Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 5 czerwca 2025 12:07
  • Data zakończenia: 5 czerwca 2025 12:29

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. szczelinówki
B. pełnej
C. dziurawki
D. kratówki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 2

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. tylko na zewnętrznej ścianie budynku, na której opiera się strop
B. na wszystkich ścianach nośnych wokół całego stropu
C. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
D. jedynie na ścianach osłonowych budynku
Zbrojenie wieńca stropu jest kluczowym elementem konstrukcyjnym, który ma za zadanie zapewnienie odpowiedniej nośności i stabilności całej konstrukcji budynku. Właściwe rozłożenie zbrojenia na wszystkich ścianach nośnych dookoła stropu jest zgodne z zasadami inżynierii budowlanej oraz standardami, które podkreślają konieczność wzmocnienia miejsc, gdzie przenoszone są obciążenia. Zbrojenie na wszystkich ścianach nośnych ma na celu równomierne rozłożenie sił działających na strop, co minimalizuje ryzyko powstania pęknięć i uszkodzeń w konstrukcji. Przykładem zastosowania tej zasady może być budowa budynków wielokondygnacyjnych, gdzie stropy przenoszą znaczące obciążenia z wyższych pięter. W takich przypadkach stosowanie zbrojenia na wszystkich ścianach nośnych jest niezbędne dla zapewnienia stabilności konstrukcji na całej wysokości budynku. Dobrą praktyką jest również projektowanie zbrojenia w oparciu o normy PN-EN 1992-1-1, które określają wymagania dotyczące projektowania konstrukcji betonowych, w tym zbrojenia wieńców stropowych.

Pytanie 3

Która z wymienionych czynności nie jest częścią badań kontrolnych przeprowadzanych podczas odbioru tynków cienkowarstwowych?

A. Badanie nasiąkliwości tynku
B. Sprawdzenie przyczepności tynku do podłoża
C. Weryfikacja prawidłowości przygotowania podłoża
D. Pomiar grubości tynku
Badanie nasiąkliwości tynku nie jest zaliczane do badań kontrolnych wykonywanych podczas odbioru tynków pocienionych, ponieważ jego celem jest ocena zdolności tynku do wchłaniania wody, co ma większe znaczenie w kontekście tynków tradycyjnych. W przypadku tynków pocienionych, które charakteryzują się innymi właściwościami technicznymi, bardziej istotne są testy takie jak badanie przyczepności tynku do podłoża, które pozwala ocenić, czy tynk jest prawidłowo osadzony na podłożu, oraz badanie grubości tynku, które zapewnia zgodność z wymaganiami projektowymi. W praktyce, przeprowadzanie badań nasiąkliwości może nie przynieść użytecznych informacji, gdyż tynki pocienione mają na celu zmniejszenie nasłonecznienia, co wpływa na ich właściwości użytkowe. Standardy branżowe, takie jak PN-EN 998-1, wskazują na kluczowe parametry do oceny tynków, co potwierdza, że badanie nasiąkliwości nie jest priorytetowe w procesie odbioru tynków pocienionych.

Pytanie 4

Do wykonania murów z bloczków systemu Ytong na cienkie spoiny trzeba przygotować

A. zaprawę cementowo-wapienną
B. zaprawę cementową
C. zaprawę wapienną
D. zaprawę klejową
Wybór zaprawy wapiennej do murowania bloczków Ytong jest niewłaściwy, ponieważ ten rodzaj zaprawy nie zapewnia odpowiedniej przyczepności i nie jest przystosowany do cienkowarstwowych technik murowania. Zaprawa wapienna, choć ma swoje zastosowanie w tradycyjnym budownictwie, jest zbyt elastyczna i może powodować osiadanie murów, co jest szczególnie niepożądane w przypadku lekkich bloczków Ytong. Z kolei zaprawa cementowo-wapienna, choć lepsza od czystej zaprawy wapiennej, nie jest idealnym rozwiązaniem, gdyż jej skład nie pozwala na uzyskanie wymaganego stopnia szczelności i izolacyjności. Ostatecznie, zaprawa cementowa, stosowana bezpośrednio w systemach Ytong, może prowadzić do powstania zbyt grubych spoin, co negatywnie wpływa na właściwości termoizolacyjne budynku. Typowym błędem jest myślenie, że zaprawy oparte na cemencie są uniwersalnym rozwiązaniem, jednak ich zastosowanie w cienkowarstwowych systemach murowania często prowadzi do nieodpowiednich efektów. Dlatego tak ważne jest, aby wybierać materiały budowlane, które są dostosowane do specyfiki używanych bloczków, co w przypadku Ytong oznacza konieczność stosowania zaprawy klejowej, a nie innych typów zapraw.

Pytanie 5

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 610 zł
B. 2 012 zł
C. 1 410 zł
D. 1 232 zł
Obliczając koszt robocizny, kluczowe jest zrozumienie, jak różne parametry wpływają na całkowity koszt projektu budowlanego. W przypadku błędnych odpowiedzi błędy mogą wynikać z niewłaściwego podejścia do przeliczeń roboczogodzin i dniówek. Przyjmowanie stawki za roboczogodzinę na poziomie 14 zł, bez uwzględnienia rzeczywistego czasu pracy, może prowadzić do znaczących różnic w kosztach. Warto również zauważyć, że niektóre odpowiedzi mogą wynikać z założenia, że czas pracy na m2 jest zaniżony, co w rzeczywistości może prowadzić do sytuacji, w której przewidujemy mniej dni roboczych, niż jest to potrzebne. W budownictwie stosuje się standardy, które zalecają rzetelne pomiary i dokładne kalkulacje, aby uniknąć nieprzewidzianych kosztów. Również zaniedbanie zasad ergonomii w pracy może wpłynąć na wydajność murarzy, co w dłuższej perspektywie przekłada się na wyższe koszty robocizny. Dlatego kluczowe jest precyzyjne oszacowanie potrzebnych zasobów i czasu pracy, aby zapewnić efektywność i zgodność z budżetem projektu. Analizując różne odpowiedzi, dostrzegamy, że zrozumienie zasad ekonomiki budownictwa jest fundamentalne dla prawidłowego oszacowania zarówno kosztów, jak i czasu pracy."

Pytanie 6

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. umyć wodą
B. owinąć siatką
C. oszlifować
D. pomalować farbą
Owinąć siatką słup stalowy przed otynkowaniem jest kluczowe dla zapewnienia odpowiedniego współczynnika przyczepności między tynkiem a stalą. Siatka zbrojeniowa, wykonana z odpowiednich materiałów, takich jak stal lub włókna syntetyczne, tworzy solidną podstawę dla tynku, poprawiając jego przyczepność oraz zwiększając ogólną trwałość wykończenia. Stalowe słupy, ze względu na swoją gładką powierzchnię, mogą mieć trudności z utrzymaniem tynku, jeśli nie zostaną odpowiednio przygotowane. Oprócz tego, owinęcie siatką chroni stal przed uszkodzeniami mechanicznymi podczas wykonywania dalszych prac budowlanych. W praktyce budowlanej często stosuje się również siatki o różnej wielkości oczek, co pozwala na dostosowanie ich do specyficznych wymagań projektu. Zgodnie z normami budowlanymi, takimi jak PN-EN 13914, odpowiednie przygotowanie podłoża jest kluczowe dla uzyskania trwałych i estetycznych wykończeń budowlanych.

Pytanie 7

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4920 zł
B. 5412 zł
C. 4400 zł
D. 4000 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 8

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. belek nośnych na ścianach
B. pustaków ceramicznych na deskowaniu
C. zbrojenia belek monolitycznych
D. zbrojenia żeber rozdzielczych
Rozpoczęcie wykonania stropu Fert od ułożenia pustaków ceramicznych na deskowaniu jest niezgodne z zasadami konstrukcyjnymi. Pustaki ceramiczne są elementami wypełniającymi, które pełnią funkcję izolacyjną oraz zwiększają masę stropu, ale ich układanie powinno następować dopiero po zamocowaniu belek nośnych. Zbrojenie żeber rozdzielczych, choć istotne w kontekście zwiększenia nośności i sztywności stropu, również należy umieszczać po ułożeniu belek nośnych. Niezależnie od tego, jak ważne jest zapewnienie odpowiedniego zbrojenia, cała konstrukcja bazuje na prawidłowo zamocowanych belkach nośnych. Kolejnym błędnym podejściem jest rozpoczęcie od zbrojenia belek monolitycznych, które w kontekście stropu Fert nie znajduje zastosowania, ponieważ strop ten bazuje na prefabrykowanych elementach, a nie monolitycznej konstrukcji. Zrozumienie sekwencji prac budowlanych oraz znaczenia każdego z elementów jest kluczowe dla prawidłowego wykonania stropu. Na tym etapie często popełnia się błąd, myśląc, że można pominąć fundamentalne elementy konstrukcyjne na rzecz detali, co w konsekwencji prowadzi do osłabienia całej struktury i zwiększa ryzyko awarii. W praktyce budowlanej zawsze należy dbać o kolejność i sposób wykonania, aby zapewnić stabilność i bezpieczeństwo budynku.

Pytanie 9

Jaką powierzchnię tynku mozaikowego nałożono na cokole o wysokości 50 cm wokół budynku o wymiarach w rzucie 15 x 10 m?

A. 75 m2
B. 25 m2
C. 95 m2
D. 45 m2
W przypadku odpowiedzi, które wskazują na inne wartości powierzchni tynku mozaikowego, można zauważyć kilka typowych błędów myślowych. Na przykład, odpowiedzi takie jak 45 m2 czy 75 m2 mogą wynikać z błędnego wyliczenia obwodu budynku. Użytkownicy mogą pomylić się, dodając dodatkowe metry lub pomijając niektóre części konstrukcji, co prowadzi do znacznych rozbieżności w końcowym wyniku. Inna możliwość błędu dotyczy pomiaru wysokości cokołu – jeśli ktoś zastosuje wysokość 1 m zamiast 0,5 m, otrzyma niepoprawny wynik, który będzie dwukrotnie większy niż właściwy. Ważne jest zrozumienie, że każdy element w obliczeniach ma znaczenie i wpływa na końcowy wynik. W przypadku odpowiedzi 95 m2, błąd mógł wynikać ze pomyłkowego obliczenia powierzchni całkowitej ścian budynku, co jest błędnym podejściem, ponieważ obliczamy jedynie powierzchnię cokołu. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego zlecania ilości materiałów, co przekłada się na nieefektywność kosztową i czasową w realizacji projektu budowlanego. Dlatego kluczowe jest dokładne i staranne podejście do obliczeń oraz znajomość podstawowych zasad dotyczących obliczania powierzchni w budownictwie.

Pytanie 10

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. barytowego
B. wapiennego
C. granitowego
D. bazaltowego
Wybór kruszywa wapiennego, granitowego czy bazaltowego nie jest właściwy w kontekście ochrony przed promieniowaniem rentgenowskim. Kruszywo wapienne, mimo że jest powszechnie używane w budownictwie, ma niską gęstość, co sprawia, że nie jest w stanie skutecznie blokować promieniowania ionizującego. Jego zastosowanie w tynkach ochronnych nie zapewni wystarczającej bariery dla promieni X, przez co narażałoby osoby znajdujące się w pobliżu na niebezpieczne poziomy promieniowania. Granit i bazalt, choć charakteryzują się większą gęstością niż wapń, również nie są odpowiednie ze względu na swoje właściwości fizyczne. Granite, jako materiał naturalny, jest ciężki i trudny w obróbce, a jego zdolności ochronne w kontekście promieniowania są ograniczone. Bazalt, będący wynikiem wulkanicznej działalności, również nie dostarcza potrzebnej ochrony przed promieniowaniem rentgenowskim. Wybierając materiał do tynków ochronnych, kluczowe jest zrozumienie, że efektywność ochrony przed promieniowaniem zależy głównie od gęstości i specyfikacji chemicznych materiału, co czyni baryt jedynym słusznym rozwiązaniem w tym przypadku. Powszechnym błędem w myśleniu jest zakładanie, że większa masa materiału automatycznie przekłada się na lepszą ochronę, podczas gdy najważniejsza jest ich odpowiednia struktura i rodzaj.

Pytanie 11

Zgodnie z wskazówkami producenta, zużycie gotowej mieszanki tynkarskiej do nałożenia tynku o grubości 15 mm wynosi 19,5 kg/m2. Ile worków po 30 kilogramów tej mieszanki jest potrzebnych do pokrycia powierzchni 150 m2 tym tynkiem?

A. 98 worków
B. 147 worków
C. 75 worków
D. 225 worków
Odpowiedź 98 worków jest poprawna, ponieważ aby obliczyć całkowite zużycie zaprawy tynkarskiej do wykonania tynku na powierzchni 150 m², należy pomnożyć zużycie na metr kwadratowy przez całkowitą powierzchnię. W tym przypadku, zużycie wynosi 19,5 kg/m², co daje 19,5 kg/m² * 150 m² = 2925 kg. Następnie, aby obliczyć liczbę worków zaprawy potrzebnych do zakupu, należy podzielić całkowite zapotrzebowanie na kilogramy przez wagę jednego worka. Przy masie worka wynoszącej 30 kg, obliczenie wygląda następująco: 2925 kg / 30 kg/worek = 97,5 worków. Ostatecznie, zaokrąglając w górę, potrzebujemy 98 worków. Takie obliczenia są istotne w praktyce budowlanej, ponieważ precyzyjne szacowanie materiałów pozwala uniknąć niedoborów oraz nadmiaru, co z kolei przekłada się na efektywność kosztową i terminowość realizacji projektów budowlanych. Wykorzystanie standardów kalkulacyjnych w branży budowlanej, takich jak normy PN-EN, wspiera dokładność tego procesu.

Pytanie 12

Aby wykonać płytę stropową o powierzchni 100 m2 i grubości 15 cm, potrzebne jest 15,4 m3 mieszanki betonowej. Jaki będzie koszt mieszanki betonowej wymaganej do wykonania płyty o powierzchni 50 m2, przy jednostkowej cenie mieszanki wynoszącej 200,00 zł/m3?

A. 1 540,00 zł
B. 1 000,00 zł
C. 2 000,00 zł
D. 3 080,00 zł
Aby obliczyć koszt mieszanki betonowej potrzebnej do wykonania płyty stropowej o powierzchni 50 m² i grubości 15 cm, należy najpierw obliczyć objętość betonu potrzebną do wykonania tej płyty. Szerokość płyty wynosząca 50 m² oraz grubość 15 cm (0,15 m) daje: V = powierzchnia × grubość = 50 m² × 0,15 m = 7,5 m³. Znając objętość betonu, przeliczamy koszt. Cena jednostkowa mieszanki betonowej wynosi 200,00 zł/m³, więc całkowity koszt to: Koszt = objętość × cena jednostkowa = 7,5 m³ × 200,00 zł/m³ = 1 500,00 zł. Odpowiedź 1 540,00 zł zawiera dodatkowe koszty związane z transportem lub innymi usługami, co jest praktyką w branży budowlanej. Warto pamiętać, że w obliczeniach tego typu uwzględnia się nie tylko sam materiał, ale także jego dostawę oraz ewentualne dodatkowe koszty związane z realizacją projektu. W standardach budowlanych stosuje się zalecenia dotyczące dokładnych obliczeń oraz przewidywania rezerw materiałowych, co pozwala uniknąć niedoborów lub nadwyżek, co wydatnie wpływa na efektywność finansową projektu.

Pytanie 13

Jakie działania powinny być podjęte jako pierwsze przed nałożeniem suchego tynku na nierównomierne podłoże ściany z cegły kratówki?

A. Wykonać na ścianie placki "marki"
B. Nałożyć zaprawę gipsową na płyty suchego tynku i mocno je przycisnąć do podłoża
C. Zastosować na ścianie warstwę gładzi gipsowej
D. Uformować pasy kierunkowe z zaprawy cementowo-wapiennej
Naniesienie zaprawy gipsowej na płyty suchego tynku i mocne dociskanie ich do podłoża to podejście, które może wydawać się praktyczne, jednak w rzeczywistości jest niewłaściwe, zwłaszcza w kontekście nierównych ścian. Zaprawa gipsowa nie jest odpowiednia do stosowania na nierównych powierzchniach, ponieważ jej właściwości nie zapewniają odpowiedniego wyrównania i przyczepności. Właściwe przygotowanie podłoża powinno obejmować najpierw zidentyfikowanie i skorygowanie nierówności ściany, a nie jedynie nakładanie warstwy gipsu. Ponadto, wykonanie gładzi gipsowej na nierównym podłożu nie przynosi oczekiwanych efektów, ponieważ gładź nie jest w stanie wypełnić dużych ubytków czy nierówności, co może prowadzić do pęknięć i odspojenia w przyszłości. Wykonanie pasów kierunkowych z zaprawy cementowo-wapiennej to kolejna koncepcja, która ma swoje miejsce w praktyce budowlanej, ale nie jest pierwszym krokiem w przypadku nierównych ścian. Te koncepcje często wynikają z błędnego zrozumienia procesu przygotowania podłoża oraz znaczenia dokładności w budownictwie. W praktyce, kluczowe jest przestrzeganie zasad i dobrych praktyk, co w tym przypadku oznacza najpierw ustalenie punktów odniesienia za pomocą placków 'marki', a następnie wyrównanie powierzchni przed dalszymi pracami. Ignorowanie tych zasad prowadzi do problemów w końcowym etapie wykończenia, co może być kosztowne i czasochłonne w poprawie.

Pytanie 14

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 1 220 zł
B. 560 zł
C. 720 zł
D. 1 440 zł
Koszt wymurowania dwóch ścian szczytowych budynku został obliczony na podstawie wymiarów i nakładu pracy. Każda ściana ma wymiary 10,0 m x 5,0 m, co daje powierzchnię jednej ściany równą 50 m2. Zatem dla dwóch ścian całkowita powierzchnia wynosi 100 m2. Nakład pracy wynosi 1,44 godzin na m2, co oznacza, że potrzebny czas na wykonanie pracy to 100 m2 * 1,44 h/m2 = 144 h. Przy stawce godzinowej murarza wynoszącej 10 zł, całkowity koszt robocizny wyniesie 144 h * 10 zł/h = 1440 zł. Taki sposób kalkulacji kosztów jest zgodny z praktykami branżowymi, które uwzględniają zarówno powierzchnię, jak i nakład pracy, co pozwala na precyzyjne oszacowanie całkowitych wydatków. Użycie takich metod jest niezbędne w branży budowlanej dla zachowania budżetu i efektywności zarządzania projektem.

Pytanie 15

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Gipsu szpachlowego
B. Wapna hydraulicznego
C. Gipsu budowlanego
D. Wapna pokarbidowego
Wybór gipsu budowlanego jako spoiwa do tynków zewnętrznych w miejscach narażonych na wilgoć jest niewłaściwy, ponieważ gips nie jest materiałem odpornym na działanie wody. Gips budowlany ma ograniczoną odporność na wilgoć, co sprawia, że w warunkach zewnętrznych, szczególnie w obszarach narażonych na intensywne opady deszczu, może ulegać degradacji. Tynki gipsowe są bardziej odpowiednie do wnętrz, gdzie nie są narażone na bezpośrednie działanie wody. Gips szpachlowy, podobnie jak gips budowlany, również nie nadaje się do zastosowań zewnętrznych, ponieważ jego właściwości nie pozwalają na skuteczne wypełnianie szczelin i pęknięć w warunkach dużej wilgotności. W przypadku wapna pokarbidowego, choć ma pewne właściwości, które mogą przyciągać uwagę, nie jest to materiał preferowany w aplikacjach zewnętrznych, ponieważ nie oferuje odpowiedniej odporności na wilgoć, co prowadzi do ryzyka powstawania grzybów i pleśni. W praktyce budowlanej niezwykle ważne jest stosowanie materiałów zgodnych z ich przeznaczeniem oraz warunkami, w jakich będą eksploatowane. Dlatego, aby uniknąć problemów związanych z trwałością i bezpieczeństwem konstrukcji, zaleca się korzystanie z materiałów sprawdzonych w specyficznych zastosowaniach, co jest zgodne z zasadami dobrych praktyk budowlanych.

Pytanie 16

Która z metod osuszania mokrych ścian nie wymaga ingerencji w ich strukturę?

A. Podcinanie muru strugą mieszanki cieczy z piaskiem kwarcowym
B. Wykonanie tynku renowacyjnego po usunięciu starego tynku
C. Iniekcja krystaliczna w nawiercone w murze otwory
D. Umieszczanie blachy falistej lub fałdowej w spoinie, pod kątem do lica ściany
Wykonanie tynku renowacyjnego po usunięciu tynku istniejącego jest metodą, która nie wymaga naruszania konstrukcji ściany. Tynk renowacyjny ma na celu odbudowę warstwy ochronnej muru oraz poprawę jego właściwości higroskopijnych. Dzięki temu procesowi, wilgoć zgromadzona w murze może być efektywnie odprowadzana na zewnątrz. Tynki renowacyjne są specjalnie zaprojektowane, aby współpracować z materiałem, z którego wykonane są ściany, zapewniając jednocześnie ich wentylację. Przykładowo, w przypadku murów historicznych, zastosowanie tynku wapiennego, który ma zdolność do 'oddychania', pozwala zachować integralność strukturalną budowli. Dodatkowo, stosowanie tynków renowacyjnych jest zgodne z normami konserwatorskimi, co jest niezwykle ważne w przypadku obiektów zabytkowych.

Pytanie 17

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:0,5:4, co powinno zostać zgromadzone?

A. 1 część piasku, 0,5 części cementu i 4 części wapna
B. 1 część cementu, 0,5 części piasku i 4 części wapna
C. 1 część cementu, 0,5 części wapna i 4 części piasku
D. 1 część piasku, 0,5 części wapna i 4 części cementu
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:0,5:4 oznacza, że na każdą część cementu przypada 0,5 części wapna oraz 4 części piasku. Przygotowanie zaprawy w takich proporcjach zapewnia odpowiednią wytrzymałość i trwałość materiału budowlanego. W praktyce, zaprawa cementowo-wapienna jest powszechnie stosowana w budownictwie do murowania, tynkowania oraz jako materiał do łączenia różnorodnych elementów konstrukcyjnych. Dobrze zbilansowane proporcje składników wpływają na właściwości fizyczne i chemiczne zaprawy, co jest zgodne z normami PN-EN 998-1, które określają wymagania dotyczące zapraw murarskich. Warto również zaznaczyć, że odpowiednie przygotowanie zaprawy, w tym staranne wymieszanie składników, jest kluczowe dla uzyskania pożądanej konsystencji oraz właściwości użytkowych. Przykładem zastosowania zaprawy cementowo-wapiennej jest budowa ścian nośnych z bloczków betonowych, gdzie zaprawa zapewnia stabilność i trwałość konstrukcji przez długie lata.

Pytanie 18

Abyzbudować ścianę o powierzchni 1 m2 zgodnie z KNR 2-02, wymaganych jest 8,20 szt. bloczków z betonu komórkowego. Na jednej palecie znajduje się 48 bloczków. Ile palet bloczków należy zamówić do zbudowania 75 m2 ścian?

A. 75
B. 9
C. 48
D. 13
Aby obliczyć liczbę palet bloczków potrzebnych do wymurowania 75 m² ścian, należy najpierw ustalić, ile bloczków potrzebujemy. Zgodnie z KNR 2-02, do wymurowania 1 m² ściany potrzeba 8,20 bloczków. Dlatego, dla 75 m², zapotrzebowanie wynosi 75 m² * 8,20 bloczków/m² = 615 bloczków. Skoro na jednej palecie mieści się 48 bloczków, to aby obliczyć liczbę palet, dzielimy 615 bloczków przez 48 bloczków/paleta, co daje nam 12,8125. Ponieważ nie możemy zamówić ułamkowej części palety, zaokrąglamy w górę do najbliższej całkowitej liczby, co daje 13 palet. Praktycznie, w takich obliczeniach zawsze zaokrąglamy w górę, aby zapewnić wystarczającą liczbę materiałów budowlanych, co jest zgodne z dobrymi praktykami w branży budowlanej oraz zarządzaniu projektami.

Pytanie 19

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
B. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
C. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
D. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji objętościowej 1:2,5:10,5 wymaga zastosowania odpowiednich ilości składników, które są kluczowe dla uzyskania właściwych właściwości mechanicznych i trwałości zaprawy. Cement, wapno i piasek odgrywają fundamentalną rolę w procesie wiązania i twardnienia zaprawy, a proporcje te są zgodne z normami budowlanymi, które zalecają stosunek tych składników w celu uzyskania optymalnych wyników. W praktyce stosowanie cementu, wapna i piasku w takich proporcjach pozwala na uzyskanie zaprawy o dobrej plastyczności, która może być łatwo aplikowana, a jednocześnie charakteryzuje się odpowiednią wytrzymałością na ściskanie i odpornością na działanie czynników atmosferycznych. Takie zaprawy znajdują zastosowanie w budownictwie, szczególnie przy murowaniu ścian, gdzie właściwa kompozycja jest kluczowa dla długowieczności konstrukcji.

Pytanie 20

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. rozbiórki ścianek działowych
B. demontażu urządzeń i instalacji sanitarnych
C. rozbiórki konstrukcji więźby dachowej
D. demontażu stolarki okiennej i drzwiowej
Demontaż urządzeń sanitarnych, zanim zaczniemy rozbiórkę budynku murowanego z drewnianym dachem, to naprawdę ważna sprawa. Dzięki temu dbamy o bezpieczeństwo i ułatwiamy sobie całą robotę. Te instalacje, jak rury wodociągowe czy systemy grzewcze, mogą sprawić kłopoty, jeżeli będą przypadkowo uszkodzone. Na przykład, jeśli najpierw pozbędziemy się tych instalacji, to zmniejszamy ryzyko wycieków wody, które mogłyby zniszczyć strukturę budynku, a to z kolei wiązałoby się z dodatkowymi kosztami napraw. W zgodzie z normami budowlanymi, jak chociażby PN-EN 16272, powinniśmy dokładnie sprawdzić, co mamy w budynku przed rozpoczęciem rozbiórki. Z mojego doświadczenia, dobre przygotowanie i wcześniejsze usunięcie urządzeń sanitarnych to nie tylko wymóg prawny, ale też mądra praktyka w budowlance. Dzięki temu rozbiórka idzie sprawnie i bez problemów.

Pytanie 21

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. izolacyjność akustyczną
B. ognioodporność ściany
C. grubość ściany
D. izolacyjność termiczną ściany
Szczeliny powietrzne w ścianach murowanych są kluczowym elementem, który znacząco zwiększa izolacyjność termiczną tych ścian. Dzięki odpowiedniej konstrukcji, powietrze w szczelinach działa jako izolator, co redukuje wymianę ciepła między wnętrzem a otoczeniem. Zjawisko to jest szczególnie istotne w budownictwie energooszczędnym, gdzie celem jest minimalizacja strat ciepła. W praktyce, odpowiednia szerokość i umiejscowienie szczelin powietrznych mogą znacznie poprawić współczynniki przenikania ciepła (U), spełniając normy określone w przepisach budowlanych, takich jak Warunki Techniczne. Na przykład, w budynkach jednorodzinnych, stosowanie szczelin powietrznych może pomóc w osiągnięciu efektywności energetycznej zgodnej z wymaganiami dla budynków pasywnych. Warto również zauważyć, że skuteczne wykorzystanie szczelin powietrznych wpływa pozytywnie na komfort termiczny mieszkańców, co jest kluczowe w kontekście zrównoważonego rozwoju budownictwa.

Pytanie 22

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 3 800,00 zł
B. 4 000,00 zł
C. 3 600,00 zł
D. 7 600,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 23

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. warszawskiego
B. stojakowego teleskopowego
C. kozłowego
D. drabinowego
Odpowiedzi 'stojakowego teleskopowego', 'warszawskiego' oraz 'kozłowego' są niewłaściwe z kilku kluczowych powodów. Rusztowania stojakowe teleskopowe, choć oferują stabilność i dużą powierzchnię roboczą, są przeznaczone do znacznie wyższych konstrukcji, co czyni je niepraktycznymi i nieefektywnymi przy pracy na wysokości do 2,5 m. Ich skomplikowana konstrukcja wymaga także znacznie więcej miejsca do rozstawienia, co może być problematyczne w wąskich pomieszczeniach. Rusztowanie warszawskie, z kolei, jest bardziej skomplikowane w montażu i demontażu, co w przypadku niskich wysokości mija się z celem, a jego użycie wiąże się z większym ryzykiem niewłaściwego zabezpieczenia. Zastosowanie rusztowania kozłowego jest również nieodpowiednie, ponieważ, mimo że jest ono stabilne, jego konstrukcja nie jest dostosowana do wykonywania precyzyjnych prac murarskich na niższych wysokościach. Często błędnym podejściem jest myślenie, że większa stabilność rusztowania będzie korzystna w każdej sytuacji, gdy w rzeczywistości proste rozwiązania, takie jak drabina, mogą być bardziej odpowiednie. Z kolei zbyt duża ilość sprzętu na małej przestrzeni może prowadzić do zagrożeń związanych z bezpieczeństwem natomiast użycie drabiny, w połączeniu z przestrzeganiem zasad BHP, pozwala na efektywniejszą i bezpieczniejszą pracę.

Pytanie 24

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapienno-gipsowej
B. wapiennej
C. cementowej
D. gipsowej
Zaprawa cementowa jest najczęściej stosowanym materiałem do wykonywania ścian fundamentowych oraz elementów narażonych na zawilgocenie, ze względu na swoje właściwości mechaniczne i odporność na wodę. Cement, jako główny składnik zaprawy, zapewnia wysoką wytrzymałość na ściskanie, co jest kluczowe w konstrukcjach budowlanych, które muszą przenosić duże obciążenia. Ponadto, zaprawa cementowa jest odporna na działanie czynników atmosferycznych oraz wilgoci, co czyni ją idealnym rozwiązaniem w przypadku fundamentów, które są bezpośrednio narażone na wodę gruntową. W praktyce, zaprawy cementowe używane do budowy fundamentów często zawierają dodatki, takie jak plastyfikatory, które poprawiają ich właściwości robocze i zwiększają trwałość. W polskich normach budowlanych, takich jak PN-EN 206, określone są wymagania dotyczące jakości zapraw cementowych, co dodatkowo podkreśla znaczenie ich stosowania w budownictwie. Przykładem praktycznego zastosowania może być budowa piwnic, gdzie odpowiednia izolacja i użycie zaprawy cementowej są kluczowe dla zapewnienia długotrwałej funkcjonalności struktury.

Pytanie 25

Jakie narzędzia wykorzystuje się do demontażu murowanych części konstrukcyjnych budynku?

A. wkrętarki
B. piły tarczowe
C. wiertarki obrotowe
D. młoty udarowe
Młoty udarowe są narzędziem, które doskonale nadaje się do rozbiórki murowych elementów konstrukcyjnych budynków. Charakteryzują się one dużą mocą udaru, co umożliwia skuteczne łamanie betonu i cegieł. Działanie młota udarowego polega na generowaniu szybkich uderzeń, które przekładają się na dużą energię uderzenia, co w efekcie pozwala na efektywne rozbijanie twardych materiałów. Przykłady zastosowania młotów udarowych obejmują prace rozbiórkowe w budownictwie, takie jak usuwanie starych ścian, fundamentów czy posadzek. W branży budowlanej rekomenduje się korzystanie z młotów udarowych zgodnie z normami BHP, co zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy. Korzystanie z odpowiednich osłon, rękawic i okularów ochronnych jest kluczowe podczas pracy z tym narzędziem, co potwierdzają najlepsze praktyki w zakresie ochrony zdrowia i bezpieczeństwa w miejscu pracy."

Pytanie 26

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. betoniarki wolnospadowej
B. wiertarki z mieszadłem
C. węzła betoniarskiego
D. agregatu tynkarskiego
Wykorzystanie wiertarki z mieszadłem do sporządzania zapraw murarskich na małej budowie nie jest optymalnym rozwiązaniem. Tego typu narzędzia są przeznaczone głównie do mieszania mniejszych ilości materiałów, co może prowadzić do niedostatecznej jednorodności mieszanki. Mieszadła w wiertarkach mają ograniczone możliwości, a ich konstrukcja nie zapewnia tak efektywnego mieszania jak betoniarka. Mieszanie dużych ilości składników przy użyciu wiertarki jest czasochłonne i wymaga dużej precyzji, co w praktyce jest trudne do osiągnięcia. Agregat tynkarski, chociaż użyteczny w pracach tynkarskich, nie jest dedykowany do produkcji zapraw murarskich. Jego funkcje skupiają się na aplikacji tynku, a nie na mieszaniu zapraw. Węzeł betoniarski, z kolei, to urządzenie przeznaczone do produkcji betonu w dużych ilościach, co przekracza potrzeby małych budów, gdzie zazwyczaj wymagana jest niewielka ilość zaprawy. Dlatego korzystanie z tych narzędzi może prowadzić do niedostatecznej jakości zaprawy, co wpłynie na trwałość i stabilność konstrukcji. Optymalne podejście to wybór betoniarki wolnospadowej, która gwarantuje odpowiednią jakość i wydajność mieszania, zgodnie z branżowymi standardami.

Pytanie 27

O odklejaniu się tynku od podłoża świadczą

A. głuchy dźwięk przy ostukiwaniu tynku młotkiem
B. widoczne na tynku pęknięcia
C. widoczne na tynku zgrubienia
D. łatwość zarysowania tynkowej powierzchni ostrym narzędziem
Głuchy odgłos przy ostukiwaniu tynku młotkiem jest najważniejszym wskaźnikiem odwarstwienia tynku od podłoża. Taki dźwięk wskazuje na obecność pustek powietrznych, które powstały w wyniku słabego przylegania tynku do podłoża, co często jest efektem niewłaściwego przygotowania podłoża przed nałożeniem tynku lub nieodpowiednich warunków podczas aplikacji. Dobrą praktyką budowlaną jest przeprowadzanie testu ostukiwania w celu identyfikacji potencjalnych problemów z odwarstwieniem. W przypadku wykrycia odwarstwienia, zaleca się usunięcie luźnego tynku, a następnie przemyślane przygotowanie powierzchni oraz nałożenie nowego tynku, aby zapewnić jego trwałość i funkcjonalność. Dodatkowo, warto zwrócić uwagę na specyfikacje producentów tynków oraz lokalne normy budowlane, które mogą dostarczyć cennych wskazówek dotyczących odpowiednich materiałów i technik aplikacji, co przyczyni się do minimalizacji ryzyka odwarstwienia w przyszłości.

Pytanie 28

Jeśli koszty robocizny na demontaż lm2 ceglanej ścianki działowej wynoszą 0,61 r-g, to ile czasu zajmie rozebranie 5 takich ścianek, z których każda ma powierzchnię 10 m2?

A. 30,0 r-g
B. 30,5 r-g
C. 61,0 r-g
D. 81,9 r-g
Odpowiedź 30,5 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny do rozebrania pięciu ścianek o powierzchni 10 m2 każda, należy najpierw określić całkowitą powierzchnię do rozebrania. Całkowita powierzchnia wynosi 5 ścianek x 10 m2 = 50 m2. Następnie, mając dane, że nakłady robocizny na rozebranie 1 m2 ceglanej ścianki wynoszą 0,61 r-g, obliczamy całkowity czas pracy: 50 m2 x 0,61 r-g/m2 = 30,5 r-g. Praktyczne zastosowanie tej wiedzy jest kluczowe w branży budowlanej, gdzie precyzyjne planowanie robocizny pozwala na optymalizację kosztów i czasu realizacji projektów. Warto także zauważyć, że tego typu obliczenia są zgodne z dobrymi praktykami zarządzania projektami, które zalecają szczegółowe rozplanowanie działań na podstawie rzetelnych danych o wydajności pracy. Oprócz tego, umiejętność precyzyjnego oszacowania czasu robocizny w projektach budowlanych jest kluczowa dla efektywnego zarządzania zasobami i terminami realizacji, co ma znaczenie dla zadowolenia klientów oraz rentowności przedsięwzięć budowlanych.

Pytanie 29

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. drabinowe
B. na kozłach
C. stojakowe
D. na wysuwnicach
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 30

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284

A. 160,5 kg cementu, 1,410 m3 piasku
B. 145,5 kg cementu, 1,410 m3 piasku
C. 186,0 kg cementu, 1,425 m3 piasku
D. 107,0 kg cementu, 1,425 m3 piasku
Odpowiedź "160,5 kg cementu, 1,410 m3 piasku" jest prawidłowa, ponieważ została obliczona zgodnie z proporcjami podanymi w tabeli dla zaprawy cementowo-wapiennej M2. W celu określenia ilości cementu i piasku potrzebnych do wykonania 1,5 m3 zaprawy, należy najpierw ustalić wartości dla 1 m3, a następnie przemnożyć je przez 1,5. Dla zaprawy M2 standardowe proporcje to 107 kg cementu na 1 m3 i 0,94 m3 piasku. Przemnażając te wartości przez 1,5, uzyskujemy 160,5 kg cementu oraz 1,410 m3 piasku. Tego typu obliczenia są fundamentalne w budownictwie, gdzie precyzyjne określenie proporcji materiałów ma kluczowe znaczenie dla jakości i trwałości konstrukcji. Stosowanie odpowiednich norm, takich jak PN-EN 197-1, gwarantuje, że zaprawa osiągnie wymagane właściwości mechaniczne i trwałość. W praktyce, dokładne obliczenia i właściwe proporcje składników wpływają na zachowanie zaprawy w różnych warunkach atmosferycznych oraz jej odporność na czynniki zewnętrzne. Istotne jest również, aby przed rozpoczęciem prac budowlanych zasięgnąć porady specjalistów, którzy mogą wskazać właściwe proporcje i metody mieszania.

Pytanie 31

W którym rodzaju stropu gęstożebrowego można znaleźć prefabrykowane belki żelbetowe?

A. Teriva
B. Akermana
C. DZ-3
D. Fert
Strop gęstożebrowy Fert nie jest odpowiedzią, ponieważ jest to system, który wykorzystuje płyty ceramiczne i żelbetowe, ale nie obejmuje prefabrykowanych belek żelbetowych. W praktyce jest on stosowany w budownictwie jednorodzinnym oraz w obiektach o małej rozpiętości, co ogranicza jego zastosowanie w większych projektach. Użycie belek żelbetowych w tym systemie jest rzadkie i nieoptymalne ze względu na ich masywność, co prowadzi do większych nakładów materiałowych i czasowych. Ponadto, strop Akermana, także niewłaściwy w tym kontekście, charakteryzuje się zupełnie inną konstrukcją, opartą na arkuszach żelbetowych, które również nie są prefabrykowane w klasycznym rozumieniu. W przypadku systemu Teriva, stosowane są płyty betonowe na żelbetowych belkach nośnych, co również nie pasuje do opisanego pytania. Te różnice mogą prowadzić do błędnych wniosków przy wyborze odpowiedniego systemu stropowego. Warto pamiętać, że wybór stropu powinien być zawsze uzależniony od specyfiki projektu, wymagań nośnych oraz lokalnych norm budowlanych, aby zapewnić bezpieczeństwo i funkcjonalność konstrukcji.

Pytanie 32

Wyrównanie powierzchni tynku w narożach wklęsłych odbywa się poprzez

A. przesuwanie pacy w ruchu zygzakowym od dołu ku górze
B. zacieranie powierzchni pacą styropianową w ruchach okrężnych
C. zacieranie powierzchni packą narożnikową w ruchach w 'ósemkę'
D. przesuwanie pacy narożnikowej w ruchach 'góra-dół'
Techniki zacierania narożników wklęsłych, takie jak zacieranie powierzchni packą narożnikową ruchami w 'ósemkę', przesuwanie pacy ruchem zygzakowym od dołu do góry lub użycie pacy styropianowej w ruchach kolistych, nie są właściwymi metodami w kontekście profesjonalnego wykończenia tynków. Ruchy w 'ósemkę' mogą prowadzić do nierównomiernego rozłożenia materiału, co skutkuje powstawaniem widocznych nierówności oraz problemów z przyczepnością tynku. Z kolei przesuwanie pacy w ruchu zygzakowym od dołu do góry wprowadza dodatkowe ryzyko, gdyż może to generować nadmiar materiału w niektórych miejscach, prowadząc do niepożądanych efektów wizualnych oraz strukturalnych. Co więcej, użycie pacy styropianowej w ruchach kolistych nie zapewnia odpowiedniej kontroli nad materiałem, co jest kluczowe podczas obrabiania narożników, gdzie precyzja jest niezwykle ważna. Prawidłowe wyrównanie tynku w narożach wklęsłych wymaga techniki, która sprzyja równomiernemu rozkładowi materiału i zwiększa jego trwałość. Dlatego, aby osiągnąć wysoką jakość wykonania, należy unikać błędnych technik i stosować sprawdzone metody, takie jak ruch 'góra-dół', co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 33

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 10 cm
B. 6 cm
C. 22 cm
D. 19 cm
W przypadku długości oparcia nadproża, istotne jest, aby uwzględnić nie tylko minimalne wymagania, ale również całokształt aspektów technicznych. Odpowiedzi na poziomie 6 cm, 19 cm, czy 22 cm są w dużej mierze nieadekwatne do obowiązujących norm. Wybór długości 6 cm jest zdecydowanie zbyt mały, co naraża konstrukcję na niebezpieczeństwo przełamania pod wpływem obciążeń. Praktyka budowlana zaleca znacznie większe wartości, aby zapewnić odpowiednią stabilność. Z kolei 19 cm i 22 cm jako długości oparcia są również niewłaściwe, ponieważ mogą prowadzić do nadmiernego obciążenia ścian, co z kolei może skutkować niepożądanymi efektami, takimi jak pęknięcia ścian czy osiadanie budynku w dłuższej perspektywie. Zbyt duża długość oparcia może także skutkować nieefektywnym przenoszeniem obciążeń, co jest sprzeczne z zasadami ekonomicznego projektowania. W praktyce, kluczowe jest przestrzeganie standardów dotyczących długości oparcia, które pomagają zminimalizować ryzyko uszkodzeń i zwiększają trwałość konstrukcji. Podsumowując, zrozumienie zasad projektowania nadproży oraz ich prawidłowego oparcia jest niezbędne dla każdego inżyniera budowlanego, aby unikać błędów, które mogą prowadzić do poważnych konsekwencji w budownictwie.

Pytanie 34

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100

A. ok. 400 kg
B. ok. 1200 kg
C. ok. 4800 kg
D. ok. 1920 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 35

Ile maksymalnie godzin od momentu przygotowania należy wykorzystać zaprawę cementowo-wapienną?

A. 2 godzin
B. 8 godzin
C. 3 godzin
D. 5 godzin
Wybór odpowiedzi sugerującej dłuższy czas na wykorzystanie zaprawy cementowo-wapiennej opiera się na błędnym założeniu, że zaprawa może nadal być użyteczna po upływie 3 godzin. W rzeczywistości, każda zaprawa cementowa, w tym zaprawa cementowo-wapienna, ma ściśle określony czas otwarty, który nie powinien być przekraczany. Odpowiedzi sugerujące 8, 5 lub 2 godziny nie uwzględniają właściwości chemicznych cementu, który po dodaniu wody zaczyna proces hydratacji, prowadzący do twardnienia. Po upływie 3 godzin, w zależności od warunków otoczenia, zaprawa może znacznie utracić swoje właściwości robocze, co prowadzi do nieprawidłowego przyczepu i osłabienia struktury. Typowym błędem myślowym jest myślenie, że można „zatrzymać czas” i wykorzystać zaprawę po dłuższym okresie. Takie postrzeganie prowadzi do ryzykownych praktyk budowlanych i potencjalnych awarii konstrukcyjnych. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie przestrzegania zaleceń producentów dotyczących czasu pracy zapraw, co ma na celu zapewnienie bezpieczeństwa i jakości wykonania prac budowlanych. Właściwe planowanie i organizacja pracy są kluczowe dla uniknięcia marnotrawstwa materiałów oraz zapewnienia długowieczności budowlanych rozwiązań.

Pytanie 36

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284

A. 0,93 m3
B. 0,47 m3
C. 0,45 m3
D. 0,95 m3
Poprawna odpowiedź to 0,47 m3, co wynika z zastosowania odpowiedniej proporcji do obliczenia ilości piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2. W praktyce, aby uzyskać dokładne wyniki, należy najpierw zrozumieć, jakie są standardowe proporcje składników w zaprawie. Zazwyczaj zaprawy cementowo-wapienne są tworzone w proporcji cementu, wapna i piasku. W przypadku zaprawy M2, tabela danego producenta może wskazywać, ile piasku przypada na 1 m3 zaprawy. Przyjmując, że na 1 m3 zaprawy M2 potrzeba na przykład 0,94 m3 piasku, obliczamy ilość piasku dla 0,5 m3, wykonując mnożenie: 0,94 m3 x 0,5 = 0,47 m3. Ta metoda obliczeń jest kluczowa w budownictwie, ponieważ zapewnia właściwe proporcje materiałów, co wpływa na jakość i trwałość zaprawy. Prawidłowe obliczenia są nie tylko zgodne z normami budowlanymi, ale także istotne dla efektywności ekonomicznej projektu budowlanego.

Pytanie 37

Jaką kwotę otrzyma robotnik za zrealizowanie 250 m2 tynku kategorii III, jeśli za 100 m2 takiego tynku przysługuje mu 1500 zł?

A. 25000 zł
B. 2500 zł
C. 37500 zł
D. 3750 zł
Aby obliczyć wynagrodzenie robotnika za wykonanie 250 m2 tynku kategorii III, najpierw należy ustalić stawkę za jednostkę powierzchni. Skoro robotnik otrzymuje 1500 zł za 100 m2, to jednostkowa stawka wynosi 1500 zł / 100 m2 = 15 zł/m2. Następnie, mnożymy tę stawkę przez powierzchnię, którą robotnik ma wykonać: 15 zł/m2 * 250 m2 = 3750 zł. To podejście jest zgodne z dobrymi praktykami w branży budowlanej, gdzie wynagrodzenie często oblicza się na podstawie stawek jednostkowych. Zastosowanie takich obliczeń pozwala na precyzyjne określenie kosztów pracy oraz efektywne zarządzanie budżetem projektu. Warto również pamiętać, że w praktyce może być konieczne uwzględnienie dodatkowych czynników, takich jak czas realizacji, trudność prac oraz ewentualne dodatkowe koszty materiałów, co może wpłynąć na ostateczną kwotę wynagrodzenia.

Pytanie 38

Do mineralnych spoiw hydraulicznych zalicza się

A. gips szpachlowy i autoklawizowany
B. wapno dolomitowe i pokarbidowe
C. cement hutniczy i pucolanowy
D. wapno hydratyzowane i palone
Wybór wapna hydratyzowanego i palonego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ te materiały nie mają zdolności do wiązania w obecności wody w takim samym stopniu jak cement hutniczy czy pucolany. Wapno hydratyzowane, po rozpuszczeniu w wodzie, prowadzi do hydratacji, jednak nie tworzy trwałych połączeń w warunkach wilgotnych, co ogranicza jego zastosowanie w konstrukcjach narażonych na działanie wody. Wapno palone, z kolei, wykazuje dużą reaktywność chemiczną, ale podobnie jak wapno hydratyzowane, nie zachowuje właściwości hydraulicznych. Gips szpachlowy i autoklawizowany również nie są klasyfikowane jako spoiwa mineralne hydrauliczne, ponieważ gips wiąże się na drodze procesów gipsowych i nie ma zdolności do wiązania w warunkach mokrych. Wapno dolomitowe i pokarbidowe również nie spełniają kryteriów hydraulicznych, co prowadzi do błędnych wniosków odnośnie ich funkcji w budownictwie. Te materiały są często mylone z cementami hydraulicznymi z powodu ich zastosowania w różnych aspektach budowy, jednak nie wykazują one wymaganych właściwości do efektywnego wiązania w obecności wody, co jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Należy pamiętać, że zgodność z normami budowlanymi oraz dobrymi praktykami jest istotna dla osiągnięcia optymalnych efektów w użyciu spoiw w budownictwie.

Pytanie 39

Rozbiórkę ręczną stropu trzeba zacząć od

A. skucia wypełnienia stropu
B. skucia tynku z sufitu
C. podstemplowania stropu
D. wycięcia belek wzdłuż ścian
Ręczna rozbiórka stropu wymaga staranności i właściwego podejścia, aby zapewnić bezpieczeństwo i minimalizować ryzyko uszkodzeń. Rozpoczęcie prac od skucia tynku z sufitu jest kluczowe, ponieważ tynk nie tylko pełni funkcję estetyczną, ale również może wpływać na stabilność całej konstrukcji. Usunięcie tynku pozwala na dokładną ocenę stanu stropu oraz na identyfikację ewentualnych uszkodzeń. Dobrą praktyką jest również zabezpieczenie przestrzeni roboczej przed opadami tynku, co zwiększa bezpieczeństwo pracy. Podczas wykonywania tego etapu warto stosować odpowiednie środki ochrony osobistej, takie jak kaski, okulary ochronne oraz maski przeciwpyłowe, aby zminimalizować ryzyko obrażeń. Warto również korzystać z narzędzi dostosowanych do danego materiału, co ułatwi pracę oraz poprawi jej efektywność.

Pytanie 40

Jakim preparatem powinno się pokryć powierzchnię pylistego tynku, aby zwiększyć jego wytrzymałość?

A. Penetrującym
B. Barwiącym
C. Antyadhezyjnym
D. Gruntującym
Preparat gruntujący to naprawdę ważna rzecz, gdy chodzi o wzmacnianie powierzchni pylącego tynku. Gruntowanie to po prostu nałożenie specjalnego preparatu, który sprawia, że kolejne warstwy lepiej się przyczepiają do podłoża, a do tego redukuje pylenie. Te preparaty penetrują w tynk, co poprawia jego właściwości mechaniczne i zmniejsza problem z wchłanianiem wody. To istotne dla trwałości i odporności na wilgoć. Z moich doświadczeń wynika, że użycie gruntów akrylowych lub żywicznych faktycznie poprawia jakość kolejnych warstw, takich jak farby czy tynki dekoracyjne. W branży budowlanej często zaleca się stosowanie gruntów przed nałożeniem mineralnych czy syntetycznych materiałów wykończeniowych. Po gruntowaniu można uzyskać ładniejszą, jednolitą strukturę powierzchni, co działa lepiej na ogólny wygląd.