Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 lutego 2025 17:01
  • Data zakończenia: 11 lutego 2025 17:32

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. OMY
B. YKY
C. AsXSn
D. GsLGs
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 2

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YDY 2,5 mm2
C. ALY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedzi ALY, YLY oraz YDY są nieprawidłowe z kilku kluczowych względów. Przewody oznaczone jako ALY sugerują, że są to przewody aluminiowe, ale brak w nich precyzji dotyczącej materiału izolacyjnego, co może prowadzić do nieodpowiedniego zastosowania w środowiskach, gdzie wymagane są określone parametry izolacji. YLY to oznaczenie dla przewodów miedzianych, co jest niezgodne z podaną specyfikacją materiału żyły w pytaniu. Z kolei YDY odnosi się do przewodów jednożyłowych miedzianych, które również nie pasują do opisanego przypadku. Wybór odpowiedniego przewodu jest kluczowy dla bezpieczeństwa i wydajności instalacji elektrycznej. W praktyce, pomylenie materiału przewodu może prowadzić do poważnych konsekwencji, takich jak przegrzewanie czy uszkodzenia, a w skrajnych przypadkach nawet do pożaru. W branży elektrycznej, zgodność z normami oraz znajomość specyfikacji produktów jest niezbędna, aby zapewnić bezpieczeństwo oraz zgodność z przepisami. Błędy w oznaczeniach mogą wynikać z nieznajomości standardów lub braku uwagi przy wyborze materiałów. Dlatego ważne jest, aby zawsze upewnić się, że wybieramy przewody, które odpowiadają wymaganiom technicznym oraz środowiskowym, w których będą stosowane.

Pytanie 3

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Oczkowym.
C. Nasadowym.
D. Płaskim.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 4

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. wyłożyć je izolacją żłobkową
B. pokryć je lakierem elektroizolacyjnym
C. pokryć je olejem elektroizolacyjnym
D. wstawić w nie kliny ochronne
Wybór niewłaściwych metod przygotowania uzwojenia przed umieszczeniem go w żłobkach silnika indukcyjnego może prowadzić do poważnych konsekwencji. Na przykład smarowanie uzwojeń lakierem elektroizolacyjnym może wydawać się sensowne, jednakże nie zapewnia ono wystarczającej ochrony przed wpływem czynników zewnętrznych oraz uszkodzeń mechanicznych. Lakier, choć może pełnić rolę elektroizolacyjną, nie jest wystarczającym zabezpieczeniem, gdyż może nie tworzyć solidnej bariery ochronnej, co w konsekwencji prowadzi do awarii. Podobnie, umieszczanie klinów zabezpieczających może być mylnie postrzegane jako wystarczające zabezpieczenie; kliny są przede wszystkim wykorzystywane do stabilizacji uzwojenia, ale nie chronią go przed zewnętrznymi czynnikami. Smarowanie uzwojenia olejem elektroizolacyjnym jest również niewłaściwe, ponieważ olej może prowadzić do degradacji materiałów izolacyjnych oraz wprowadzać zanieczyszczenia, które mogą negatywnie wpłynąć na wydajność silnika. Właściwe przygotowanie uzwojeń wymaga zrozumienia ich funkcji oraz roli, jaką pełnią w strukturze silnika indukcyjnego. Izolacja żłobkowa nie tylko chroni uzwojenie, ale także wspiera efektywność energetyczną silnika, co jest szczególnie istotne w kontekście współczesnych norm dotyczących oszczędności energii i redukcji emisji.

Pytanie 5

Który przewód oznacza symbol PE?

A. Wyrównawczy
B. Uziemiający
C. Ochronny
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Omomierza cyfrowego
B. Neonowego wskaźnika napięcia
C. Miernika parametrów instalacji
D. Czujnika zaniku fazy
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik priorytetowy.
B. Ogranicznik mocy.
C. Ogranicznik przepięć.
D. Wyłącznik ciśnieniowy.
Odpowiedzi, które wybrałeś, są nietrafne, bo opierają się na mylnych przekonaniach na temat funkcji różnych elementów w instalacjach elektrycznych. Na przykład, wyłącznik priorytetowy zajmuje się zarządzaniem priorytetami w zasilaniu, gdy mamy kilka źródeł prądu. Ale on nie ma nic wspólnego z monitorowaniem mocy elektrycznej. Działa tak, że przydziela zasilanie najważniejszym urządzeniom, gdy główne źródło przestaje działać.Dlatego akurat w kontekście rysunku, brak oznaczeń związanych z zasilaniem priorytetowym eliminuje tę odpowiedź. Ogranicznik przepięć ma na celu chronić instalacje przed nagłymi wzrostami napięcia, na przykład podczas burzy. To też ważne urządzenie, ale nie reguluje mocy. Wyłącznik ciśnieniowy kontroluje ciśnienie w systemach hydraulicznych albo pneumatycznych, i nie ma nic wspólnego z elektrycznością. Często popełniamy błąd, myląc różne urządzenia elektryczne, co prowadzi do złych wniosków. Żeby dobrze projektować i eksploatować instalacje elektryczne, warto znać specyfikacje i funkcje tych elementów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm2 w izolacji z PVC?

A. YLY 7×2,5 mm2
B. DY 2,5 mm2
C. LY 2,5 mm2
D. YDY 5×2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 15

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Przerwa w uzwojeniu fazy W
B. Przerwa w uzwojeniu fazy V
C. Zwarcie międzyzwojowe w fazie V
D. Zwarcie międzyzwojowe w fazie W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi pod tynkiem
B. miedzianymi umieszczonymi pod tynkiem
C. miedzianymi umieszczonymi na tynku
D. aluminiowymi umieszczonymi na tynku
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 19

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 300 mA
B. 100 mA
C. 30 mA
D. 10 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. CC
B. TE
C. E
D. FPE
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumień dotyczących symboliki używanej w dokumentacji elektrycznej. Odpowiedzi takie jak TE, E oraz FPE nie odnoszą się do przewodu wyrównawczego w kontekście ochrony przed porażeniem prądem. Symbol TE odpowiada zazwyczaj przewodom stosowanym w instalacjach telekomunikacyjnych, natomiast E najczęściej odnosi się do uziemienia, co nie jest tym samym co przewód wyrównawczy. Przewód uziemiający ma na celu zapewnienie bezpiecznego odprowadzenia prądu do ziemi, ale nie służy bezpośrednio do wyrównywania potencjałów. FPE z kolei może być mylone z przewodami stosowanymi w systemach ochrony przeciwprzepięciowej, które mają inną funkcję. Zrozumienie różnic między tymi symbolami jest kluczowe dla prawidłowego projektowania i implementacji systemów elektrycznych. Błędy myślowe związane z myleniem funkcji przewodów mogą prowadzić do niebezpiecznych sytuacji, w których instalacja nie spełnia wymogów bezpieczeństwa, co jest niezgodne z normami i dobrymi praktykami branżowymi. Właściwe stosowanie symboli oraz ich zrozumienie jest podstawą skutecznego i bezpiecznego projektowania instalacji elektrycznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. niepriorytetowym, zostaje wyłączony obwód priorytetowy
C. priorytetowym, zostaje wyłączony obwód niepriorytetowy
D. priorytetowym, zostaje wyłączony obwód priorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
B. rozłożyć dywanik izolacyjny w rejonie pracy
C. poinformować dostawcę energii
D. oznaczyć obszar roboczy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 6,0 Ω
B. 166,7 Ω
C. 766,7 Ω
D. 1,3 Ω
Wybór wartości różnych rezystancji uziemienia, takich jak 766,7 Ω, 6,0 Ω czy 1,3 Ω, wskazuje na nieporozumienie dotyczące zasadności obliczeń i norm bezpieczeństwa związanych z instalacjami elektrycznymi. Wartość 766,7 Ω jest zbyt wysoka, co oznacza, że w przypadku uszkodzenia izolacji, prąd różnicowy nie zostanie skutecznie odłączony, co stwarza ryzyko porażenia. Z kolei 6,0 Ω i 1,3 Ω są nieadekwatne w kontekście wymaganej maksymalnej rezystancji dla wyłącznika różnicowoprądowego o tak dużym prądzie różnicowym. W praktyce, zbyt niska rezystancja może prowadzić do nieprawidłowego działania systemu ochrony i fałszywych wyzwalań, co jest nie do przyjęcia w instalacjach elektrycznych. Właściwe zrozumienie tego zagadnienia wymaga znajomości wzorów na obliczanie rezystancji uziemienia oraz znajomości zależności między napięciem dotykowym, prądem różnicowym i rezystancją. Każda z tych wartości odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji, a ich niewłaściwe dobieranie może prowadzić do nr. 1 zagrożeń w elektryczności, jakim jest porażenie prądem. Wartości rezystancji powinny być starannie dobierane zgodnie z zaleceniami norm, a ich zrozumienie jest niezbędne dla każdego inżyniera zajmującego się projektowaniem i wdrażaniem instalacji elektrycznych.

Pytanie 29

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Lampy fluorescencyjne
B. Lampy indukcyjne
C. Żarówki
D. Lampy ze rtęcią
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Szczypce boczne
C. Nóż monterski
D. Zagniatarka
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. LY
C. OMY
D. YAKY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 36

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO > Zs ∙ Ia
C. UO > Zs ∙ 2Ia
D. UO < Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 37

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
B. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
C. Wiertarka, płaskoszczypce, pion, poziomica
D. Wiertarka, piła do cięcia, poziomica, wkrętarka
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,37 mA
B. ±2,35 mA
C. ±0,02 mA
D. ±0,35 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.