnia 2025 11:46

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 20 N
B. 2000 N
C. 2 N
D. 200 N
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 1,4 V
B. 0 V
C. 0,6 V
D. 0,3 V
Wartości spadku napięcia na złączu półprzewodnikowym mogą być mylnie interpretowane, co prowadzi do błędnych wniosków w analizie odpowiedzi. Odpowiedzi takie jak 0,6 V i 0,3 V mogą wynikać z niepełnego zrozumienia działania diod oraz ich właściwości. Spadek napięcia 0,6 V odnosi się do pojedynczego złącza p-n, ale w kontekście podwójnego złącza opartego na krzemie, który składa się z dwóch takich złącz, wartość ta powinna być podwojona, co daje około 1,4 V. Inna odpowiedź, 0 V, sugeruje brak przewodzenia, co jest niemożliwe dla diody w odpowiednich warunkach, gdyż złącze p-n przewodzi prąd po osiągnięciu minimalnego napięcia. Ponadto, spadek napięcia 1,4 V jest typowy dla diod, gdyż przy takim napięciu obie diody w złączu są aktywne. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują ignorowanie zasad dotyczących szeregowego i równoległego połączenia złącz oraz niezrozumienie, w jaki sposób diody wpływają na spadek napięcia. Zrozumienie tych aspektów jest kluczowe w zastosowaniach takich jak projektowanie obwodów elektronicznych czy analiza układów półprzewodnikowych. Wiedza ta pomoże w lepszym zrozumieniu zachowań różnych komponentów elektronicznych oraz ich interakcji w obwodach.

Pytanie 4

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Multimetr
B. Mostek RLC
C. Częstościomierz
D. Oscyloskop
Mostek RLC, multimetr i częstościomierz to urządzenia pomiarowe, jednak nie odpowiadają one w pełni na potrzeby analizy sygnałów w kontekście pomiaru amplitudy, częstotliwości i kształtu sygnałów. Mostek RLC jest narzędziem stosowanym przede wszystkim do pomiaru impedancji elementów pasywnych w obwodach elektronicznych. Choć może dostarczać informacji o częstotliwości rezonansowej, nie umożliwia wizualizacji sygnału, co jest kluczowe w analizie sygnałów. Multimetr to wszechstronne urządzenie pomiarowe, które pozwala na pomiar napięcia, prądu i oporu, ale jego możliwości analizy sygnałów czasowych są ograniczone. Multimetry, szczególnie te analogowe, nie oferują wizualizacji kształtu sygnału, co ogranicza ich użyteczność w bardziej skomplikowanych układach. Częstościomierz z kolei jest narzędziem skupionym wyłącznie na pomiarze częstotliwości sygnału, a nie na jego kształcie czy amplitudzie. Pomiar częstotliwości jest ważny, ale nie wystarczy do pełnej analizy sygnałów w montowanych urządzeniach mechatronicznych. Użytkownicy mogą więc błędnie zakładać, że te urządzenia są wystarczające do analizy sygnałów, co prowadzi do niedoszacowania potrzeby oscyloskopu w kontekście diagnozowania problemów i testowania systemów. Znajomość różnic między tymi narzędziami jest kluczowa dla prawidłowego wyboru sprzętu pomiarowego w praktyce inżynieryjnej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy trójpołożeniowy (3/3)
B. trójdrogowy dwupołożeniowy (3/2)
C. pięciodrogowy trójpołożeniowy (5/3)
D. pięciodrogowy dwupołożeniowy (5/2)
Wybór zaworu trójdrogowego trójpołożeniowego (3/3) czy dwupołożeniowego (3/2) raczej nie jest dobrym pomysłem. To znaczy, te zawory mają swoje ograniczenia. Zawór trójdrogowy ma tylko trzy porty i nie może jednocześnie zasilać siłownika i go zatrzymać, co nie jest wystarczające w bardziej skomplikowanych układach. A jakbyś wybrał pięciodrogowy dwupołożeniowy (5/2), to też nie będzie ok, bo ma tylko dwa położenia robocze, czyli nie zatrzymasz siłownika w konkretnych punktach. Moim zdaniem, takie wybory mogą prowadzić do problemów w procesach, gdzie ważna jest precyzja. Ważne jest, żeby dobrze rozumieć różnice między różnymi typami zaworów i ich zastosowaniem, żeby nie wprowadzać nieefektywnych rozwiązań i trzymać się norm branżowych.

Pytanie 7

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 5 V
B. 10 V
C. 15 V
D. 25 V
Zasilanie scalonych układów cyfrowych wykonanych w technologii TTL nie powinno przekraczać 5 V, ponieważ wyższe napięcia, takie jak 10 V, 15 V czy 25 V, mogą prowadzić do uszkodzenia tych układów. Wysokie napięcia mogą przekraczać maksymalne wartości tolerancyjne dla tranzystorów stosowanych w TTL, co skutkuje ich nienormalnym działaniem, a w skrajnych przypadkach - całkowitym zniszczeniem. Niezrozumienie zasad działania technologii TTL oraz ich wymagań dotyczących zasilania może prowadzić do typowych błędów w projektowaniu. Na przykład, użytkownicy mogą mylnie zakładać, że wyższe napięcia zwiększają wydajność układów, co jest nieprawda. TTL działa w zakresie niskich napięć, co zapewnia odpowiednie poziomy sygnałów logicznych, a ich stabilność jest kluczowa dla poprawnego działania. Ponadto, użycie niewłaściwego napięcia zasilania może prowadzić do powstawania zakłóceń elektromagnetycznych, co negatywnie wpływa na inne komponenty systemu. Dlatego ważne jest, aby projektując obwody cyfrowe oparte na TTL, przestrzegać ściśle zalecanych parametrów zasilania, co przyczyni się do ich niezawodności oraz trwałości w dłuższym okresie. Kluczowym elementem każdej aplikacji elektronicznej jest zapewnienie zgodności z dokumentacją techniczną oraz standardami branżowymi, które wskazują na konieczność używania odpowiednich wartości napięcia dla różnych technologii.

Pytanie 8

Jakie przyrządy pomiarowe powinno się wykorzystać do określenia mocy konsumowanej przez elektryczną nagrzewnicę z wentylatorem?

A. Termometr i oscyloskop
B. Mostek RLC oraz termometr
C. Omomierz i amperomierz
D. Amperomierz oraz woltomierz
Wybór przyrządów pomiarowych, takich jak mostek RLC i termometr, omomierz i amperomierz, czy termometr i oscyloskop, wskazuje na kilka nieporozumień dotyczących zasad pomiaru mocy elektrycznej. Mostek RLC jest urządzeniem stosowanym głównie do badania obwodów rezonansowych, nie jest zatem odpowiedni do pomiaru mocy. Termometr, mimo że może być użyteczny do oceny temperatury nagrzewnicy, nie ma zastosowania w bezpośrednim pomiarze mocy elektrycznej. Omomierz natomiast służy do pomiaru oporu elektrycznego i nie dostarcza informacji o prądzie ani napięciu, przez co nie można na jego podstawie obliczyć mocy. Oscyloskop z kolei to narzędzie do analizy sygnałów elektrycznych w czasie rzeczywistym, ale nie jest przeznaczony do bezpośredniego pomiaru mocy. Takie nieporozumienia mogą wynikać z braku znajomości podstawowych zasad elektrotechniki. W praktyce do pomiaru mocy zawsze należy używać amperomierza i woltomierza, aby uzyskać dokładne i rzetelne wyniki. Zastosowanie niewłaściwych przyrządów pomiarowych może prowadzić do błędów w ocenie wydajności energetycznej urządzeń, co jest szczególnie istotne w kontekście efektywności energetycznej i bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Do czego służy klucz dynamometryczny?

A. do dokręcania śrub w trudno dostępnych miejscach
B. do odkręcania zardzewiałych śrub
C. do dokręcania śrub z określonym momentem obrotowym
D. do ułatwienia odkręcania i dokręcania śrub
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. zapleczu zakładu pracy.
B. zasięgu ręki.
C. pomieszczeniu, gdzie znajduje się stanowisko pracy.
D. widoczności.
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 23

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. generuje mgłę olejową
C. zapewnia stałe ciśnienie robocze
D. łączy sprężone powietrze z mgłą olejową
Odpowiedzi wskazujące na mieszanie sprężonego powietrza z mgłą olejową oraz na wytwarzanie mgły olejowej są mylące, ponieważ reduktor ciśnienia nie pełni tych funkcji. Mieszanie sprężonego powietrza z olejem odbywa się w oddzielnym module, takim jak smarownica, która zapewnia odpowiedni poziom smarowania w systemach pneumatycznych. Wytwarzanie mgły olejowej również nie jest zadaniem reduktora, a olej w postaci mgły jest wprowadzany do układu, aby zredukować tarcie w elementach roboczych. Utrzymanie stałego ciśnienia roboczego jest kluczowe, ponieważ zbyt niskie lub zbyt wysokie ciśnienie może prowadzić do uszkodzenia urządzeń oraz obniżenia efektywności produkcji. Właściwe ciśnienie robocze zapewnia optymalne warunki dla pracy narzędzi pneumatycznych, co jest istotne dla ich wydajności oraz trwałości. W kontekście redukcji zanieczyszczeń, choć jest to ważny aspekt przygotowania sprężonego powietrza, reduktor nie jest urządzeniem odpowiedzialnym za filtrację. Oczyszczanie sprężonego powietrza z zanieczyszczeń odbywa się przy użyciu filtrów, które współpracują z innymi elementami systemu, co pozwala na uzyskanie czystego medium niezbędnego do prawidłowego funkcjonowania maszyn. Właściwe zrozumienie roli reduktora ciśnienia jest kluczowe dla zapewnienia niezawodności i efektywności systemów pneumatycznych.

Pytanie 24

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. z ograniczeniem czasowym.
B. warunkowo.
C. impulsowo.
D. z opóźnieniem czasowym.
Wybór odpowiedzi, która sugeruje inne metody otwarcia zaworu, opiera się na nieprawidłowym zrozumieniu specyfiki działania systemu Grafcet oraz funkcji poszczególnych typów akcji. Zapis "z ograniczeniem czasowym" wskazywałby na sytuację, w której zawór otwierany jest tylko przez określony czas, co może prowadzić do niepożądanych skutków, takich jak niedostateczne dostarczenie medium lub nadmierne ciśnienie. Takie podejście jest nieefektywne w kontekście precyzyjnego sterowania, które wymaga pełnej kontroli nad czasem działania urządzeń. Ponadto, odpowiedź "warunkowo" sugeruje, że otwarcie zaworu zależy od spełnienia określonych warunków, co w tym kontekście nie znajduje zastosowania, ponieważ zapis jednoznacznie definiuje działanie z opóźnieniem. W sytuacjach, gdy działanie powinno być uzależnione od warunków, stosuje się inne symbole w Grafcet, co może prowadzić do błędów w interpretacji schematów. Odpowiedź "impulsowo" zaprzecza idei opóźnienia, ponieważ sugeruje jednokrotne, krótkotrwałe działanie, co jest niezgodne z wymaganiami stabilnego otwierania zaworu. Ostatnia opcja, "z opóźnieniem czasowym", jest jedyną, która prawidłowo oddaje założenia dotyczące sekwencji działania, a pominięcie tej koncepcji może prowadzić do nieefektywnego i niebezpiecznego zarządzania przepływem w systemach automatyki.

Pytanie 25

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. zwarciem dwóch faz.
C. przerwą w jednej z faz.
D. błędną sekwencją faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. imbusowego
B. dynamometrycznego
C. oczkowego
D. nasadkowego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i małym prądzie
B. wysokim napięciu i małym prądzie
C. niskim napięciu i dużym prądzie
D. wysokim napięciu i dużym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. prądnica tachometryczna
B. czujnik termoelektryczny
C. potencjometr obrotowy
D. mostek tensometryczny
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. kątomierz
B. czujnik zegarowy
C. przymiar liniowy
D. poziomnicę
Użycie kątomierza, czujnika zegarowego lub przymiaru liniowego do montażu siłowników bramy nie jest właściwe z kilku powodów. Kątomierz, mimo że służy do pomiaru kątów, nie jest narzędziem przeznaczonym do pomiarów poziomu, co sprawia, że nie można nim dokładnie ustawić siłowników w pozycji poziomej. Montaż siłowników w odpowiednim ustawieniu poziomym jest kluczowy dla ich działania, a użycie kątomierza może prowadzić do błędnych interpretacji kątów, co w efekcie zagraża stabilności całej konstrukcji bramy. Czujnik zegarowy, który zazwyczaj służy do precyzyjnego pomiaru odchyleń w urządzeniach mechanicznych, również nie jest odpowiednim narzędziem do poziomowania. W kontekście montażu siłowników, kluczowe jest, aby zastosować narzędzie, które bezpośrednio mierzy poziom, a czujnik zegarowy może jedynie wskazać nieprawidłowości w ruchu, ale nie dostarczy informacji o poziomej orientacji. Przymiar liniowy, choć przydatny do pomiarów długości, nie ma zastosowania w kontekście pomiaru poziomu. Użytkownicy często mylą funkcje tych narzędzi, nie zdając sobie sprawy, że stosowanie niewłaściwych przyrządów pomiarowych może prowadzić do uszkodzenia całego systemu, a także zwiększa ryzyko nieprawidłowego działania bramy, co może stwarzać zagrożenie dla użytkowników. Właściwe narzędzie do poziomowania jest więc kluczowe dla zachowania bezpieczeństwa i funkcjonalności instalacji.