Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 23 maja 2025 20:40
  • Data zakończenia: 23 maja 2025 20:47

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie znaczenie ma parametr NVP (Nominal Velocity of Propagation) podczas pomiarów okablowania strukturalnego?

A. na długość
B. na szybkość
C. na koszt
D. na jakość
Parametr NVP (Nominal Velocity of Propagation) ma kluczowe znaczenie przy pomiarach okablowania strukturalnego, ponieważ odnosi się do prędkości, z jaką sygnał porusza się w danym kablu w stosunku do prędkości światła. NVP jest wyrażany w procentach i jest istotny przy obliczaniu długości kabli potrzebnych do uzyskania odpowiedniej jakości sygnału. W praktyce, przy projektowaniu sieci strukturalnych, musimy uwzględnić NVP, aby określić, jak długo możemy prowadzić sygnał bez utraty jakości. Na przykład, dla kabli miedzianych NVP wynosi zazwyczaj około 66%, co oznacza, że sygnał porusza się w kablu z prędkością 66% prędkości światła. Zrozumienie i prawidłowe zastosowanie wartości NVP jest również kluczowe dla utrzymania zgodności z normami, takimi jak ANSI/TIA-568, które regulują instalacje okablowania strukturalnego. Właściwe obliczenia oparte na NVP pozwalają na optymalizację długości kabli, co jest istotne dla efektywności i niezawodności infrastruktury sieciowej.

Pytanie 2

Według specyfikacji JEDEC standardowe napięcie zasilania modułów RAM DDR3L o niskim napięciu wynosi

A. 1,50 V
B. 1,65 V
C. 1,20 V
D. 1,35 V
Wybór 1,20 V jako napięcia dla modułów DDR3L to nietrafiony pomysł, bo to napięcie w ogóle nie pasuje do żadnej normy pamięci DDR3L. W sumie, 1,20 V to napięcie, które odpowiada DDR4, a te są jeszcze bardziej oszczędne niż DDR3L. Co do 1,50 V, to jest to standard dla DDR3, a nie DDR3L, co pokazuje, że jest między nimi spora różnica. Napięcie 1,65 V to już max dla DDR3, a to w ogóle nie współgra z ideą oszczędzania energii, którą mamy w DDR3L. Osoby, które za bardzo skupiają się na tych napięciach, mogą pomyśleć, że niskonapięciowe moduły zniosą wyższe wartości, a to może prowadzić do złych decyzji przy doborze pamięci. Ważne, żeby wiedzieć, że używanie złego napięcia może prowadzić do niestabilności systemu i czasami nawet uszkodzenia komponentów. Dlatego znajomość tych norm JEDEC i odpowiednich napięć jest mega ważna przy wykorzystywaniu pamięci RAM.

Pytanie 3

Jaką usługę obsługuje port 3389?

A. DNS (DomainName System)
B. TFTP (Trivial File Transfer Protocol)
C. RDP (Remote Desktop Protocol)
D. DHCP (Dynamic Host Configuration Protocol)
DNS (Domain Name System) to system, który tłumaczy nazwy domen na adresy IP, co jest niezbędne do funkcjonowania Internetu. Działa on na porcie 53, a nie 3389, co czyni go niewłaściwą odpowiedzią na zadane pytanie. Użytkownicy mogą często mylić funkcję DNS z innymi protokołami sieciowymi, co prowadzi do błędnych wniosków. TFTP (Trivial File Transfer Protocol) jest prostym protokołem transferu plików, który działa na porcie 69. Z kolei DHCP (Dynamic Host Configuration Protocol) przydziela dynamicznie adresy IP urządzeniom w sieci, a jego standardowy port to 67 dla serwerów i 68 dla klientów. W związku z tym, błędne przypisanie portu 3389 do tych protokołów może wynikać z nieporozumienia dotyczącego różnych funkcji, które pełnią. Istotne jest zrozumienie, że każdy z tych protokołów ma swoje specyficzne zastosowania i porty, co jest kluczowe dla skutecznej konfiguracji i zarządzania sieciami komputerowymi. Aby uniknąć takich błędów, warto zapoznać się z dokumentacją techniczną oraz standardami branżowymi, które precyzyjnie określają, jakie porty są używane przez różne usługi i protokoły.

Pytanie 4

Jak nazywa się proces dodawania do danych z warstwy aplikacji informacji powiązanych z protokołami funkcjonującymi na różnych poziomach modelu sieciowego?

A. Fragmentacja
B. Enkapsulacja
C. Dekodowanie
D. Multipleksacja
Enkapsulacja to proces, w którym dodatkowe informacje, takie jak nagłówki i stopki, są dodawane do danych na różnych poziomach modelu OSI lub TCP/IP, w celu zapewnienia ich prawidłowej transmisji przez sieć. W praktyce, kiedy aplikacja generuje dane, te dane są najpierw enkapsulowane w warstwie aplikacji, co oznacza dodanie stosownych nagłówków specyficznych dla protokołów, takich jak HTTP czy FTP. Następnie, w warstwie transportowej, mogą być dodawane kolejne informacje, takie jak numery portów, co pozwala na identyfikację usług w systemie. Warto zauważyć, że proces ten jest fundamentalny dla komunikacji sieciowej, jako że pozwala na niezawodne przesyłanie danych pomiędzy urządzeniami, a także na zarządzanie różnymi protokołami i standardami. Przykładowo, w przypadku przesyłania plików przez FTP, dane są najpierw podzielone na segmenty, a następnie enkapsulowane w nagłówki, co umożliwia ich prawidłowe przesłanie i odbiór. Zrozumienie enkapsulacji jest kluczowe, aby móc projektować i analizować efektywne sieci komputerowe oraz implementować odpowiednie protokoły zgodnie z obowiązującymi standardami w branży.

Pytanie 5

W dokumentacji technicznej głośnika komputerowego oznaczenie "10 W" dotyczy jego

A. mocy
B. napięcia
C. częstotliwości
D. zakresu pracy
Zapis "10 W" w dokumentacji technicznej głośnika komputerowego odnosi się do jego mocy, co jest kluczowym parametrem wpływającym na wydajność urządzenia. Moc głośnika, mierzona w watach (W), określa zdolność głośnika do przetwarzania energii elektrycznej na dźwięk. W przypadku głośników komputerowych, moc nominalna jest istotna, ponieważ wpływa na głośność dźwięku, jakość oraz zdolność do reprodukcji dźwięków o różnych częstotliwościach. Przykładowo, głośnik o mocy 10 W jest zdolny do generowania wyraźnego dźwięku w większości zastosowań domowych, takich jak granie w gry czy słuchanie muzyki. W praktyce, dobór głośnika o odpowiedniej mocy do systemu audio jest kluczowy dla zapewnienia optymalnego doświadczenia dźwiękowego, a także dla zachowania jakości dźwięku przy większych poziomach głośności. W branży audio, standardy dotyczące mocy głośników są regulowane przez organizacje takie jak Consumer Electronics Association (CEA), co zapewnia jednolitość i przejrzystość w specyfikacjach.

Pytanie 6

Na zaprezentowanej płycie głównej komputera złącza oznaczono cyframi 25 i 27

Ilustracja do pytania
A. USB
B. PS 2
C. LPT
D. RS 232
Złącza USB, oznaczone na płycie głównej jako 25 i 27, są jednym z najpopularniejszych interfejsów do podłączania urządzeń peryferyjnych do komputera. USB, czyli Universal Serial Bus, jest wszechstronnym złączem, które pozwala na podłączenie różnorodnych urządzeń, takich jak myszki, klawiatury, drukarki, kamery, a nawet dyski zewnętrzne. Dzięki swojej uniwersalności i szerokiej kompatybilności, USB stało się standardem przemysłowym. Złącza te zapewniają nie tylko transfer danych, ale także zasilanie dla podłączonych urządzeń. Istnieją różne wersje USB, w tym USB 1.0, 2.0, 3.0, a także najnowsze USB-C, które oferuje jeszcze szybszy transfer danych i większą moc zasilania. Złącza USB różnią się także kształtem i przepustowością, co jest istotne przy doborze odpowiednich kabli i urządzeń. Cechą charakterystyczną złączy USB jest ich zdolność do hot-pluggingu, co oznacza, że urządzenia można podłączać i odłączać bez konieczności wyłączania komputera. Współczesne urządzenia często korzystają z USB do ładowania i wymiany danych, co czyni je niezwykle praktycznymi w codziennym użytkowaniu. Dlatego złącza USB są kluczowym elementem współczesnych komputerów i ich poprawne rozpoznanie jest istotne w pracy technika informatyka.

Pytanie 7

Jakie pole znajduje się w nagłówku protokołu UDP?

A. Wskaźnik pilności
B. Suma kontrolna
C. Numer potwierdzenia
D. Numer sekwencyjny
Suma kontrolna w protokole UDP jest kluczowym elementem, który zapewnia integralność danych przesyłanych w sieci. Jest to 16-bitowe pole, które pozwala na wykrycie błędów w danych, co jest szczególnie ważne w kontekście komunikacji sieciowej, gdzie utrata lub uszkodzenie pakietów mogą prowadzić do poważnych problemów. UDP, jako protokół bezpołączeniowy, nie implementuje mechanizmów gwarantujących dostarczenie pakietów, dlatego suma kontrolna odgrywa istotną rolę w zapewnieniu, że odebrane dane są zgodne z wysłanymi. Przykładem zastosowania sumy kontrolnej może być przesyłanie strumieni audio lub wideo, gdzie każde uszkodzenie danych może skutkować zakłóceniem lub utratą jakości. Wartością dodaną jest to, że suma kontrolna jest obliczana zarówno przez nadawcę, jak i odbiorcę, co zwiększa bezpieczeństwo i niezawodność przesyłu. Dzięki tym mechanizmom UDP jest szeroko stosowane w aplikacjach wymagających niskich opóźnień, takich jak gry online czy transmisje w czasie rzeczywistym.

Pytanie 8

Jaki rodzaj kabla powinien być użyty do podłączenia komputera w miejscu, gdzie występują zakłócenia elektromagnetyczne?

A. UTP Cat 5e
B. UTP Cat 6
C. FTP Cat 5e
D. UTP Cat 5
Wybór kabli UTP Cat 6, UTP Cat 5 i UTP Cat 5e w kontekście pomieszczenia z zakłóceniami elektromagnetycznymi może prowadzić do problemów z jakością sygnału i stabilnością połączenia. Kable UTP (Unshielded Twisted Pair) nie posiadają żadnego zabezpieczenia przed zakłóceniami zewnętrznymi, co czyni je mniej odpowiednimi w środowisku, gdzie występują silne źródła zakłóceń. Kable UTP Cat 6, mimo że oferują wyższe prędkości transmisji w porównaniu do starszych standardów, wciąż nie są ekranowane, co nie zabezpiecza sygnału przed wpływem elektromagnetycznym. Podobnie, UTP Cat 5 i Cat 5e, choć mogą być używane do transmisji danych w normalnych warunkach, nie są wystarczająco odporne w sytuacjach, gdzie zakłócenia są znaczące. W przypadku stosowania takich kabli w trudnych warunkach, użytkownicy mogą doświadczyć problemów związanych z błędami transmisji, co może prowadzić do spadku wydajności sieci oraz zwiększenia liczby błędów w przesyłanych danych. Właściwe dobieranie kabli do warunków otoczenia jest kluczowe dla zapewnienia niezawodności i efektywności infrastruktury sieciowej. Z tego powodu, wybór kabli ekranowanych, takich jak FTP, jest jedynym logicznym rozwiązaniem w środowiskach narażonych na zakłócenia elektromagnetyczne.

Pytanie 9

W celu poprawy efektywności procesora Intel można wykorzystać procesor oznaczony literą

A. Y
B. K
C. B
D. U
Procesory Intel oznaczone literą K są dedykowane do podkręcania, co oznacza, że mają odblokowane mnożniki. Dzięki temu użytkownicy mogą zwiększać częstotliwość pracy procesora ponad wartości fabryczne, co prowadzi do wzrostu wydajności. Przykładem takich procesorów są Intel Core i7-10700K czy i9-10900K, które oferują znaczną elastyczność w overclockingu. Przy odpowiednim chłodzeniu oraz zasilaniu, użytkownicy mogą uzyskać znaczący wzrost wydajności w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak gry komputerowe czy obróbka wideo. Warto zauważyć, że Intel zapewnia specjalne narzędzia, takie jak Intel Extreme Tuning Utility, które ułatwiają proces podkręcania oraz monitorowania wydajności procesora. Standardy branżowe wskazują, że podkręcanie powinno być przeprowadzane z zachowaniem ostrożności, aby unikać przegrzewania i uszkodzenia komponentów. Dlatego przed przystąpieniem do overclockingu warto zainwestować w wydajne systemy chłodzenia oraz solidne zasilacze, które mogą znieść wyższe obciążenia.

Pytanie 10

W systemie Linux do śledzenia wykorzystania procesora, pamięci, procesów oraz obciążenia systemu wykorzystuje się polecenie

A. top
B. rev
C. grep
D. ifconfig
Wybór poleceń takich jak 'rev', 'grep' czy 'ifconfig' wskazuje na pewne nieporozumienia dotyczące ich funkcji w systemie Linux. 'rev' służy do odwracania znaków w każdym wierszu tekstu, co nie ma żadnego związku z monitorowaniem wydajności systemu. Jest to narzędzie typowo używane w przetwarzaniu tekstu, a nie do analizy zasobów systemowych. Drugą nieprawidłową odpowiedzią jest 'grep', które jest potężnym narzędziem do wyszukiwania wzorców w plikach tekstowych lub strumieniach danych, ale również nie wykazuje możliwości monitorowania wydajności systemu. Ostatnie z wymienionych poleceń, 'ifconfig', zajmuje się konfiguracją interfejsów sieciowych, co jest całkowicie odmiennym zagadnieniem i nie odpowiada na potrzeby związane z analityką zasobów systemowych. Kluczowym błędem jest mylenie narzędzi, które mają różne funkcje. W kontekście monitorowania systemu, ważne jest rozpoznawanie odpowiednich narzędzi i ich zastosowań. Do efektywnego zarządzania systemem, administratorzy muszą znać narzędzia, które dostarczają informacji o stanie systemu, a nie tylko o konfiguracji lub przetwarzaniu tekstu.

Pytanie 11

Jaką fizyczną topologię sieci komputerowej przedstawia ilustracja?

Ilustracja do pytania
A. Siatki
B. Hierarchiczna
C. Pierścienia
D. Gwiazdy
Topologia siatki, choć bardziej złożona, charakteryzuje się połączeniami typu każdy z każdym, co zapewnia wysoką redundancję i niezawodność, ale jest skomplikowana w implementacji i kosztowna. Nie pasuje do obrazu, gdzie widoczna jest struktura z centralnym punktem. Topologia pierścienia, w której każde urządzenie jest połączone z dwoma innymi, tworząc okrąg, jest mniej popularna we współczesnych sieciach ze względu na problemy z wydajnością i niezawodnością w przypadku awarii jednego z węzłów. Również nie odpowiada przedstawionemu obrazowi, gdzie brak jest takich połączeń. Topologia hierarchiczna, także nazywana drzewiastą, jest formą organizacji sieci, gdzie urządzenia są połączone w strukturę przypominającą drzewo. W takim przypadku poszczególne węzły są organizowane w warstwy, co nie jest przedstawione na obrazie, który wskazuje na symetryczną strukturę z centralnym punktem. Błąd w rozpoznaniu topologii może wynikać z niedostatecznego zrozumienia różnic pomiędzy nimi oraz ich praktycznych zastosowań i ograniczeń, co podkreśla znaczenie dogłębnej analizy i znajomości poszczególnych rozwiązań sieciowych.

Pytanie 12

Na przedstawionym schemacie blokowym fragmentu systemu mikroprocesorowego, co oznacza symbol X?

Ilustracja do pytania
A. pamięć Cache
B. kontroler przerwań
C. pamięć stałą ROM
D. kontroler DMA
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu mikroprocesorowego. Pamięć stała ROM jest używana do przechowywania oprogramowania lub danych, które nie mogą być zmieniane podczas normalnej pracy systemu, często zawiera BIOS w komputerach klasy PC. Nie jest jednak związana z obsługą przerwań, które wymagają dynamicznej interakcji i priorytetyzacji sygnałów od różnych urządzeń. Pamięć Cache, z kolei, służy do tymczasowego przechowywania najczęściej używanych danych w celu przyspieszenia dostępu do nich przez procesor. Jest to mechanizm optymalizacyjny mający na celu zwiększenie wydajności przetwarzania danych, a nie zarządzanie sygnałami przerwań. Kontroler DMA odpowiada za bezpośredni dostęp do pamięci przez urządzenia peryferyjne bez udziału procesora, co odciąża procesor przy dużych transferach danych. Choć jest to zaawansowane rozwiązanie do zarządzania przepustowością danych, jego funkcja różni się od zarządzania przerwaniami. Błędne rozumienie tych funkcji może prowadzić do niepoprawnego przypisania komponentów w schematach blokowych. Kluczowe jest zrozumienie specyficznych ról tych urządzeń oraz tego, jak wpływają one na pracę całego systemu mikroprocesorowego. Właściwa klasyfikacja zapewnia poprawne projektowanie i implementację systemów wbudowanych i komputerowych.

Pytanie 13

Pozyskiwanie materiałów z odpadów w celu ich ponownego użycia to

A. segregacja
B. kataliza
C. recykling
D. utylizacja
Recykling to super ważny proces, który pozwala nam odzyskiwać surowce z odpadów i wykorzystać je na nowo. W kontekście gospodarki o obiegu zamkniętym ma kluczowe znaczenie, bo pomaga zmniejszyć ilość śmieci, oszczędzać surowce naturalne i ograniczać emisję gazów cieplarnianych. Możemy tu wspomnieć o recyklingu szkła, plastiku, metali czy papieru, które tak czy siak wracają do produkcji. Żeby recykling działał jak należy, trzeba przestrzegać pewnych standardów, takich jak EN 13430, które pomagają w uzyskaniu wysokiej jakości surowców wtórnych. Dobrym przykładem są programy zbiórki odpadów, które zachęcają ludzi do segregacji i oddawania surowców do ponownego użycia. To nie tylko zwiększa efektywność, ale też uczy nas, jak dbać o środowisko i zrównoważony rozwój.

Pytanie 14

W sieci z maską 255.255.255.128 można przypisać adresy dla

A. 254 urządzenia
B. 126 urządzeń
C. 127 urządzeń
D. 128 urządzeń
Maska podsieci 255.255.255.128, której notacja CIDR to /25, pozwala na podział adresu IPv4 na dwie części: adres sieci oraz adres hosta. W przypadku maski /25, mamy 7 bitów przeznaczonych na adresy hostów (32 bity - 25 bity maski = 7 bity). Liczba dostępnych adresów hostów oblicza się za pomocą wzoru 2^n - 2, gdzie n to liczba bitów przeznaczonych dla hostów. W naszym przypadku to 2^7 - 2, co daje 128 - 2 = 126 adresów hostów. Odejmuje się 2 adresy: jeden dla adresu sieci (wszystkie bity hosta ustawione na 0) i jeden dla adresu rozgłoszeniowego (wszystkie bity hosta ustawione na 1). Przykładowo, w sieci 192.168.1.0/25, możliwe adresy hostów to od 192.168.1.1 do 192.168.1.126. Wiedza o adresowaniu i podsieciach jest kluczowa w zarządzaniu sieciami komputerowymi, a stosowanie odpowiednich masek sieciowych pozwala na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 15

Na podstawie przedstawionego w tabeli standardu opisu pamięci PC-100 wskaż pamięć, która charakteryzuje się maksymalnym czasem dostępu wynoszącym 6 nanosekund oraz minimalnym opóźnieniem między sygnałami CAS i RAS równym 2 cyklom zegara?

Specyfikacja wzoru: PC 100-abc-def jednolitego sposobu oznaczania pamięci.
aCL
(ang. CAS Latency)
minimalna liczba cykli sygnału taktującego, liczona podczas operacji odczytu, od momentu uaktywnienia sygnału CAS, do momentu pojawienia się danych na wyjściu modułu DIMM (wartość CL wynosi zwykle 2 lub 3);
btRCD
(ang. RAS to CAS Delay)
minimalne opóźnienie pomiędzy sygnałami RAS i CAS, wyrażone w cyklach zegara systemowego;
ctRP
(ang. RAS Precharge)
czas wyrażony w cyklach zegara taktującego, określający minimalną pauzę pomiędzy kolejnymi komendami, wykonywanymi przez pamięć;
dtACMaksymalny czas dostępu (wyrażony w nanosekundach);
eSPD Revspecyfikacja komend SPD (parametr może nie występować w oznaczeniach);
fParametr zapasowyma wartość 0;

A. PC100-332-70
B. PC100-333-60
C. PC100-323-70
D. PC100-322-60
Rozumienie oznaczeń pamięci takich jak PC100-323-70 czy PC100-332-70 jest kluczowe dla prawidłowej interpretacji ich specyfikacji technicznych. Oznaczenie to składa się z kilku istotnych parametrów, które określają wydajność pamięci w kontekście konkretnych operacji. W przypadku pamięci PC-100, liczby po oznaczeniu odzwierciedlają opóźnienia w cyklach zegara dla różnych operacji, takich jak CAS Latency (CL), RAS to CAS Delay (tRCD), RAS Precharge Time (tRP), a także maksymalny czas dostępu wyrażony w nanosekundach. Wybór niepoprawnej pamięci, takiej jak PC100-323-70, wynika najczęściej z niezrozumienia różnic między wartościami opóźnień i maksymalnym czasem dostępu. Na przykład, w oznaczeniu PC100-323-70, ostatnia liczba wskazuje na maksymalny czas dostępu równy 7 nanosekund, co nie spełnia kryterium 6 nanosekund podanego w pytaniu. Podobnie, w oznaczeniu PC100-332-70, chociaż czas dostępu również wynosi 7 nanosekund, to opóźnienie tRCD wynosi 3 cykle zegara, a nie 2. Zrozumienie tych parametrów jest niezbędne dla poprawnego działania systemów komputerowych, gdyż bezpośrednio wpływają one na szybkość i stabilność pamięci, a tym samym na ogólną wydajność komputera. Niezrozumienie lub pomylenie tych parametrów może prowadzić do wyboru nieoptymalnych komponentów, co skutkuje obniżoną wydajnością lub niestabilnością systemu.

Pytanie 16

Strzałka na diagramie ilustrującym schemat systemu sieciowego według normy PN-EN 50173 wskazuje na rodzaj okablowania

Ilustracja do pytania
A. pionowe
B. poziome
C. kampusowe
D. szkieletowe zewnętrzne
Okablowanie pionowe, zgodnie z normą PN-EN 50173, jest kluczowym komponentem infrastruktury sieciowej w budynkach. Dotyczy ono połączeń między głównymi punktami dystrybucyjnymi (BD) a piętrowymi punktami dystrybucyjnymi (PD) w ramach tego samego budynku. Okablowanie pionowe jest istotne ze względu na jego rolę w zapewnieniu stabilnej transmisji danych między różnymi piętrami budynku. W praktyce stosuje się zazwyczaj kable światłowodowe lub miedziane o wysokiej jakości, aby zagwarantować minimalne straty sygnału na długich dystansach. Również zgodność z normami pozwala na zachowanie uniwersalności i skalowalności infrastruktury sieciowej, co jest kluczowe w dużych obiektach komercyjnych i przemysłowych. Optymalna konfiguracja okablowania pionowego przyczynia się do efektywnego zarządzania przepustowością oraz elastyczności w przypadku rozbudowy sieci. Warto wspomnieć, że właściwe zarządzanie kablami pionowymi może znacząco poprawić czas reakcji systemu i zmniejszyć potencjalne zakłócenia, co jest istotne w kontekście nowoczesnych wymagań dotyczących przesyłu danych w szybkich sieciach komputerowych.

Pytanie 17

Jaki termin powinien zostać umieszczony w miejscu z kropkami na schemacie blokowym przedstawiającym strukturę systemu operacyjnego?

Ilustracja do pytania
A. Powłoka
B. Sterowniki
C. Testy wydajnościowe
D. Aplikacje użytkowe
Programy użytkowe, choć istotne, nie pełnią roli pośrednika między użytkownikiem a jądrem systemu operacyjnego. Są to aplikacje, które realizują konkretne zadania użytkowników, takie jak edytory tekstu czy przeglądarki internetowe, ale nie zarządzają bezpośrednio zasobami sprzętowymi ani nie interpretują poleceń użytkownika. Sterowniki natomiast są odpowiedzialne za komunikację między systemem operacyjnym a sprzętem, umożliwiając prawidłowe działanie urządzeń peryferyjnych, jednak nie angażują się w interakcję z użytkownikiem na poziomie interfejsu. Benchmarki, z kolei, to narzędzia służące do oceny wydajności systemu lub jego komponentów, ale nie są częścią operacyjnej struktury systemu operacyjnego. Typowym błędem jest postrzeganie wszystkich elementów systemu operacyjnego jako równoważnych w ich funkcji, podczas gdy każdy z nich pełni specyficzną rolę w ekosystemie IT. Wybór odpowiedniej komponenty do konkretnego zadania wymaga zrozumienia ich unikalnych właściwości i zastosowań. Powłoka, jako jedyna z wymienionych opcji, bezpośrednio umożliwia interakcję użytkownika z systemem przez interpretację i przekazywanie poleceń, co stanowi jej fundamentalną funkcję w architekturze systemu operacyjnego.

Pytanie 18

Jakie urządzenie zapewnia zabezpieczenie przed różnorodnymi atakami z sieci i może również realizować dodatkowe funkcje, takie jak szyfrowanie danych przesyłanych lub automatyczne informowanie administratora o włamaniu?

A. koncentrator
B. regenerator
C. punkt dostępowy
D. firewall sprzętowy
Firewall sprzętowy, znany również jako zapora ogniowa, to kluczowe urządzenie w architekturze bezpieczeństwa sieci, które służy do monitorowania i kontrolowania ruchu sieciowego w celu ochrony przed nieautoryzowanym dostępem oraz atakami z sieci. Funkcjonalność firewalla obejmuje nie tylko blokowanie niepożądanych połączeń, ale także możliwość szyfrowania przesyłanych danych, co znacząco podnosi poziom bezpieczeństwa informacji. Przykładowo, w przedsiębiorstwie firewall może być skonfigurowany do automatycznego powiadamiania administratora o podejrzanych aktywnościach, co pozwala na szybką reakcję na potencjalne zagrożenia. Zgodnie z najlepszymi praktykami branżowymi, firewalle powinny być regularnie aktualizowane oraz dostosowywane do zmieniających się warunków w sieci, aby skutecznie przeciwdziałać nowym typom zagrożeń. Wiele organizacji wdraża rozwiązania firewallowe w połączeniu z innymi technologiami zabezpieczeń, co tworzy wielowarstwowy system ochrony, zgodny z zaleceniami standardów bezpieczeństwa takich jak ISO/IEC 27001.

Pytanie 19

Która struktura partycji pozwala na stworzenie do 128 partycji podstawowych na pojedynczym dysku?

A. BOOT
B. NTLDR
C. MBR
D. GPT
Wybór MBR jako odpowiedzi jest błędny, ponieważ ta tablica partycji ma ograniczenia, które ograniczają liczbę partycji podstawowych do czterech. MBR został wprowadzony w latach 80. i od tego czasu nie był aktualizowany w sposób, który umożliwiałby wsparcie dla nowoczesnych dużych dysków twardych. MBR przechowuje informacje o partycjach w pierwszym sektorze dysku, co ogranicza jego możliwości w zakresie zarządzania przestrzenią. To powoduje, że w przypadku potrzeby utworzenia większej liczby partycji, użytkownik musi korzystać z partycji rozszerzonej, co może być niepraktyczne. Odpowiedzi takie jak BOOT i NTLDR są również mylące, ponieważ odnoszą się do komponentów związanych z rozruchem systemu operacyjnego, a nie do rodzaju tablicy partycji. BOOT to ogólnie termin dotyczący procesu uruchamiania, a NTLDR (NT Loader) to specyficzny bootloader dla systemów Windows NT, który nie ma związków z zarządzaniem partycjami. W kontekście współczesnych standardów, MBR oraz związane z nim technologie są zazwyczaj uważane za przestarzałe, przez co zaleca się korzystanie z GPT w nowych instalacjach. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego zarządzania systemami komputerowymi.

Pytanie 20

Czym jest NAS?

A. technologia pozwalająca na podłączenie zasobów dyskowych do sieci komputerowej
B. serwer do synchronizacji czasu
C. dynamiczny protokół przydzielania adresów DNS
D. protokół używany do tworzenia połączenia VPN
Technologia NAS, czyli Network Attached Storage, to system, który pozwala na przechowywanie danych w sieci. Dzięki temu każdy, kto jest w tej samej sieci, może zdalnie uzyskać dostęp do plików – to naprawdę ułatwia życie! Możemy wykorzystać NAS do trzymania naszych filmów czy zdjęć, które potem można bezproblemowo streamować do różnych urządzeń, czy to w domu, czy w biurze. Poza tym, bardzo często używa się NAS jako głównego miejsca do robienia kopii zapasowych z różnych komputerów. Co ciekawe, wiele urządzeń NAS obsługuje takie protokoły jak NFS czy SMB, co sprawia, że wszystko działa sprawnie, nawet na różnych systemach. Z mojego doświadczenia, warto pamiętać o regularnych aktualizacjach oprogramowania, monitorowaniu dysków i zapewnieniu odpowiednich zabezpieczeń, na przykład szyfrowania danych czy kontrolowania dostępu.

Pytanie 21

Jaki typ grupy jest automatycznie przypisany dla nowo tworzonej grupy w kontrolerze domeny systemu Windows Server?

A. Uniwersalny
B. Dystrybucyjny
C. Lokalny w domenie
D. Globalny
Poprawna odpowiedź to "Globalny", ponieważ w kontrolerze domeny systemu Windows Serwer nowo utworzone grupy domyślnie przyjmują ten właśnie zakres. Grupy globalne są wykorzystywane do organizowania użytkowników i grup w ramach jednej domeny, co ma kluczowe znaczenie dla zarządzania uprawnieniami i dostępem do zasobów. Przykładowo, jeśli mamy grupę globalną o nazwie 'UżytkownicyMarketingu', można ją przypisać do określonych zasobów w domenie, takich jak udziały plików, umożliwiając wszystkim członkom tej grupy dostęp do niezbędnych danych. Ponadto, dobrą praktyką jest utrzymywanie grup globalnych w celu centralizacji zarządzania oraz uproszczenia administracji. Standardowym podejściem zgodnym z najlepszymi praktykami branżowymi jest ograniczanie liczby grup lokalnych i dystrybucyjnych, co zwiększa efektywność zarządzania w dużych środowiskach IT.

Pytanie 22

Jakie urządzenie umożliwia zwiększenie zasięgu sieci bezprzewodowej?

A. Przełącznik zarządzalny
B. Modem VDSL
C. Wzmacniacz sygnału
D. Konwerter mediów
Wzmacniacz sygnału to urządzenie, które działa na zasadzie odbierania i retransmisji sygnału bezprzewodowego, co pozwala na zwiększenie zasięgu sieci Wi-Fi. Działa to w praktyce poprzez wzmocnienie sygnału, który w przeciwnym razie mógłby być zbyt słaby, aby dotrzeć do odległych miejsc w budynku lub na zewnątrz. Stosowanie wzmacniaczy sygnału jest szczególnie przydatne w dużych domach, biurach czy obiektach przemysłowych, gdzie występują przeszkody, takie jak ściany czy meble, które mogą tłumić sygnał. Zgodnie z dobrymi praktykami branżowymi, przed zakupem wzmacniacza warto przeprowadzić pomiar zasięgu istniejącej sieci, aby odpowiednio dobrać lokalizację wzmacniacza, co zapewni maksymalną efektywność. Wzmacniacze sygnału są również często wykorzystywane w sytuacjach, gdy istnieje potrzeba pokrycia zasięgiem rozległych terenów, takich jak parki, ogrody czy kompleksy sportowe.

Pytanie 23

Jakie polecenie w systemie Linux jest potrzebne do stworzenia archiwum danych?

A. date
B. cal
C. grep
D. tar
Wydaje mi się, że wybór poleceń jak 'cal', 'grep' czy 'date' zamiast 'tar' może świadczyć o tym, że nie do końca rozumiesz, co te narzędzia robią. 'Cal' pokazuje kalendarz i kompletnie nie odnosi się do archiwizacji. Używanie go w tym kontekście to trochę nietrafione podejście. 'Grep' z kolei służy do przeszukiwania tekstu, więc to też nie jest to, czego potrzebujesz, gdy chcesz zarchiwizować pliki. A 'date'? To pokazuje datę i godzinę, co tym bardziej nie ma nic wspólnego z archiwami. Wybór tych poleceń może wynikać z tego, że nie do końca rozumiesz rolę każdego narzędzia w Linuxie. Kluczowe jest, żebyś wiedział, jakie polecenia są najlepsze do danego zadania i jak one działają. Proponuję poczytać dokumentację i poćwiczyć z 'tar', bo to naprawdę przydatne narzędzie i warto je poznać.

Pytanie 24

Który z zapisów adresu IPv4 z maską jest niepoprawny?

A. 100.0.0.0/8
B. 192.168.0.1, maska 255.250.255.0
C. 16.1.1.1/5
D. 18.4.0.0, maska 255.0.0.0
Adresy IPv4, takie jak 16.1.1.1/5, 100.0.0.0/8 oraz 18.4.0.0 z maską 255.0.0.0, są przykładem sprawnie skonfigurowanych adresów, jednak nie oznacza to, że są one pozbawione błędów konceptualnych. Zapis 16.1.1.1/5 sugeruje, że pierwsze 5 bitów adresu odnosi się do części sieci, co w praktyce przekłada się na bardzo dużą sieć z maksymalnie 2^27 (134217728) możliwymi adresami hostów, co jest niepraktyczne w większości zastosowań. Adres 100.0.0.0/8 jest stosowany jako adres klasy A, jednak jego wykorzystanie w małych sieciach lokalnych może prowadzić do zbędnego marnotrawienia przestrzeni adresowej. Z kolei adres 18.4.0.0 z maską 255.0.0.0 również nie jest adekwatny do typowych scenariuszy, ponieważ umożliwia tworzenie zbyt dużych podsieci. Błędy te często wynikają z nieporozumienia dotyczącego zasad podziału i przypisywania adresów IP. Właściwe podejście do adresowania wymaga zrozumienia hierarchicznych struktur sieci oraz umiejętności właściwego doboru maski podsieci do specyficznych potrzeb lokalnych sieci. Użytkownicy często mylą zakresy adresów z maskami, co prowadzi do błędnych konfiguracji sieciowych, a w konsekwencji do problemów z komunikacją w sieci.

Pytanie 25

Układy sekwencyjne stworzone z grupy przerzutników, najczęściej synchronicznych typu D, które mają na celu przechowywanie danych, to

A. bramki
B. kodery
C. dekodery
D. rejestry
Wybór odpowiedzi na pytanie o układy sekwencyjne, które pełnią rolę przechowywania danych, może prowadzić do pewnych nieporozumień. Dekodery, mimo że są elementami cyfrowymi, w rzeczywistości nie służą do przechowywania danych, a ich funkcja ogranicza się do przekształcania kodów binarnych na unikalne sygnały wyjściowe. Zasadniczo dekoder to układ, który konwertuje binarną reprezentację cyfrową na sygnalizację, co sprawia, że jego rola jest zupełnie inna niż w przypadku rejestrów. Z kolei kodery działają w przeciwną stronę, przekształcając sygnały wejściowe w formę kodu binarnego, co również nie odpowiada funkcji przechowywania danych. Bramki, będące podstawowymi elementami logicznymi, służą do realizacji funkcji logicznych i operacji na sygnałach, nie mają jednak zdolności do zachowywania informacji. Stąd wybór tych opcji może wynikać z mylnego rozumienia ról tych komponentów. W praktyce, aby zrozumieć różnice między tymi układami, warto zwrócić uwagę na ich specyfikacje oraz zastosowania w projektowaniu systemów cyfrowych. Układy sekwencyjne, takie jak rejestry, są krytyczne w kontekście przechowywania i przetwarzania danych, dlatego ich znajomość i umiejętność różnicowania ich od innych elementów logicznych jest kluczowa w inżynierii cyfrowej.

Pytanie 26

Adres komórki pamięci został podany w kodzie binarnym 1110001110010100. Jak zapisuje się ten adres w systemie szesnastkowym?

A. 493
B. D281
C. E394
D. 7E+092
Niepoprawne odpowiedzi wynikają z nieprawidłowej konwersji adresu binarnego na system szesnastkowy. Jednym z typowych błędów jest pomijanie kluczowego kroku, jakim jest grupowanie bitów w zestawy po cztery. Na przykład, odpowiedzi takie jak 7E+092 sugerują błędne użycie notacji naukowej, co jest całkowicie nieadekwatne w kontekście zapisywania adresów pamięci. W notacji szesnastkowej nie wykorzystuje się operatora '+' ani nie ma potrzeby stosowania notacji naukowej dla wartości adresów, co prowadzi do nieporozumienia. Inne nieprawidłowe odpowiedzi, takie jak 493 czy D281, wynikają z błędnych przeliczeń w systemie szesnastkowym. Dla 493, konwersja binarna nie zgadza się z podanym adresem, a D281 nie ma uzasadnienia w kontekście przedstawionego adresu binarnego. Takie pomyłki mogą być wynikiem nieuwagi lub nieznajomości zasad konwersji między systemami liczbowymi. W praktyce, znajomość konwersji binarno-szesnastkowej jest niezbędna, zwłaszcza przy pracy z mikroprocesorami i systemami wbudowanymi, gdzie adresy pamięci są kluczowymi elementami w architekturze komputerowej. Ważne jest, aby regularnie ćwiczyć te umiejętności i stosować odpowiednie narzędzia do konwersji w codziennej pracy.

Pytanie 27

Jakie protokoły przesyłają cykliczne kopie tablic routingu do sąsiadującego rutera i NIE ZAWIERAJĄ pełnych informacji o dalekich ruterach?

A. EIGRP, OSPF
B. EGP, BGP
C. RIP, IGRP
D. OSPF, RIP
EIGRP (Enhanced Interior Gateway Routing Protocol) oraz OSPF (Open Shortest Path First) to protokoły routingu, które rzeczywiście przekazują okresowe kopie tablic rutingu do sąsiednich ruterów, jednakże różnią się one w sposobie, w jaki gromadzą i przekazują informacje o sieci. EIGRP jest protokołem opartym na metryce, który łączy cechy protokołów z wektorem odległości oraz stanu łączy. Używa własnego algorytmu DUAL (Diffusing Update Algorithm), co pozwala mu na efektywne zarządzanie zmianami w sieci bez konieczności przesyłania pełnych informacji o topologii. OSPF z kolei jest protokołem stanu łączy, który również nie wymaga od ruterów posiadania pełnej informacji o wszystkich ruterach w sieci, gdyż stosuje mechanizm zwany LSAs (Link State Advertisements), które pozwalają na wymianę informacji o stanie łącz. Przykład zastosowania tych protokołów można zaobserwować w dużych sieciach korporacyjnych, gdzie wydajność i szybkość reakcji na zmiany są kluczowe. Używanie EIGRP i OSPF zgodnie z ich specyfikacjami i najlepszymi praktykami branżowymi, jak np. segmentacja sieci, pozwala na zwiększenie jej niezawodności i efektywności.

Pytanie 28

W sieci o adresie 192.168.20.0 użyto maski podsieci 255.255.255.248. Jak wiele adresów IP będzie dostępnych dla urządzeń?

A. 1022
B. 510
C. 6
D. 14
Wybór odpowiedzi 1022, 510 lub 14 jest wynikiem nieporozumienia dotyczącego obliczania dostępnych adresów IP w danej podsieci. W przypadku maski 255.255.255.248, kluczowe jest zrozumienie, że używamy 3 bitów do identyfikacji hostów, co prowadzi do 8 potencjalnych adresów IP. Błędne odpowiedzi mogą wynikać z mylnego założenia, że maska podsieci może obsługiwać więcej adresów, co jest nieprawidłowe. Standardowe reguły dotyczące adresowania IP wskazują, że każdy adres sieciowy oraz adres rozgłoszeniowy nie mogą być przypisane do urządzeń, co ogranicza liczbę dostępnych adresów do 6. W praktyce, oszacowywanie liczby adresów dostępnych dla hostów w danej podsieci wymaga znajomości reguł dotyczących rezerwacji adresów, co jest kluczowe w planowaniu adresacji sieci. Typowe błędy myślowe to na przykład nieświadomość, że liczba adresów IP w danej podsieci zawsze jest mniejsza o dwa w stosunku do liczby bitów używanych do identyfikacji hostów. Takie nieporozumienia mogą prowadzić do niewłaściwego przypisywania adresów IP i problemów z konfiguracją sieci, co może wyniknąć z braku znajomości podstawowych zasad dotyczących maski podsieci i jej wpływu na adresację.

Pytanie 29

Aby przywrócić dane, które zostały usunięte za pomocą kombinacji klawiszy Shift + Delete, co należy zrobić?

A. użyć kombinacji klawiszy Shift+Insert
B. skorzystać z oprogramowania do odzyskiwania danych
C. odzyskać je z folderu plików tymczasowych
D. odzyskać je z systemowego kosza
Odzyskiwanie danych usuniętych za pomocą Shift + Delete nie jest możliwe poprzez standardowe metody, takie jak przywracanie z kosza systemowego. Kosz stanowi tymczasowe miejsce przechowywania usuniętych plików, jednak w przypadku użycia kombinacji klawiszy Shift + Delete pliki te omijają kosz i są usuwane bezpośrednio z systemu. Ponadto, usunięcie danych nie oznacza, że są one trwale zniszczone; zamiast tego, system operacyjny oznacza miejsce na dysku jako dostępne do nadpisania. Metoda odzyskiwania danych z katalogu plików tymczasowych również jest niewłaściwa, ponieważ dane usunięte przez Shift + Delete nie trafiają do katalogu tymczasowego. Użycie kombinacji klawiszy Shift + Insert w kontekście odzyskiwania danych jest zupełnie mylącym podejściem, bowiem ta kombinacja jest stosowana do wklejania danych, a nie ich odzyskiwania. Często pojawiającym się błędem myślowym jest przekonanie, że usunięte pliki można łatwo przywrócić za pomocą prostych działań, co prowadzi do nieprzygotowania na sytuacje utraty danych. Właściwym podejściem jest stosowanie oprogramowania do odzyskiwania danych, które stosuje zaawansowane algorytmy do skanowania nośników w celu odkrycia i przywrócenia utraconych plików, a także wdrożenie regularnych kopii zapasowych, aby zminimalizować ryzyko ich utraty.

Pytanie 30

Jakie polecenie w systemie Linux umożliwia wyświetlenie identyfikatora użytkownika?

A. users
B. whoami
C. who
D. id
Odpowiedź 'id' jest poprawna, ponieważ polecenie to wyświetla nie tylko numer identyfikacyjny użytkownika (UID), ale także inne istotne informacje, takie jak numer identyfikacyjny grupy (GID) oraz przynależność do grup. Użycie polecenia 'id' w terminalu umożliwia administratorom systemu oraz użytkownikom szybkie uzyskanie informacji o swojej tożsamości w systemie, co jest kluczowe przy zarządzaniu uprawnieniami. Przykładowo, polecenie 'id' może być użyteczne w skryptach automatyzujących, gdzie ważne jest dopasowanie uprawnień do zasobów systemowych. Znalezienie UID jest także istotne w kontekście bezpieczeństwa, gdyż pozwala na identyfikację oraz audyt działań użytkowników. Używając opcji 'id -G', możemy zobaczyć wszystkie grupy, do których należy użytkownik, co jest zgodne z najlepszymi praktykami zarządzania dostępem w systemach Unix/Linux.

Pytanie 31

Jaką fizyczną topologię sieci komputerowej ilustruje ten rysunek?

Ilustracja do pytania
A. Pierścienia
B. Hierarchiczna
C. Gwiazdy
D. Siatki
Topologia siatki charakteryzuje się tym, że każde urządzenie jest połączone bezpośrednio z innymi urządzeniami w sieci, co zwiększa redundancję, ale również znacząco podnosi koszty i złożoność wdrożenia i utrzymania. Takie podejście jest rzadko stosowane w sieciach lokalnych, ponieważ wymaga dużej ilości kabli i portów. Topologia pierścienia polega na podłączeniu każdego urządzenia do dwóch innych, tworząc zamknięty krąg. Dane przesyłane są w jednym kierunku, co może powodować opóźnienia i problemy z wydajnością, zwłaszcza przy dużym natężeniu ruchu sieciowego. Awaria jednego z urządzeń lub połączeń może przerwać cały obieg danych. Topologia hierarchiczna, znana także jako topologia drzewa, jest rozszerzeniem topologii gwiazdy, gdzie centralne punkty łączą się z innymi centralnymi punktami, tworząc strukturę warstwową. Choć jest bardziej elastyczna niż gwiazda, wciąż wymaga starannego planowania, by uniknąć wąskich gardeł i zapewnić efektywne zarządzanie. W przypadku zadania, każde z tych podejść nie zgadza się z przedstawionym obrazem topologii gwiazdy, która jest prosta, efektywna i szeroko stosowana w wielu wdrożeniach sieciowych dzięki swoim zaletom w zakresie zarządzania i niezawodności.

Pytanie 32

Jakie oprogramowanie jest zabronione do użytku na sprzęcie instytucji rządowych lub edukacyjnych?

A. Microsoft Security Essentials
B. Microsoft Word
C. Windows Defender
D. AbiWord
Wybór AbiWord, Microsoft Word lub Windows Defender jako oprogramowania do wykorzystania w instytucjach rządowych czy edukacyjnych jest błędny z kilku powodów. AbiWord, jako edytor tekstu, jest aplikacją open-source, która pomimo swoich kontrowersji w zakresie funkcjonalności, może być używana w niektórych kontekstach edukacyjnych. Microsoft Word, będący częścią pakietu Microsoft Office, jest standardem w biurach i szkołach, a jego powszechność wynika z jego zaawansowanych funkcji edytorskich oraz wsparcia dla różnych formatów plików. Należy jednak pamiętać, że użycie Microsoft Word w instytucjach rządowych wiąże się z koniecznością przestrzegania odpowiednich regulacji dotyczących licencjonowania i bezpieczeństwa danych. Windows Defender to z kolei zintegrowane rozwiązanie zabezpieczające, które może zapewnić podstawową ochronę przed wirusami i innymi zagrożeniami, i jest często wykorzystywane w środowiskach edukacyjnych jako element większych strategii bezpieczeństwa. Takie podejście do ochrony jest zgodne z najlepszymi praktykami zarządzania bezpieczeństwem informacji, które zalecają zastosowanie wielowarstwowych strategii zabezpieczeń. Często jednak użytkownicy mogą mylnie oceniać, że oprogramowanie, które jest powszechnie używane, jest automatycznie akceptowalne w każdym kontekście, co prowadzi do nieporozumień związanych z wymaganiami bezpieczeństwa i zgodności w instytucjach publicznych.

Pytanie 33

Jakie wbudowane narzędzie w systemie Windows służy do identyfikowania problemów związanych z animacjami w grach oraz odtwarzaniem filmów?

A. cacls
B. userpasswords2
C. dxdiag
D. fsmgmt
dxdiag, czyli Diagnostyka DirectX, to narzędzie wbudowane w system Windows, które umożliwia użytkownikom diagnozowanie problemów związanych z multimediami, takimi jak animacje w grach czy odtwarzanie filmów. Narzędzie to zbiera informacje o zainstalowanych komponentach systemowych, takich jak karty graficzne, dźwiękowe oraz inne urządzenia, które mogą wpływać na wydajność multimediów. Dzięki dxdiag użytkownik może sprawdzić, czy odpowiednie sterowniki są zainstalowane i aktualne, co jest kluczowe dla płynnego działania aplikacji graficznych. Przykładowo, jeśli gra nie uruchamia się lub działa z opóźnieniem, użycie dxdiag pozwala na szybkie sprawdzenie zgodności sprzętu oraz ewentualnych problemów z DirectX. Narzędzie to jest zgodne z dobrymi praktykami branżowymi, ponieważ umożliwia użytkownikom samodzielne diagnozowanie i rozwiązywanie problemów, co jest istotne w kontekście wsparcia technicznego. Zrozumienie wyników analizy dxdiag może również pomóc w planowaniu przyszłych aktualizacji sprzętu lub oprogramowania, co jest kluczowe w zachowaniu optymalnej wydajności systemu.

Pytanie 34

Protokół TCP (Transmission Control Protocol) funkcjonuje w trybie

A. bezpołączeniowym
B. hybrydowym
C. połączeniowym
D. sekwencyjnym
Wybór trybu bezpołączeniowego sugeruje, że komunikacja odbywa się bez wcześniejszego nawiązywania połączenia, co jest charakterystyczne dla protokołu UDP (User Datagram Protocol). Protokół UDP, w przeciwieństwie do TCP, nie gwarantuje dostarczenia danych ani ich kolejności, co czyni go bardziej odpowiednim w aplikacjach, gdzie szybkość jest ważniejsza od niezawodności, na przykład w transmisji strumieniowej audio czy w grach online. Odpowiedź odwołująca się do trybu hybrydowego jest myląca, ponieważ w kontekście protokołów komunikacyjnych nie istnieje standardowe pojęcie 'trybu hybrydowego'. Koncepcja ta może być rozumiana w kontekście różnych technik łączenia, ale nie w odniesieniu do klasycznych protokołów warstwy transportowej. Z kolei odpowiedź sekwencyjna odnosi się raczej do sposobu przesyłania danych, który jest realizowany przez TCP, jednak nie definiuje ono jego trybu operacyjnego. Protokół TCP nie tylko zapewnia sekwencyjność, lecz także mechanizmy kontroli przepływu i przeciwdziałania przeciążeniom, co jest kluczowe w jego działaniu. Zatem kluczowym błędem jest zrozumienie, że TCP działa w trybie połączeniowym, a pominięcie tego może prowadzić do nieprawidłowych założeń w projektowaniu aplikacji sieciowych.

Pytanie 35

Jaki typ plików powinien być stworzony w systemie operacyjnym, aby zautomatyzować najczęściej wykonywane zadania, takie jak kopiowanie, utworzenie pliku lub folderu?

A. Plik systemowy
B. Plik konfiguracyjny
C. Plik wsadowy
D. Plik inicjujący
No więc, odpowiedzi dotyczące plików konfiguracyjnych, systemowych czy inicjujących są w sumie trochę mylące. Plik konfiguracyjny w zasadzie jest tylko takim zestawieniem ustawień dla systemu albo aplikacji, więc nie ma co liczyć na automatyzację. Pliki systemowe? One tylko działają w tle, żeby system miał po prostu jak funkcjonować, ale też nie pomagają w automatyzacji. A pliki inicjujące, które uruchamiają różne programy, ani myślą o robieniu sekwencji zadań. Wiem, że czasem można pomylić te funkcje, ale warto pamiętać, że pliki konfiguracyjne to nie to samo co automatyzacja. Wielu ludzi myśli, że skoro dotyczą ustawień, to mogą też coś tam automatyzować, ale to nie tak działa. W rzeczywistości pliki wsadowe są tym, co naprawdę pomaga w automatyzacji i w efektywnym zarządzaniu systemem.

Pytanie 36

Według normy PN-EN 50174 maksymalna całkowita długość kabla połączeniowego między punktem abonenckim a komputerem oraz kabla krosowniczego A+C) wynosi

Ilustracja do pytania
A. 6 m
B. 5 m
C. 10 m
D. 3 m
Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem oraz kabla krosowniczego wynosi 10 m. Wynika to z optymalizacji parametrów transmisyjnych sieci, takich jak tłumienie i opóźnienie sygnału. Dłuższe kable mogą prowadzić do pogorszenia jakości sygnału, co wpływa na szybkość i stabilność połączenia. W praktyce oznacza to, że projektując sieci komputerowe, należy starannie planować układ okablowania, aby zmieścić się w tych ograniczeniach. Dzięki temu sieć działa zgodnie z oczekiwaniami i normami branżowymi. Standard PN-EN 50174 jest często stosowany w projektach infrastruktury IT, wspierając inżynierów w tworzeniu niezawodnych i wydajnych systemów. Utrzymanie tych długości kabli zapewnia zgodność z wymaganiami technicznymi i wpływa na poprawę ogólnej wydajności sieci. W związku z tym przestrzeganie tych norm jest nie tylko zalecane, ale wręcz konieczne dla zapewnienia sprawnego funkcjonowania infrastruktury sieciowej.

Pytanie 37

Aby podłączyć 6 komputerów do sieci przy użyciu światłowodu, potrzebny jest kabel z co najmniej taką ilością włókien:

A. 3
B. 24
C. 6
D. 12
Niektóre podejścia do podłączania komputerów do sieci światłowodowej opierają się na błędnym założeniu, że każdy komputer potrzebuje jedynie jednego włókna. Użytkownicy mogą mylnie zakładać, że przy konfiguracji sieci wystarczy pojedyncze włókno dla każdego urządzenia, co prowadzi do nieprawidłowych wniosków. Odpowiedzi takie jak 6 lub 3 włókna bazują na mylnym przekonaniu, że każda maszyna może działać w trybie półduplex, gdzie transmisja i odbiór odbywają się na tym samym włóknie, co w rzeczywistości ogranicza wydajność sieci oraz może prowadzić do kolizji sygnałów. Z kolei wybór 24 włókien również może być uznany za nadmiarowy w wielu przypadkach, co zwiększa koszty bez istotnej potrzeby. W standardowych projektach sieciowych, takich jak lokalne sieci LAN, najlepszą praktyką jest zastosowanie pełnodupleksowych połączeń, co wymaga co najmniej 12 włókien – dwóch na każdy komputer, co poprawia wydajność i zapewnia lepszą jakość sygnału. Zatem kluczowym błędem jest niewłaściwe rozumienie wymaganej liczby włókien w kontekście pełnej funkcjonalności i przyszłych potrzeb rozbudowy.

Pytanie 38

Który z podanych adresów IPv4 należy do kategorii B?

A. 224.100.10.10
B. 10.10.10.10
C. 128.100.100.10
D. 192.168.1.10
Adres IPv4 128.100.100.10 należy do klasy B, co wynika z jego pierwszego oktetu. Klasa B obejmuje adresy, których pierwszy oktet mieści się w przedziale od 128 do 191. W praktyce, klasyfikacja adresów IP jest kluczowym elementem w projektowaniu sieci komputerowych, ponieważ pozwala na efektywne zarządzanie przestrzenią adresową. Adresy klasy B są często wykorzystywane w średnich i dużych sieciach, ponieważ oferują możliwość stworzenia do 65 536 adresów IP w ramach jednej sieci (przy użyciu maski podsieci 255.255.0.0). Przykładem zastosowania adresów klasy B jest ich wykorzystanie w przedsiębiorstwach, które potrzebują dużej liczby adresów dla swoich urządzeń, takich jak komputery, serwery, drukarki i inne. W kontekście standardów, klasyfikacja adresów IP opiera się na protokole Internet Protocol (IP), który jest kluczowym elementem w architekturze Internetu. Warto zaznaczyć, że klasy adresów IP są coraz mniej używane na rzecz CIDR (Classless Inter-Domain Routing), który oferuje większą elastyczność w alokacji adresów. Niemniej jednak, zrozumienie klasyfikacji jest nadal istotne dla profesjonalistów zajmujących się sieciami.

Pytanie 39

Jaką liczbę hostów można podłączyć w sieci o adresie 192.168.1.128/29?

A. 16 hostów
B. 6 hostów
C. 8 hostów
D. 12 hostów
Sieć o adresie 192.168.1.128/29 ma maskę podsieci wynoszącą 255.255.255.248, co oznacza, że w tej sieci dostępnych jest 8 adresów IP (2^3 = 8, gdzie 3 to liczba bitów przeznaczonych na adresy hostów). Jednakże, dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (192.168.1.128) i jeden dla adresu rozgłoszeniowego (192.168.1.135), co pozostawia 6 adresów dostępnych dla hostów (192.168.1.129 do 192.168.1.134). W praktyce, taki układ jest często stosowany w małych sieciach lokalnych, gdzie liczba urządzeń nie przekracza 6, co pozwala na efektywne zarządzanie adresacją IP. Wiedza ta jest kluczowa przy projektowaniu sieci, ponieważ umożliwia dostosowanie liczby dostępnych adresów do rzeczywistych potrzeb organizacji, co jest zgodne z najlepszymi praktykami w zakresie inżynierii sieciowej.

Pytanie 40

Prezentowany komunikat pochodzi z wykonania polecenia

C:\Windows NT_SERVICE\TrustedInstaller:(F)
          NT_SERVICE\TrustedInstaller:(OI)(CI)(IO)(F)
          ZARZĄDZANIE NT\SYSTEM:(M)
          ZARZĄDZANIE NT\SYSTEM:(OI)(CI)(IO)(F)
          BUILTIN\Administratorzy:(M)
          BUILTIN\Administratorzy:(OI)(CI)(IO)(F)
          BUILTIN\Użytkownicy:(RX)
          BUILTIN\Użytkownicy:(OI)(CI)(IO)(GR,GE)
          TWÓRCA-WŁAŚCICIEL:(OI)(CI)(IO)(F)

A. icacls C:Windows
B. path C:Windows
C. subst C:Windows
D. attrib C:Windows
Polecenie icacls jest używane do zarządzania uprawnieniami do plików i folderów w systemie Windows. Umożliwia przeglądanie i modyfikowanie list kontroli dostępu (ACL) dla plików oraz katalogów, co jest kluczowe w kontekście zarządzania bezpieczeństwem danych na komputerze. W przypadku folderu C:Windows polecenie icacls wyświetla listę uprawnień przypisanych do różnych użytkowników i grup, takich jak TrustedInstaller czy BUILTINAdministratorzy. Dzięki icacls można modyfikować uprawnienia, dodając nowe reguły lub zmieniając istniejące, co jest często praktykowanym działaniem w administracji systemami. Przykładowo, można przypisać pełne uprawnienia do folderu dla konkretnego użytkownika lub grupy, co może być konieczne dla instalacji oprogramowania lub w celu zapewnienia dostępu do niezbędnych zasobów systemowych. Narzędzie to wspiera także kopiowanie uprawnień między różnymi zasobami, co ułatwia zarządzanie dużą infrastrukturą IT. Ogólnie, stosowanie icacls zgodnie z najlepszymi praktykami i zasadami bezpieczeństwa pozwala na efektywne zarządzanie dostępem do zasobów systemowych, minimalizując ryzyko nieautoryzowanego dostępu.