Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 kwietnia 2025 21:09
  • Data zakończenia: 12 kwietnia 2025 21:27

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W przypadku stwierdzenia urazu kolana u pracownika po upadku z wysokości należy

A. obandażować kolano po delikatnym wyprostowaniu nogi.
B. nastawić nogę pociągając lekko w dół.
C. czymkolwiek unieruchomić kości stawu kolanowego nie zmieniając ich ustawienia.
D. ułożyć poszkodowanego w pozycji bocznej ustalonej.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 2

Zbliżeniowe sensory indukcyjne nie mogą być zastosowane do wykrywania elementów wykonanych

A. ze stali.
B. z aluminium.
C. z miedzi.
D. z polipropylenu.
Wybierając inne materiały, takie jak miedź, stal czy aluminium, można błędnie założyć, że sensory indukcyjne będą w stanie je wykryć. Miedź, będąca materiałem przewodzącym, podlega wpływowi pola elektromagnetycznego. Sensory indukcyjne są zaprojektowane do detekcji takich materiałów, a ich działanie opiera się na indukcji elektromagnetycznej. Z kolei stal, szczególnie ferromagnetyczna, jest zazwyczaj jednym z najlepszych materiałów do detekcji przez te sensory. Sensory indukcyjne są często stosowane do detekcji obiektów metalowych w różnych procesach przemysłowych, co sprawia, że wybór stali jako materiału wykrywalnego jest uzasadniony. Aluminium również jest materiałem, który można wykrywać, chociaż efektywność detekcji może być nieco niższa niż w przypadku stali. Problem z tymi odpowiedziami polega na mylnym przekonaniu, że każdy materiał metalowy można wykryć bez względu na jego właściwości elektryczne. W rzeczywistości wielkość obiektu, jego kształt oraz materiał, z którego jest wykonany, mają kluczowe znaczenie dla efektywności wykrywania. Użytkownicy powinni zwrócić uwagę na to, że różne typy czujników mają swoje specyficzne zastosowania związane z materiałami, co jest podkreślone w normach branżowych dotyczących automatyzacji i detekcji, takich jak IEC 60947-5-2.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Do pomiaru temperatury należy podłączyć na wejście sterownika PLC

A. prądnicę tachometryczną.
B. przekaźnik elektromagnetyczny.
C. czujnik indukcyjny.
D. czujnik rezystancyjny.
Podłączenie innych komponentów, takich jak prądnica tachometryczna, czujnik indukcyjny czy przekaźnik elektromagnetyczny, do pomiaru temperatury nie jest odpowiednie. Prądnica tachometryczna jest wykorzystywana do pomiaru prędkości obrotowej w silnikach i nie ma zastosowania w kontekście temperatury. Czujnik indukcyjny, z kolei, wykrywa obecność obiektów metalowych i również nie nadaje się do pomiaru temperatury. Przekaźnik elektromagnetyczny jest elementem wykonawczym, który służy do załączania lub wyłączania obwodów elektrycznych, a więc nie jest narzędziem pomiarowym. Typowym błędem myślowym jest mylenie funkcji różnych elementów w systemie automatyki. Często przy wyborze czujnika do pomiaru temperatury nie uwzględnia się specyfiki ich działania oraz przeznaczenia. W przypadku pomiaru temperatury, kluczowe jest, aby zastosować czujniki, które są przystosowane do tej funkcji, co znacznie zwiększa dokładność i niezawodność całego systemu. Wybór odpowiednich komponentów w systemie automatyki powinien być oparty na zrozumieniu ich przeznaczenia oraz właściwości, co jest zgodne z dobrymi praktykami projektowania systemów automatyki.

Pytanie 17

Po programowym włączeniu czterech wyjść tranzystorowych sterownika PLC, sterujących cewkami elektrozaworów, okazało się, że nie wszystkie z nich działają prawidłowo. Pomiar napięcia U<sub>BE</sub> (między bazą a emiterem) tranzystorów na poszczególnych wyjściach dał następujące wyniki: U<sub>BE1</sub> = 1 V, U<sub>BE2</sub> = 3 V, U<sub>BE3</sub> = 0,7 V, U<sub>BE4</sub> = 5 V. Pomiary wskazują na uszkodzenie

A. wyłącznie tranzystora na wyjściu 3
B. wyłącznie tranzystora na wyjściu 4
C. tranzystorów na wyjściach 2 i 4
D. tranzystorów na wyjściach 1 i 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że U<sub>BE1</sub> ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie U<sub>BE</sub> na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Na szynie DIN sterownik PLC należy zamontować za pomocą

A. łap.
B. zatrzasków.
C. śrub.
D. nitów.
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Do pomiarów luzów między powierzchniami elementów konstrukcyjnych należy użyć

A. liniał.
B. suwmiarkę.
C. szczelinomierz.
D. mikrometr.
Mikrometr, suwmiarka i liniał, mimo iż są powszechnie używanymi narzędziami pomiarowymi, nie są idealnymi wyborami do pomiaru luzów między powierzchniami elementów konstrukcyjnych. Mikrometr jest narzędziem przeznaczonym głównie do pomiarów grubości i średnic, gdzie wymagana jest wysoka precyzja w milimetrach lub mikrometrach. Zwykle nie jest w stanie dokładnie zmierzyć luzów w trudnych warunkach, ponieważ jego konstrukcja nie jest przystosowana do pomiarów szczelin. Suwmiarka, choć jest bardziej uniwersalnym narzędziem, również nie jest zalecana do pomiarów luzów. Jej dokładność może być niewystarczająca, a także istnieje ryzyko błędów wynikających z niewłaściwego użytkowania, zwłaszcza przy pomiarach w wąskich lub trudnodostępnych miejscach. Liniał, z kolei, jest narzędziem stosowanym do pomiarów liniowych, ale jego zastosowanie do precyzyjnych pomiarów luzów jest bardzo ograniczone, ponieważ nie pozwala na dokładne określenie niewielkich wartości. Typowym błędem myślowym w tym przypadku jest przekonanie, że każde narzędzie pomiarowe może być użyte zamiennie, co nie jest zgodne z zasadami inżynieryjnymi. Wiedza o właściwym doborze narzędzi do specyficznych pomiarów jest kluczowa w wielu dziedzinach inżynierii, a stosowanie niewłaściwych narzędzi może prowadzić do błędów w produkcji, które mogą mieć poważne konsekwencje dla bezpieczeństwa i efektywności mechanizmów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Silnik elektryczny o mocy 4 kW wytwarza na wale moment obrotowy 13,1 Nm przy prędkości obrotowej

A. 305 obr/min
B. 5487 obr/min
C. 524 obr/min
D. 2916 obr/min
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Wchłanianie przez środek osuszający wilgoci i oleju ze sprężonego powietrza to proces osuszania

A. adsorpcyjnego.
B. przez oziębianie.
C. przez ogrzewanie.
D. absorpcyjnego.
Odpowiedź 'absorpcyjnego' jest prawidłowa, ponieważ proces osuszania przez środek osuszający polega na wchłanianiu wilgoci oraz oleju z powietrza. W procesach absorpcyjnych, substancja osuszająca, zwykle w postaci żelu krzemionkowego lub innych materiałów higroskopijnych, wchłania cząsteczki wody oraz innych zanieczyszczeń z powietrza. Zastosowanie technologii absorpcyjnej jest szczególnie widoczne w przemyśle, gdzie czystość powietrza jest kluczowa dla zachowania wydajności i jakości produkcji. Na przykład, w systemach pneumatycznych stosuje się osuszacze absorpcyjne, które skutecznie redukują wilgoć, co zapobiega korozji elementów mechanicznych oraz uszkodzeniom narzędzi. Ponadto, w standardach branżowych takich jak ISO 8573, podkreśla się znaczenie kontrolowania poziomu wilgoci w sprężonym powietrzu, co potwierdza konieczność stosowania odpowiednich środków osuszających.

Pytanie 33

Który z wymienionych czujników pomiarowych należy zastosować w celu pomiaru wartości ciśnienia w zbiorniku sprężonego powietrza i przesłania informacji do sterownika PLC wyposażonego w wejścia analogowe?

A. Manometryczny.
B. Ultradźwiękowy.
C. Piezorezystancyjny.
D. Termoelektryczny.
Wybór czujników do pomiaru ciśnienia w zbiorniku sprężonego powietrza wymaga zrozumienia ich specyfiki i zastosowania. Czujnik termoelektryczny, który działa na zasadzie pomiaru temperatury, nie jest właściwym narzędziem w tym kontekście. Jego zastosowanie w pomiarze ciśnienia jest nieefektywne, ponieważ nie jest w stanie dostarczyć informacji o ciśnieniu, co prowadzi do błędnych wniosków i niewłaściwego doboru urządzeń. Kolejnym przykładem jest czujnik ultradźwiękowy, który może być stosowany do pomiaru poziomu cieczy, jednak w kontekście pomiaru ciśnienia w gazach, jakim jest sprężone powietrze, jego zastosowanie jest ograniczone. Czujniki te są bardziej odpowiednie do monitorowania odległości lub poziomu cieczy w zbiornikach. Manometryczny czujnik ciśnienia, chociaż właściwy do wielu aplikacji, nie zawsze będzie idealnym wyborem dla sprężonego powietrza, szczególnie w przypadku wymaganej wysokiej precyzji oraz pracy w zmiennych warunkach. Często błędem jest założenie, że wszystkie czujniki ciśnienia są sobie równe, co prowadzi do niewłaściwego doboru urządzenia. Właściwy wybór czujnika powinien opierać się na specyfikacji technicznej, warunkach pracy oraz wymogach systemu, aby zapewnić optymalną dokładność i niezawodność pomiarów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Zagrożenie dla zdrowia człowieka, pochodzące od urządzeń hydraulicznych, spowodowane jest głównie występowaniem

A. przepływu dużych prądów.
B. wibracji i hałasu.
C. wysokich temperatur cieczy.
D. wysokich ciśnień cieczy i dużych sił.
W odpowiedziach na zagrożenia dla zdrowia człowieka związane z urządzeniami hydraulicznymi występuje wiele nieporozumień. Przepływ dużych prądów, choć potencjalnie niebezpieczny, nie jest istotnym zagrożeniem w kontekście hydrauliki, gdyż urządzenia hydrauliczne w zasadzie nie operują na prądach elektrycznych. Znacznie bardziej kluczowe są kwestie związane z ciśnieniem cieczy, które generują ogromne siły. Wibracje i hałas również nie są bezpośrednim zagrożeniem dla zdrowia – chociaż mogą powodować dyskomfort i prowadzić do problemów zdrowotnych, takich jak uszkodzenia słuchu, to ich wpływ jest znacznie mniejszy niż ryzyko związane z wyciekami ciśnienia. Wysokie temperatury cieczy, chociaż również mogą powodować oparzenia, nie są głównym źródłem zagrożeń w hydraulice. W rzeczywistości, kluczowe zagrożenia w systemach hydraulicznych wynikają z nieprawidłowego zarządzania ciśnieniem i siłami generowanymi przez substancje robocze, co może prowadzić do katastrofalnych konsekwencji. Typowe błędy myślowe dotyczące tych zagadnień związane są z niepełnym zrozumieniem funkcji i pracy urządzeń hydraulicznych, które opierają się na przetwarzaniu energii mechanicznej poprzez ciecz pod ciśnieniem. W związku z tym zrozumienie prawidłowego działania tych systemów i związanych z nimi zagrożeń jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 37

Rdzeń wirnika silnika indukcyjnego wykonuje się z

A. litego materiału magnetycznego izotropowego.
B. litego materiału magnetycznego anizotropowego.
C. pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie.
D. pakietu blach elektrotechnicznych nie izolowanych od siebie.
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.