Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 11:26
  • Data zakończenia: 7 kwietnia 2025 11:55

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W trakcie konserwacji systemu antenowego wykryto błąd dokonany przez instalatora. Zamiast odpowiedniego przewodu o impedancji falowej 75 Ω podłączono przewód o impedancji falowej 300 Ω. W rezultacie tej pomyłki poziom sygnału odbieranego przez odbiornik

A. uległ wzrostowi
B. uległ zmniejszeniu
C. wynosił 0
D. pozostał bez zmian
Odpowiedź, że poziom sygnału zmniejszył się, jest prawidłowa, ponieważ zastosowanie przewodu o impedancji falowej 300 Ω zamiast 75 Ω prowadzi do niedopasowania impedancyjnego. Takie niedopasowanie powoduje odbicie części sygnału, co w rezultacie skutkuje osłabieniem sygnału odbieranego przez odbiornik. W systemach telekomunikacyjnych, zgodnych z normami, takie jak IEC 61196 dotyczące przewodów do sygnałów analogowych i cyfrowych, kluczowe jest stosowanie przewodów o odpowiedniej impedancji, aby minimalizować straty sygnału. W praktyce, dobór odpowiedniego przewodu może znacząco wpłynąć na jakość sygnału, a nieodpowiedni wybór może prowadzić do zakłóceń, zniekształceń oraz obniżonej jakości odbioru. W przypadku systemów telewizyjnych czy radiowych, stosowanie przewodów o 75 Ω jest standardem, ponieważ pozwala na optymalne przenoszenie sygnałów bez znaczących strat. Warto pamiętać, że w profesjonalnych instalacjach antenowych dbałość o zgodność impedancyjną jest kluczowym aspektem zapewniającym wysoką jakość odbioru oraz niezawodność systemu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie jednostki są używane do określenia tłumienia jednostkowego linii światłowodowej?

A. dB/mV
B. m/dB
C. dB/km
D. mV/dB
Tłumienie jednostkowe linii światłowodowej mówimy w decybelach na kilometr (dB/km). To jest standard w telekomunikacji. Generalnie, decybel to jednostka logarytmiczna, która pozwala na porównanie poziomów sygnału optycznego. A kilometr to po prostu długość, pozwala to określić, jak mocno sygnał traci na jakości na danej długości światłowodu. Na przykład, jak tłumienie wynosi 0,2 dB/km, to znaczy, że na każdym kilometrze sygnał traci właśnie 0,2 dB. To tłumienie jest mega ważne w projektowaniu systemów optycznych, bo inżynierowie mogą dzięki temu stwierdzić, jak długo można puścić sygnał, żeby był jeszcze w miarę ok. Jak mamy do czynienia z dłuższymi odcinkami, to czasami trzeba wstawić wzmacniacze optyczne, żeby jakość sygnału się nie pogarszała. Używanie właściwych jednostek to niby podstawa, ale to naprawdę pomaga w komunikacji technicznej i w pracy nad projektami.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Thomsona
B. Maxwella
C. Wiena
D. Wheatstone'a
Mostek Maxwella to naprawdę fajny układ do pomiarów cewek. Dzięki niemu można zmierzyć różne parametry, jak indukcyjność czy rezystancję, a wszystko to w miarę dokładnie. Działa na zasadzie równowagi, więc można określić indukcyjność bez zakłócania innych wartości w obwodzie. W laboratoriach elektronicznych i inżynieryjnych jest wykorzystywany do testowania różnych komponentów, jak transformatory czy dławiki. Ważne jest też, że mostek Maxwella spełnia normy IEC i IEEE, co daje nam pewność, że pomiary są rzetelne. W porównaniu do mostka Wheatstone'a, który skupia się głównie na rezystancji, mostek Maxwella ma szersze możliwości, jeśli chodzi o analizę cewek. I jeszcze jedna rzecz – dzięki pomiarom można ocenić, jak czynniki jakości (Q) wpływają na wydajność układów indukcyjnych, co jest naprawdę istotne w projektowaniu obwodów elektronicznych. Moim zdaniem, jeśli zajmujesz się elektroniką, warto znać ten mostek.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaką rezystancję Rb powinien mieć bocznik, aby można było podłączyć go równolegle do amperomierza o oporności wewnętrznej RA=300 mΩ, aby czterokrotnie zwiększyć jego zakres pomiarowy?

A. 150 mΩ
B. 300 mΩ
C. 75 mΩ
D. 100 mΩ
Rozważając błędne odpowiedzi, ważne jest zrozumienie podstawowych zasad dotyczących pomiarów prądu oraz rezystancji w układach elektrycznych. Odpowiedzi takie jak 150 mΩ, 75 mΩ oraz 300 mΩ mogą wynikać z niepoprawnego zrozumienia zasady równoległego połączenia rezystancji. Przy połączeniach równoległych rezystancje zmniejszają ogólną rezystancję układu, co jest kluczowe w kontekście amperomierza. Wartości 150 mΩ i 300 mΩ są zbyt wysokie, aby uzyskać pożądaną całkowitą rezystancję wynoszącą 75 mΩ, co prowadziłoby do nieprawidłowych odczytów. Odpowiedź 75 mΩ, mimo że zbliżona, pozostaje błędna, ponieważ w tym przypadku całkowita rezystancja nie osiągnie pożądanego celu czterokrotnego zwiększenia zakresu. Typowym błędem myślowym jest zakładanie, że większa wartość bocznika wspomoże pomiar, co w rzeczywistości prowadzi do spadku dokładności. Kluczowe jest, aby pamiętać, że dobór rezystancji bocznika musi być starannie przemyślany, aby zachować balans między bezpieczeństwem a dokładnością pomiaru. W przypadku nieprawidłowych wyborów rezystancji, wyniki pomiarowe mogą być zafałszowane, co w kontekście profesjonalnych pomiarów elektrycznych może prowadzić do poważnych błędów i nieprawidłowych analiz.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z regulatorów, spośród wymienionych, wyróżnia się zerowym uchybem ustalonym?

A. Regulator trójstawny
B. Regulator dwustawny
C. PD
D. PI
Regulator PD, a więc ten proporcjonalno-różniczkujący, nie daje rady zapewnić zerowego uchybu ustalonego. Działa głównie na członie proporcjonalnym i różniczkującym, więc reguluje reakcję tylko na zmiany w wartości regulowanej, ale nie likwiduje uchybu, gdy system już jest w stanie ustalonym. Ludzie czasami myślą, że PD da sobie z tym radę, ale w praktyce nie dostarcza wystarczającej korekcji. Regulator dwustawny z kolei działa na zasadzie przełączania między dwiema wartościami, co prowadzi do sporych oscylacji i też nie utrzymuje zerowego uchybu. Stosuje się go w prostych systemach, gdzie większe wahania są OK, ale w bardziej wymagających aplikacjach nie jest zbyt przydatny. Regulator trójstawny, mimo że jest bardziej zaawansowany od dwustawnego, też nie gwarantuje zerowego uchybu, bo jego działanie opiera się na trzech stanach, co może wprowadzać dodatkowe zamieszanie w regulacji. Ludzie często o tym zapominają i za bardzo ufają prostocie regulatorów PD i dwustawnych. W rzeczywistości, wybór odpowiedniego regulatora powinien się opierać na analizie wymagań systemu i oczekiwań co do stabilności i precyzji regulacji.

Pytanie 25

Jakim standardem bezprzewodowej wymiany danych powinno charakteryzować się urządzenie elektroniczne, aby mogło dokonywać płatności zbliżeniowych?

A. HITAG
B. MIFARE
C. NFC
D. UNIQUE
NFC, czyli Near Field Communication, to technologia bezprzewodowej wymiany danych, która działa na bardzo krótkich odległościach, zazwyczaj poniżej 10 centymetrów. Jest to kluczowy standard wykorzystywany w płatnościach zbliżeniowych, ponieważ zapewnia szybkie i bezpieczne połączenie między urządzeniem mobilnym a terminalem płatniczym. Przykładem zastosowania NFC jest płatność za pomocą smartfona w punktach sprzedaży, gdzie użytkownik zbliża swoje urządzenie do terminala, by zrealizować transakcję. NFC wykorzystuje również mechanizmy zabezpieczeń, takie jak szyfrowanie danych oraz autoryzację transakcji, co sprawia, że jest to rozwiązanie uznawane za bezpieczne w kontekście płatności. W praktyce, NFC znajduje zastosowanie nie tylko w transakcjach finansowych, ale także w biletach elektronicznych, kartach lojalnościowych oraz wymianie danych między urządzeniami. W dobie cyfryzacji, umiejętność zrozumienia i korzystania z technologii NFC staje się niezwykle istotna, co czyni ją standardem branżowym w dziedzinie płatności mobilnych oraz Internetu rzeczy.

Pytanie 26

Długość adresu IPv4 wynosi ile bitów?

A. 16 bitów
B. 8 bitów
C. 32 bity
D. 4 bity
Adres IPv4 ma długość 32 bitów, co oznacza, że składa się z czterech oktetów, z których każdy ma 8 bitów. Ta konstrukcja pozwala na reprezentację 2^32 (czyli 4 294 967 296) unikalnych adresów IP, co jest kluczowe dla działania Internetu. Przykładowo adresy takie jak 192.168.1.1 czy 10.0.0.255 są przykładami zapisu adresów IPv4. W praktyce adresy IPv4 są używane do identyfikacji urządzeń w sieciach komputerowych, co umożliwia komunikację oraz wymianę danych między nimi. Standardy określające format adresów IP, takie jak RFC 791, definiują zasady przydzielania adresów oraz ich struktury, co jest istotne w kontekście zarządzania sieciami. Wiedza o długości adresu IPv4 jest również ważna przy konfiguracji routerów, ustawieniach firewalla oraz w procesach diagnostyki sieci, gdzie zrozumienie adresacji IP jest kluczowe dla rozwiązywania problemów z łącznością.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. routera.
B. mostu.
C. przełącznika.
D. modemu.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego różnicy pomiędzy różnymi urządzeniami sieciowymi. Modem, który nie został wybrany, jest urządzeniem, które łączy lokalną sieć domową z internetem, przetwarzając sygnały cyfrowe na analogowe i odwrotnie. Jego symbol graficzny zazwyczaj różni się od symbolu routera, przedstawiając inną funkcję, jaką jest konwersja sygnału. Most, będący kolejnym z możliwych wyborów, służy do łączenia dwóch segmentów sieci w celu zwiększenia wydajności, ale nie kieruje ruchu między sieciami tak jak router. Z kolei przełącznik to urządzenie, które łączy różne urządzenia w ramach tej samej sieci, działając na poziomie warstwy drugiej modelu OSI. Wybór tych odpowiedzi świadczy o myleniu funkcji różnych urządzeń sieciowych, co jest powszechnym błędem w zrozumieniu architektury sieci. Zastosowanie routerów, mostów i przełączników w odpowiednich kontekstach jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Warto zatem zapoznać się z ich specyfikacją i rolą, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 29

Czym jest radiator?

A. nastawna cewka toroidalna do strojenia radioodbiornika
B. tor używany w transmisji radiowej
C. radiacyjny pirometr termoelektryczny
D. element odprowadzający ciepło do otoczenia
Radiator to naprawdę ważny element w systemach chłodzenia, który odprowadza ciepło z różnych urządzeń, jak silniki czy sprzęt elektroniczny. Jego głównym zadaniem jest przekazywanie ciepła do otoczenia, żeby urządzenia się nie przegrzały. Radiatory znajdziesz w wielu miejscach, od komputerów po systemy klimatyzacji. Ważne, żeby były wykonane z odpowiednich materiałów, jak aluminium czy miedź, bo mają one super przewodność cieplną. Warto zwrócić uwagę na to, jak projektuje się radiatory – dobrze jest optymalizować powierzchnię, która wymienia ciepło, i zapewnić właściwy przepływ powietrza, co można wspierać wentylatorami. W branżowych standardach, jak IPC-9592, mówi się o tym, jak ważne są efektywne systemy chłodzenia w elektronice, więc naprawdę warto zrozumieć, czemu radiator jest tak istotny dla trwałości urządzeń.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
B. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
C. wprowadzić kondensator o tych samych wymiarach
D. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
Wstawienie kondensatora o pojemności odpowiadającej pojemności znamionowej odczytanej ze schematu urządzenia jest kluczowe dla zapewnienia prawidłowego działania układów elektronicznych. Kondensatory są komponentami, które pełnią istotne funkcje w obwodach, takie jak filtracja, przechowywanie energii czy stabilizacja napięcia. Użycie kondensatora o właściwej pojemności zapewnia, że układ pracuje zgodnie z założeniami projektowymi. Na przykład, w aplikacjach audio, niewłaściwa pojemność może prowadzić do zniekształceń dźwięku, a w obwodach zasilania, do niestabilności napięcia. Praktyczne podejście do wymiany kondensatorów obejmuje także przestrzeganie norm, takich jak IEC 60384, które regulują klasyfikację, parametry i metody testowania kondensatorów. Zachowanie tych standardów zapewnia bezpieczeństwo i niezawodność urządzenia. Ponadto, w przypadku wymiany kondensatora, warto również zwrócić uwagę na jego napięcie pracy oraz typ (elektrolityczny, ceramiczny, mylarowy itp.), co jest zgodne z dobrą praktyką serwisową.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Podczas pomiaru poziomu sygnału telewizji DVB-T w gnieździe abonenckim zbiorczej instalacji antenowej uzyskano wartość 26 dB µV. Zmierzony sygnał

A. wymaga zastosowania filtra zakłóceń w instalacji
B. wymaga zastosowania wzmacniacza w instalacji
C. przekracza dopuszczalną wartość maksymalną
D. umożliwia prawidłowy odbiór
Odpowiedź wskazująca na konieczność zastosowania wzmacniacza w instalacji antenowej jest prawidłowa, ponieważ wartość 26 dB µV sygnału DVB-T jest zbyt niska dla zapewnienia stabilnego i jakościowego odbioru sygnału telewizyjnego. Zgodnie z przyjętymi standardami, minimalny poziom sygnału dla dobrego odbioru telewizji cyfrowej powinien wynosić co najmniej 40 dB µV, a optymalne wartości to nawet 60 dB µV lub więcej, aby uniknąć zakłóceń i zapewnić wysoką jakość obrazu oraz dźwięku. Dlatego w przypadku, gdy poziom sygnału jest niewystarczający, zastosowanie wzmacniacza jest kluczowe, aby podnieść go do odpowiedniego poziomu. W praktyce wzmacniacze instalowane są w różnych punktach sieci, w zależności od jej struktury i rozkładu sygnału, co pozwala na zredukowanie strat sygnału na długich odcinkach kablowych. Stosowanie wzmacniaczy zgodnie z normami i zaleceniami producentów oraz zapewnienie odpowiedniej jakości urządzeń są podstawą skutecznej instalacji antenowej, co przekłada się na satysfakcję użytkowników.

Pytanie 35

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 4 wejścia adresowe
B. 2 wejścia adresowe
C. 3 wejścia adresowe
D. 5 wejść adresowych
Odpowiedzi sugerujące 2, 4 lub 5 wejść adresowych są błędne, ponieważ nie uwzględniają właściwości binarnych systemu adresowania w kontekście multiplekserów. Multiplekser 8-wejściowy z definicji musi mieć możliwość wyboru spośród ośmiu różnych sygnałów. Aby to osiągnąć, przeprowadzamy analizę binarną, która wskazuje, że potrzebujemy 3 bity adresowe. Dla 2 wejść adresowych moglibyśmy zarządzać tylko 4 sygnałami (2^2), co w pełni nie wykorzystałoby możliwości multipleksera przeznaczonego na 8 sygnałów. Odpowiedź mówiąca o 4 wejściach adresowych sugeruje, że moglibyśmy zarządzać 16 sygnałami (2^4), co również jest niepoprawne, gdyż w przypadku multipleksera 8-wejściowego nie ma możliwości ich dodatkowego rozszerzenia. Wybór 5 wejść adresowych również prowadzi do nadmiaru, ponieważ daje to 32 możliwe sygnały, co znacznie przekracza liczbę 8. Kluczowym błędem myślowym jest tutaj nieuwzględnienie podstawowych zasad logiki binarnej i zrozumienia zadania multipleksera. W praktycznych zastosowaniach w inżynierii elektronicznej, projektanci muszą starannie dobierać liczbę adresów do liczby sygnałów, co jest kluczowe w zapewnieniu optymalnej wydajności systemu. W kontekście standardów przemysłowych, niewłaściwe przypisanie adresów może prowadzić do nieefektywności w przesyłaniu danych oraz zwiększonego ryzyka błędów w komunikacji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Według standardu przesyłania sygnału telewizyjnego w Polsce (64QAM, FEC 3/4), minimalna wartość sygnału na wyjściu z gniazda antenowego powinna wynosić

A. 42 dBμV
B. 26 dBμV
C. 48 dBμV
D. 30 dBμV
Wybór 48 dBμV jako minimalnego poziomu sygnału na wyjściu gniazda antenowego w systemie telewizyjnym opartym na modulacji 64QAM oraz kodowaniu FEC 3/4 jest zgodny z zaleceniami branżowymi. W przypadku sygnałów telewizyjnych, decydujące znaczenie ma nie tylko poziom sygnału, ale także jego jakość oraz odporność na zakłócenia. Standardy telewizyjne wskazują, że poziom 48 dBμV zapewnia odpowiednią rezerwę sygnału, co ma kluczowe znaczenie dla stabilności odbioru, zwłaszcza w warunkach nieidealnych, takich jak zjawiska atmosferyczne, przeszkody terenowe czy zakłócenia elektromagnetyczne. W praktyce, poziom sygnału powinien być dostosowany do specyfiki instalacji, a także do odległości od nadajnika. W przypadku wielu instalacji antenowych, poziom sygnału na wyjściu gniazda powinien również uwzględniać straty sygnału na drodze do odbiornika, dlatego 48 dBμV jest uważany za optymalny, aby zapewnić niezawodny i wysokiej jakości odbiór sygnału telewizyjnego w systemach cyfrowych. Warto również dodać, że przy ustawianiu anteny oraz projektowaniu systemów telewizyjnych, stosowanie się do standardów takich jak DVB-T (Digital Video Broadcasting - Terrestrial) oraz ich wymagań dotyczących poziomu sygnału jest kluczowe dla uzyskania optimalnych warunków pracy systemu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.