Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 15:11
  • Data zakończenia: 15 maja 2025 15:22

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Najważniejszym parametrem opisującym kondensator jest

A. rezystancja
B. ładunek
C. indukcyjność
D. pojemność
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. gęstość
B. utlenianie
C. lepkość
D. smarność
Utlenianie to proces chemiczny, który może prowadzić do degradacji oleju, ale nie jest miarą tarcia wewnętrznego cieczy. Utlenione oleje mogą tracić swoje właściwości smarne, co na dłuższą metę wpływa negatywnie na ich zdolność do ochrony mechanizmów. Smarność z kolei odnosi się do zdolności substancji do zmniejszania tarcia, lecz nie jest to miara samego tarcia wewnętrznego. Gęstość jest właściwością fizyczną, która określa masę substancji w danej objętości, ale nie ma bezpośredniego związku z oporem, jaki ciecz stawia podczas przepływu. Zrozumienie tych pojęć jest istotne, aby uniknąć mylnych wniosków dotyczących właściwości olejów smarowych. Typowym błędem myślowym jest utożsamianie smarności z lepkością, co prowadzi do nieuzasadnionych wyborów olejów do zastosowań przemysłowych czy motoryzacyjnych. Kluczowe dla efektywnego smarowania jest zrozumienie nie tylko samej lepkości, ale również jej wpływu na działanie mechanizmów. Dobre praktyki w branży smarów uwzględniają analizę lepkości w kontekście temperatury i warunków eksploatacji, co pozwala na precyzyjny dobór materiałów smarnych do specyficznych aplikacji.

Pytanie 9

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. lampy UV i szczypce
C. lampy UV i odsysacz
D. obcinacze i szczypce
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. nasycenia
B. przewodzenia
C. blokowania
D. zaporowym
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Żeliwo szare
B. Mosiądz
C. Brąz
D. Stal szybkotnącą
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 18

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Rezystancją w obwodzie wzbudzenia
B. Napięciem przyłożonym do obwodu wzbudzenia
C. Rezystancją w obwodzie twornika
D. Napięciem przyłożonym do obwodu twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Dławiący
C. Zwrotny
D. Regulacyjny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Moment obrotowy
B. Przesunięcie kątowe
C. Przyspieszenie
D. Ciśnienie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. kombinerki
B. pincety
C. ucinaczki boczne
D. praski ręcznej
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 6 wejściach i 4 wyjściach
B. S7-200 o 24 wejściach i 16 wyjściach
C. S7-200 o 8 wejściach i 6 wyjściach
D. S7-200 o 14 wejściach i 10 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu pokarmowego
B. dermatologicznych
C. układu sercowego
D. układu słuchu
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. nadciśnienia
B. podciśnienia
C. temperatury
D. prędkości
Wybór odpowiedzi dotyczący nadciśnienia, temperatury czy podciśnienia jest błędny, ponieważ każda z tych wartości nie ma bezpośredniego związku z efektami, które mierzy sensor radarowy działający na zasadzie Dopplera. Nadciśnienie i podciśnienie odnoszą się do ciśnienia gazu lub cieczy, co jest zupełnie inną kategorią pomiarów, którą realizuje się zwykle za pomocą manometrów lub barometrów, a nie radarów. Z kolei temperatura jest wielkością fizyczną, która zazwyczaj mierzona jest przez termometry, a nie przez sensory radarowe. W przypadku pomiarów temperatury stosuje się różne metody, w tym termopary czy czujniki rezystancyjne, które są znacznie bardziej odpowiednie do tych zastosowań. Typowym błędem myślowym jest założenie, że sensor radarowy, który wyzwala się w odpowiedzi na prędkość, mógłby być użyty do pomiaru innych wielkości fizycznych bez zrozumienia zasady jego działania. Zrozumienie, że sensor radarowy wykorzystuje fale elektromagnetyczne do analizy ruchu, jest kluczowe dla poprawnej interpretacji jego zastosowań, co czyni wybór prędkości jako odpowiedzi jedynym właściwym w tym kontekście.

Pytanie 39

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. przełącznik obiegu.
C. zawór z popychaczem.
D. rozdzielacz czterodrogowy.
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.