Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 09:31
  • Data zakończenia: 30 maja 2025 10:00

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. trójdrogowy dwupołożeniowy (3/2)
C. trójdrogowy trójpołożeniowy (3/3)
D. pięciodrogowy trójpołożeniowy (5/3)
Wybór zaworu trójdrogowego trójpołożeniowego (3/3) czy dwupołożeniowego (3/2) raczej nie jest dobrym pomysłem. To znaczy, te zawory mają swoje ograniczenia. Zawór trójdrogowy ma tylko trzy porty i nie może jednocześnie zasilać siłownika i go zatrzymać, co nie jest wystarczające w bardziej skomplikowanych układach. A jakbyś wybrał pięciodrogowy dwupołożeniowy (5/2), to też nie będzie ok, bo ma tylko dwa położenia robocze, czyli nie zatrzymasz siłownika w konkretnych punktach. Moim zdaniem, takie wybory mogą prowadzić do problemów w procesach, gdzie ważna jest precyzja. Ważne jest, żeby dobrze rozumieć różnice między różnymi typami zaworów i ich zastosowaniem, żeby nie wprowadzać nieefektywnych rozwiązań i trzymać się norm branżowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
B. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
C. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
D. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 7

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika jednofazowego o napięciu 230 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Silnika prądu stałego o napięciu 400 V
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 8

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. mostek Wheatstone'a
B. mostek Thomsona
C. omomierz
D. megaomomierz
Omomierz, mimo że na pierwszy rzut oka wydaje się odpowiednim narzędziem do pomiaru rezystancji, ma swoje ograniczenia, zwłaszcza w kontekście bardzo dokładnych pomiarów. Jego działanie opiera się na bezpośrednim pomiarze rezystancji, co może prowadzić do błędów wynikających z wpływu temperatury, pojemności czy indukcyjności. Ponadto, omomierze mogą mieć ograniczoną dokładność w przypadku pomiarów bardzo niskich lub wysokich wartości rezystancji, co czyni je mniej skutecznymi niż mostek Wheatstone'a. Megaomomierz, chociaż jest narzędziem do pomiaru dużych rezystancji, również może nie zapewniać wystarczającej precyzji w pomiarze wartości nieznanych, ponieważ jego zastosowanie jest głównie ograniczone do testów izolacji. Mostek Thomsona, z kolei, jest bardziej skomplikowanym układem, który nie jest powszechnie stosowany w praktycznych zastosowaniach w porównaniu do mostka Wheatstone'a. Typowe błędy myślowe prowadzące do wyboru tych narzędzi obejmują niedocenienie znaczenia równowagi w pomiarze oraz niezrozumienie wpływu czynników zewnętrznych na wyniki pomiarów. Dlatego istotne jest, aby przed dokonaniem wyboru narzędzia pomiarowego zrozumieć różnice między nimi oraz ich zastosowania w kontekście wymaganych standardów dokładności.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. rozdzielenie folią aluminiową
B. pokrycie klejem
C. pokrycie pastą termoprzewodzącą
D. rozdzielenie papierem
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 13

Silnik liniowy przekształca

A. energię elektryczną w energię mechaniczną
B. ruch liniowy w ruch obrotowy
C. ruch obrotowy w ruch liniowy
D. energię mechaniczną w energię elektryczną
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 3 stopnie swobody
B. 6 stopni swobody
C. 5 stopni swobody
D. 4 stopnie swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Skrobak
B. Tłocznik
C. Narzynka
D. Gwintownik
Dla nacinania gwintu zewnętrznego nie można zastosować gwintownika, ponieważ jest to narzędzie przeznaczone do wykonywania gwintów wewnętrznych. Gwintowniki są zaprojektowane tak, aby pasowały do otworów, w których gwint ma być wycinany, a ich konstrukcja oraz geometria skrawająca są dostosowane do tego celu. Użycie gwintownika do gwintu zewnętrznego prowadziłoby do nieprawidłowego kształtu gwintu oraz potencjalnych uszkodzeń elementów złącznych. Skrobak, z kolei, jest narzędziem stosowanym głównie do wygładzania powierzchni oraz usuwania nadmiaru materiału, nie ma jednak zastosowania w procesie nacinania gwintów. Tłoczniki są używane w procesach tłoczenia blach, a ich zastosowanie w gwintowaniu jest również nieadekwatne. Przykłady błędnych wniosków mogą wynikać z mylenia funkcji narzędzi skrawających. Niezrozumienie różnych typów gwintów oraz ich zastosowania w konkretnych operacjach może prowadzić do nieefektywności produkcji, a w skrajnych przypadkach do uszkodzenia maszyn. Dlatego istotne jest, aby każdy operator obrabiarek znał podstawy funkcjonalności narzędzi skrawających oraz ich poprawne zastosowanie w zależności od rodzaju gwintu, który zamierzają wykonać.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
B. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
C. HT - ester syntetyczny, najlepiej ulegający biodegradacji
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, manometr, smarownica
B. sprężarka, filtr, zawór redukcyjny, manometr
C. filtr, zawór redukcyjny, manometr, smarownica
D. filtr, zawór dławiący, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Do czego służy klucz dynamometryczny?

A. do dokręcania śrub z określonym momentem obrotowym
B. do ułatwienia odkręcania i dokręcania śrub
C. do odkręcania zardzewiałych śrub
D. do dokręcania śrub w trudno dostępnych miejscach
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 2,1 mm
C. 1,9 mm
D. 2,0 mm
Wybór średnicy 2,0 mm sugeruje, że otwór powinien być identyczny z średnicą nitu, co jest niewłaściwe w kontekście praktycznego montażu. Taki otwór może być zbyt ciasny, co prowadzi do problemów przy wprowadzaniu nitu. W przypadku nitu o średnicy 2 mm, otwór musi być większy, aby zapewnić odpowiedni luz, który jest niezbędny do komfortowego montażu. Ponadto, wybór 1,9 mm również jest błędny, ponieważ zmniejsza luz, co znów może prowadzić do trudności w wprowadzeniu nitu oraz zwiększa ryzyko uszkodzenia materiału. Z kolei 2,3 mm, czyli zbyt duży otwór, może skutkować niewłaściwym osadzeniem nitu, co z kolei wpływa na trwałość i funkcjonalność połączenia. Wszelkie nieprawidłowe podejścia w kontekście średnicy otworu mogą prowadzić do niskiej jakości połączeń, co w konsekwencji zagraża integralności konstrukcji. W inżynierii montażowej stosuje się standardowe tolerancje, które pomagają w określeniu odpowiednich wymiarów otworów. Niezrozumienie tych zasad może prowadzić do nieodwracalnych błędów w produkcie końcowym czy w zakresie bezpieczeństwa. Dlatego tak istotne jest, aby przy projektowaniu połączeń zwracać uwagę na standardy dotyczące luzu, co jest kluczowe w każdym procesie technologii montażu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. przewodzenia
B. blokowania
C. zaporowym
D. nasycenia
Tyrystor, kiedy anoda ma dodatni potencjał, a bramka i katoda mają potencjał ujemny, jest w stanie blokowania. To znaczy, że nie przewodzi prądu, mimo że teoretycznie mógłby. Takie blokowanie jest naprawdę ważne w sytuacjach, gdzie trzeba kontrolować przepływ prądu, jak na przykład w prostownikach czy w różnych układach regulacji mocy. Żeby tyrystor zaczął przewodzić, trzeba najpierw podać impuls napięcia na bramkę, co zmienia jego stan na przewodzenie. W praktyce blokowanie tyrystora pomaga unikać niechcianych przepływów prądu, co jest istotne dla bezpieczeństwa obwodów i zasilaczy. Dzięki temu, że tyrystory są tak często używane w elektronice, szczególnie w zarządzaniu energią, warto wiedzieć, jak działają w stanie blokowania, bo to naprawdę ma ogromne znaczenie.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Zwrotny
B. Rozdzielający
C. Regulacyjny
D. Dławiący
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.