Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 maja 2025 17:52
  • Data zakończenia: 23 maja 2025 18:04

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. przemyć
B. wyprażyć
C. wysuszyć
D. zważyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 2

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 125%
B. 60,5%
C. 75%
D. 62,5%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 3

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. wchodzić w reakcję z substancją krystalizowaną
B. być substancją łatwopalną
C. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
D. rozpuszczać zanieczyszczenia w przeciętnym zakresie
Rozpuszczalnik używany do krystalizacji odgrywa kluczową rolę w procesie uzyskiwania czystych kryształów substancji chemicznych. Poprawna odpowiedź, dotycząca rozpuszczania zanieczyszczeń bardzo dobrze lub w nieznacznym stopniu, jest istotna, ponieważ umożliwia selektywne wydobycie pożądanej substancji. W idealnym scenariuszu, rozpuszczalnik powinien dobrze rozpuszczać czystą substancję, pozwalając na jej krystalizację podczas schładzania lub odparowania. Na przykład, podczas krystalizacji soli, rozpuszczalniki takie jak woda są wykorzystywane, ponieważ dobrze rozpuszczają NaCl, ale nie rozpuszczają innych zanieczyszczeń, jak np. siarczany. W praktyce, techniki jak recrystalizacja często wykorzystują różne temperatury i stężenia, aby maksymalizować czystość finalnego produktu. Zgodnie z dobrą praktyką laboratoryjną, wybór odpowiedniego rozpuszczalnika i jego właściwości fizykochemiczne mają istotny wpływ na efektywność procesu krystalizacji, dlatego ważne jest, aby stosować właściwe metody analizy przed wyborem rozpuszczalnika.

Pytanie 4

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
B. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
C. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
D. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 5

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 5,13
B. 4,39
C. 4,58
D. 4,94
Odpowiedź 4,58 jest jak najbardziej trafna! Można ją uzyskać dzięki równaniu Hendersona-Hasselbalcha, które łączy pH, pKa oraz stosunek stężeń kwasu i zasady. Kwas octowy, czyli CH₃COOH, ma pKa w okolicach 4,76. W naszym buforze mamy stosunek 3:2 dla kwasu octowego i octanu sodu, co daje nam 0,6 M kwasu i 0,4 M zasady. Podstawiając te wartości do równania, dostajemy: pH = pKa + log([A-]/[HA]) = 4,76 + log(0,4/0,6) = 4,58. Takie obliczenia są naprawdę ważne w laboratoriach chemicznych. Kontrola pH to kluczowy sprawa w wielu procesach, na przykład w biologii molekularnej czy w produkcji leków, gdzie stabilność pH ma ogromny wpływ na działanie substancji.

Pytanie 6

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - analiza, II - synteza, HI - wymiana podwójna.
B. I - wymiana pojedyncza, II — analiza, III - synteza.
C. I - synteza, II - analiza, HI - wymiana pojedyncza.
D. I - synteza, II - analiza, DI - wymiana podwójna.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 7

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Przepuszczalność promieniowania ultrafioletowego
B. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
C. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
D. Niska wrażliwość na zmiany temperatury
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 8

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,1% zanieczyszczeń
B. zawiera co najmniej 0,1% zanieczyszczeń
C. zawiera co najmniej 0,05% zanieczyszczeń
D. zawiera maksymalnie 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera minimum 0,05% zanieczyszczeń, jest nieprawidłowy, ponieważ nie uwzględnia istoty oznaczenia "cz.d.a.". Oznaczenie to implikuje, że substancje te są przeznaczone do zastosowań analitycznych i muszą spełniać określone normy czystości, które ograniczają zawartość zanieczyszczeń do maksymalnie 0,1%. Odpowiedź sugerująca, że odczynnik zawiera minimum 0,1% zanieczyszczeń, jest również błędna, ponieważ wprowadza w błąd co do definicji czystości. Ponadto odpowiedzi wskazujące na maksymalne zanieczyszczenie wynoszące 0,05% są niewłaściwe, ponieważ mogą prowadzić do nieporozumień w kontekście przygotowania próbek do analiz. W praktyce, odczynniki chemiczne używane w laboratoriach muszą spełniać rygorystyczne wymagania dotyczące czystości, aby zapewnić dokładność i powtarzalność wyników. Typowym błędem myślowym jest zakładanie, że niska granica zanieczyszczeń oznacza, że odczynniki muszą mieć jeszcze bardziej restrykcyjne normy, co nie jest zgodne z rzeczywistością. Właściwe zrozumienie terminologii i oznaczeń w zakresie chemii analitycznej jest kluczowe, aby uniknąć błędów w interpretacji i stosowaniu odczynników w praktyce. Z tego powodu, znajomość standardów czystości jest niezbędna dla każdego profesjonalisty pracującego w laboratorium.

Pytanie 9

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 1 mol/dm3
B. 0,001 mol/dm3
C. 0,01 mol/dm3
D. 0,1 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 10

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. AgNO3
B. BaCl2
C. oranżu metylowego
D. fenoloftaleiny
Fenoloftaleina to wskaźnik pH, ale niestety nie nadaje się do wykrywania siarczanów. Dlaczego? Bo zmienia kolor w zależności od kwasowości roztworu, ale nie reaguje z jonami siarczanowymi. Można się łatwo pomylić, jeśli się jej używa, bo ona tylko sygnalizuje zmianę pH, a to nie jest to, co potrzebujemy przy analizie siarczanów. Z drugiej strony, AgNO3, czyli azotan srebra, też nie jest właściwy do wykrywania siarczanów, bo tworzy osad z jonami chlorkowymi, a nie siarczanowymi. Używanie takich reagentów, jak AgNO3, może prowadzić do błędnych wniosków o obecności siarczanów, więc raczej tego unikaj. Oranż metylowy to kolejny wskaźnik pH, ale zmienia kolor w zakresie 3.1-4.4, co też się nie przyda do wykrywania siarczanów. Jak się robi analizę chemiczną, trzeba dokładnie rozumieć właściwości reagentów, bo różne błędy mogą się przytrafić w interpretacji wyników. W skrócie, lepiej używać odpowiednich reagentów, jak BaCl2, żeby mieć pewność, że wyniki będą wiarygodne.

Pytanie 11

Odlanie cieczy z nad osadu to

A. sedymentacja
B. destylacja
C. dekantacja
D. filtracja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 12

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. wyprażenia próbki do stałej masy
B. topnienia próbki
C. mineralizacji próbki na mokro
D. mineralizacji próbki na sucho
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 13

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. ciśnieniowe.
B. suche.
C. mikrofalowe.
D. mokre.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 14

Urządzeniem pomiarowym nie jest

A. eksykator
B. konduktometr
C. termometr
D. pehametr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 15

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 50 cm3
B. 1 dm3
C. 2 dm3
D. 500 cm3
Aby przygotować roztwór wodorotlenku sodu (NaOH) o stężeniu 0,0500 mol/dm3 z fabrycznie przygotowanej odważki zawierającej 0,1 mola NaOH, konieczne jest rozcieńczenie odważki wodą destylowaną. Stężenie roztworu można obliczyć przy użyciu wzoru C1V1 = C2V2, gdzie C1 to stężenie początkowe (0,1 mol/dm3), V1 to objętość początkowa, C2 to stężenie końcowe (0,0500 mol/dm3), a V2 to objętość końcowa. Z tego równania wynika, że aby uzyskać stężenie 0,0500 mol/dm3, objętość końcowa powinna wynosić 2 dm3 (2000 cm3). Praktyczne zastosowanie tej wiedzy jest kluczowe w laboratoriach chemicznych, gdzie dokładność stężeń roztworów jest niezbędna do przeprowadzania reakcji chemicznych, analizy jakościowej czy ilościowej substancji. Stosowanie kolb miarowych do przygotowywania roztworów jest zgodne z dobrymi praktykami laboratoryjnymi, ponieważ pozwala na precyzyjne pomiary i minimalizuje ryzyko błędów pomiarowych.

Pytanie 16

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, zlewka oraz bagietka
B. Kolba miarowa, biureta i pipeta
C. Kolba miarowa, cylinder miarowy oraz eza
D. Kolba miarowa, kolba stożkowa oraz pipeta
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 17

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. B
B. In
C. A
D. Ex
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 18

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. specyficzny
B. indywidualny
C. selektywny
D. charakterystyczny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 19

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 21°C
B. 20°C
C. 19°C
D. 25°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 20

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości chemicznej
B. spektralnej czystości
C. czystości
D. czystości drugorzędnej analitycznej
Odpowiedź 'cz.d.a.' oznacza 'czystość do analizy', co jest kluczowe w kontekście przygotowania roztworu wzorcowego. Użycie odczynnika chemicznego o czystości co najmniej cz.d.a. zapewnia, że jego skład chemiczny jest znany i dobrze określony, co jest fundamentalne dla uzyskania wiarygodnych wyników analiz chemicznych. W praktyce, zastosowanie reagentów o tej czystości jest powszechnie wymagane w laboratoriach analitycznych, ponieważ wszelkie zanieczyszczenia mogą prowadzić do błędnych wyników pomiarów. Na przykład w titracji, gdzie miano substancji analitycznej jest określane na podstawie reakcji z roztworem wzorcowym, jakiekolwiek zanieczyszczenie może wpływać na ilość środka titrującego potrzebnego do reakcji. Dodatkowo, standardy takie jak ISO czy ASTM podkreślają znaczenie użycia reagentów wysokiej czystości dla zapewnienia powtarzalności i dokładności analiz, co jest niezbędne w badaniach jakościowych i ilościowych. Dlatego stosowanie reagentów o czystości cz.d.a. jest nie tylko praktyką laboratoryjną, ale również wymogiem zgodności z międzynarodowymi standardami jakości.

Pytanie 21

Losowo należy pobierać próbki z opakowań

A. z dolnej części opakowania
B. z górnej części opakowania
C. z krawędzi opakowania
D. z kilku punktów w obrębie opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 22

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. wody destylowanej
B. płynu do zmywania naczyń
C. kwasu solnego
D. roztworu KMnO4 z dodatkiem kwasu solnego
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.

Pytanie 23

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. dokładności
B. paralaksy
C. losowym
D. instrumentalnym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 24

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. pojemnik
B. barometr
C. aspirator
D. czerpak
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 25

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. urządzenie do sterylizacji
B. komora laminarna
C. dygestorium
D. zespół powietrzny
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 26

Proces oddzielania cieczy od osadu nazywa się

A. sedymentacji
B. dekantacji
C. aeracji
D. sublimacji
Dekantacja to proces, który polega na oddzieleniu cieczy od osadu, co jest kluczowym krokiem w wielu dziedzinach, takich jak chemia, biotechnologia czy inżynieria środowiska. W praktyce dekantacja jest często stosowana w laboratoriach do oczyszczania roztworów, a także w przemyśle, na przykład w produkcji wina, gdzie dekantowanie polega na oddzieleniu klarownego wina od osadu, który może powstawać w czasie fermentacji. Proces ten polega na powolnym wylewaniu cieczy z naczynia, co pozwala na pozostawienie osadu na dnie. Zastosowanie dekantacji jest zgodne z dobrymi praktykami laboratoryjnymi i przemysłowymi, które zalecają efektywne i bezpieczne separowanie substancji, minimalizując straty materiałowe. Warto również zauważyć, że dekantacja może być stosowana jako wstępny krok przed innymi metodami rozdziału, takimi jak filtracja czy centrifugacja, co zwiększa jej znaczenie w kontekście procesów technologicznych.

Pytanie 27

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. kontynuować, ponieważ sól nie została całkowicie odwodniona
B. uznać za zakończone
C. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
D. powtórzyć, ponieważ sól uległa rozkładowi
Rozważając inne odpowiedzi, warto zauważyć, że powtarzanie procesu prażenia, ponieważ sól uległa rzekomemu rozkładowi, jest błędnym podejściem. W rzeczywistości rozkład Na2CO3·10H2O podczas prażenia nie powinien prowadzić do jego degradacji, o ile temperatura jest odpowiednio kontrolowana. Zastosowanie nieodpowiednich warunków temperaturowych może prowadzić do rozkładu, jednak w kontekście przedstawionego problemu, nie zaobserwowano żadnych dowodów na rozkład substancji. Twierdzenie, że proces można uznać za zakończony, jest również mylne, gdyż wcześniej stwierdzony ubytek masy wskazuje na dalsze odparowywanie wody. Należy pamiętać, że proces odwodnienia soli wymaga czasu, co czyni kontynuację prażenia konieczną, aż do osiągnięcia stałej masy. Ostatecznie, stwierdzenie, że sól nie jest całkowicie odwodniona, jest zasadne, jednak poleganie na tym jako na uzasadnieniu do zakończenia procesu jest niewłaściwe. W praktyce laboratoryjnej, zawsze należy skupiać się na precyzyjnych pomiarach i obserwacjach, aby uzyskać oczekiwane rezultaty bez ryzyka powstawania nieoczyszczonych produktów reakcji.

Pytanie 28

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. ługowanie
C. krystalizację
D. resublimację
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.

Pytanie 29

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości metali ciężkich.
B. nie spełnia wymagań pod względem zawartości żelaza.
C. spełnia wymagania i można wydać świadectwo jakości.
D. nie spełnia wymagań pod względem pH i zawartości jodanów.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 30

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. rozcieńczania
B. oczyszczania
C. utrwalania
D. zagęszczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 31

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 250,0 g wody i 250,0 g rodanku amonu.
B. 375,0 g lodu i 125,0 g chlorku sodu.
C. 384,6 g lodu i 115,4 g chlorku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 32

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu solnego.
B. kwasu fosforowego(V).
C. kwasu siarkowego(VI).
D. kwasu azotowego(V).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 33

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. robocze
B. podstawowe
C. miarowe
D. wtórne
Wiele osób myli substancje robocze, wtórne i miarowe z substancjami podstawowymi, co może prowadzić do różnych nieporozumień przy ustalaniu miana roztworu. Substancje robocze to zazwyczaj roztwory, które przygotowujemy w laboratorium i ich jakość oraz stężenie mogą być różne. Użycie takich substancji może prowadzić do błędów w pomiarze, bo nie zawsze mamy pewność, że są one dokładne i stabilne. Substancje wtórne powstają zazwyczaj w procesie syntezy chemicznej lub są pochodnymi substancji podstawowych, więc ich stężenie nie jest tak precyzyjnie określone. Z kolei substancje miarowe, mimo że też używamy ich do pomiarów, nie mają takich samych właściwości jak substancje podstawowe, co może też prowadzić do błędnych wyników. To, co często mylimy, to założenie, że każda substancja w laboratorium jest substancją podstawową, co jest błędnym podejściem do kalibracji i oceny wyników. Żeby mieć wiarygodne i powtarzalne wyniki w analizach chemicznych, musimy naprawdę zrozumieć różnice między tymi substancjami oraz ich zastosowanie w praktyce laboratoryjnej.

Pytanie 34

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w szczelne opakowania
B. w skrzynie drewniane
C. w torby jutowe
D. w torby papierowe
Odpowiedź "w hermetyczne opakowania" jest prawidłowa, ponieważ próbki laboratoryjne o właściwościach higroskopijnych wykazują silną tendencję do absorbcji wilgoci z otoczenia, co może prowadzić do ich degradacji lub zmian w składzie chemicznym. Hermetyczne opakowania zapewniają skuteczną barierę przed wilgocią, co jest kluczowe dla zachowania integralności takich próbek. Przykładem zastosowania hermetycznych opakowań są próbki soli, które muszą być przechowywane w suchym środowisku, aby uniknąć ich aglomeracji lub rozpuszczenia. Zgodnie z wytycznymi ISO 17025 dotyczącymi akredytacji laboratoriów, zaleca się stosowanie hermetycznych pojemników jako standardowej praktyki w celu zapewnienia, że wyniki analizy są wiarygodne i powtarzalne. Ponadto, hermetyczne opakowania mogą być również stosowane w transporcie próbek, co zmniejsza ryzyko ich kontaminacji i utraty właściwości.

Pytanie 35

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. NaCl
B. CaSO4
C. (NH4)2SO>sub>4
D. CaCO3 • MgCO3
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 36

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 12,5%
B. 15%
C. 20%
D. 87,5%
Aby obliczyć zawartość zanieczyszczeń w kwasie szczawiowym, należy zastosować prostą formułę. Zawartość zanieczyszczeń można obliczyć jako różnicę między masą początkową a masą uzyskanego produktu, podzieloną przez masę początkową, a następnie pomnożoną przez 100%: Zanieczyszczenia = ((Masa początkowa - Masa produktu) / Masa początkowa) * 100% Zanieczyszczenia = ((120 g - 105 g) / 120 g) * 100% = (15 g / 120 g) * 100% = 12,5%. Zatem, zanieczyszczenia stanowią 12,5% masy początkowej kwasu. Taki proces oczyszczania i określania zawartości zanieczyszczeń jest kluczowy w chemii analitycznej i przemysłowej, gdzie czystość substancji chemicznych jest niezbędna do uzyskania wysokiej jakości produktów. Praktyka ta ma zastosowanie w różnych dziedzinach, od farmacji po przemysł spożywczy, gdzie substancje muszą spełniać określone normy czystości, aby były bezpieczne i skuteczne w zastosowaniu.

Pytanie 37

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. przyspieszają proces wrzenia cieczy
C. umożliwiają równomierne wrzenie cieczy
D. obniżają temperaturę wrzenia cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 38

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. mikroanalityczną.
B. precyzyjną.
C. hydrostatyczną.
D. automatyczną.
Odpowiedzi na pytania dotyczące wag laboratoryjnych mogą prowadzić do nieporozumień, szczególnie w kontekście różnych typów wag. Wagi hydrostatyczne, choć użyteczne w specjalistycznych zastosowaniach, działają na innej zasadzie i są stosowane głównie do pomiaru gęstości cieczy. Wykorzystują one zjawisko wyporu, co jest kluczowe w zastosowaniach takich jak pomiar gęstości substancji. Z kolei wagi automatyczne, które automatyzują proces ważenia, nie są tożsame z wagami precyzyjnymi, mimo że mogą również oferować wysoką dokładność. Wagi mikroanalityczne, chociaż również precyzyjne, są przeznaczone do bardziej specyficznych zadań, takich jak ważenie bardzo małych ilości substancji (zazwyczaj poniżej 1 mg) i różnią się konstrukcją oraz funkcjami od wag precyzyjnych. Wybór odpowiedniego typu wagi zależy od specyfiki zadań, które mają być realizowane w laboratorium, a zrozumienie tych różnic jest kluczowe dla osiągnięcia wiarygodnych wyników. Typowe błędy myślowe, takie jak utożsamianie wag z różnymi funkcjami bez uwzględnienia ich zastosowań, mogą prowadzić do nieprawidłowych wniosków i wyborów w kontekście technologii laboratoryjnej.

Pytanie 39

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Wodorotlenku sodu.
B. Glukozy.
C. Stearynianu sodu.
D. Chlorku sodu.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 40

W tabeli przestawiono dane dotyczące wybranych roztworów wodnych wodorotlenku sodu.
Oblicz masę wodorotlenku sodu, jaką należy rozpuścić w 200,0 cm3 wody, aby otrzymać roztwór o gęstości 1,0428 g/cm3.

d420 [g/cm3]masa NaOH [g/100 cm3]
1,00951,01
1,02072,04
1,04284,17
1,06486,39
1,08698,70
1,108911,09

A. 8,70 g
B. 4,17 g
C. 4,08 g
D. 8,34 g
Odpowiedź 8,34 g jest prawidłowa, ponieważ aby uzyskać roztwór o gęstości 1,0428 g/cm³ w objętości 200 cm³, musimy wziąć pod uwagę masę wodorotlenku sodu (NaOH) niezbędną do osiągnięcia takiej gęstości. Z danych w tabeli wynika, że dla 100 cm³ roztworu potrzebna jest masa NaOH, która po podwojeniu daje nam 8,34 g dla 200 cm³. To podejście jest zgodne z zasadami obliczeń chemicznych, gdzie gęstość, masa i objętość są ze sobą powiązane. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma ogromne znaczenie dla wyników eksperymentów. Zrozumienie relacji między gęstością a masą przy rozcieńczaniu lub przygotowywaniu roztworów jest istotne nie tylko w chemii, ale również w innych dziedzinach, takich jak farmacja czy biotechnologia, gdzie odpowiednie stężenie substancji czynnej jest kluczowe dla skuteczności terapii.