Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 11:50
  • Data zakończenia: 4 kwietnia 2025 12:07

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Współczesne bloki silników z zapłonem wewnętrznym przeważnie są produkowane z

A. węglowego staliwa
B. nierdzewnej stali
C. stopowego żeliwa
D. stopów aluminium
Nowoczesne bloki silników spalinowych najczęściej wykonuje się ze stopów aluminium, co wynika z ich korzystnych właściwości mechanicznych oraz niskiej masy. Aluminium charakteryzuje się doskonałą odpornością na korozję, co jest kluczowe w przypadku silników narażonych na działanie różnych substancji chemicznych oraz wysokich temperatur. Wykorzystanie stopów aluminium pozwala na redukcję masy silnika, co przekłada się na poprawę efektywności paliwowej i zwiększenie dynamiki pojazdu. W praktyce, bloki silników wykonane z aluminium są stosowane w wielu nowoczesnych samochodach osobowych oraz wyścigowych, gdzie redukcja masy jest kluczowym czynnikiem. Ponadto, nowoczesne technologie produkcji, takie jak odlewanie ciśnieniowe, pozwalają na uzyskanie skomplikowanych kształtów z wysoką precyzją, co jest istotne dla optymalizacji wydajności silnika. Dzięki tym właściwościom, aluminium stało się standardem w branży motoryzacyjnej, a jego stosowanie wspiera dążenie do zmniejszenia zużycia paliwa oraz emisji spalin.

Pytanie 2

Podczas przyjmowania pojazdu do diagnostyki, autoryzowany serwis obsługi identyfikuje go na podstawie

A. numeru VIN
B. roku produkcji
C. rodzaju nadwozia
D. modelu silnika
Numer VIN to taki unikalny kod, który identyfikuje każdy samochód. Składa się z 17 znaków, w tym literek i cyferek. Dzięki niemu serwisy mogą bez problemu sprawdzić, co się dzieje z autem, czy to potrzebuje jakiejś naprawy. W VIN-ie mamy mnóstwo ważnych info, jak np. kto wyprodukował pojazd, gdzie go zrobiono, jaki jest model i kiedy zejście z linii produkcyjnej miało miejsce. VIN przydaje się też, gdy chcemy poznać historię auta lub sprawdzić, czy nie ma jakichś wezwań do serwisu związanych z bezpieczeństwem. Dodatkowo, dzięki standardom ISO, ten system działa wszędzie na świecie, co ułatwia życie serwisom i producentom. Z mojego doświadczenia, dobrze jest zawsze sprawdzać VIN, bo to daje pewność, że wiemy, z czym mamy do czynienia i jak najlepiej pomóc klientowi.

Pytanie 3

Ile dm3 powietrza potrzeba do całkowitego spalenia 1 kg benzyny?

A. 14,7 dm3 powietrza
B. 14,7 mm powietrza
C. 14,7 m3 powietrza
D. 14,7 kg powietrza
Analizując błędne odpowiedzi, można zauważyć, że koncepcje te opierają się na niewłaściwym zrozumieniu kimy reakcji spalania i ilości niezbędnych do jej przeprowadzenia. W przypadku pierwszej odpowiedzi, 14,7 dm3 powietrza, należy zrozumieć, że jednostka objętości nie wyraża rzeczywistej masy powietrza, które jest potrzebne do spalenia 1 kg benzyny. Przy standardowych warunkach temperatury i ciśnienia, 1 dm3 powietrza waży znacznie mniej niż 1 kg, co czyni tę odpowiedź nieadekwatną. Odnośnie do 14,7 m3 powietrza, wielkość ta również jest błędna, ponieważ przeliczenie objętości na masę powietrza jest kluczowe w tym kontekście. Na przykład, 14,7 m3 powietrza ważyłoby około 18,5 kg, co znacząco przekracza wymaganą ilość. Co więcej, odpowiedź 14,7 mm powietrza jest niepoprawna, gdyż nie odnosi się do jednostki masy ani objętości, przez co nie ma zastosowania w kontekście spalania. Ogólnie rzecz biorąc, istotne jest zrozumienie, że proces spalania oparty jest na konkretnych reakcjach chemicznych, które wymagają precyzyjnych stosunków masowych. W praktyce, błędne podejście do tego zagadnienia może prowadzić do nieefektywnego spalania, co z kolei wpływa na wydajność paliw oraz emisję zanieczyszczeń, co jest kluczowe dla zgodności z normami ochrony środowiska.

Pytanie 4

W hydraulicznym oraz pneumatycznym amortyzatorze jednorurowym wysokociśnieniowym używa się oleju oraz

A. tlenu
B. powietrza
C. azotu
D. acetylenu
W jednorurowym wysokociśnieniowym amortyzatorze hydraulicznym stosuje się azot, ponieważ jest gazem obojętnym, który zapewnia odpowiednie ciśnienie w układzie. Azot jest niezwykle stabilny chemicznie, co minimalizuje ryzyko reakcji z olejem czy innymi składnikami amortyzatora. Jego główną rolą jest utrzymanie odpowiedniego poziomu ciśnienia, co zapobiega pojawianiu się pęcherzyków powietrza w oleju oraz zwiększa efektywność tłumienia drgań. Azot jako medium gazowe jest powszechnie wykorzystywany w różnych zastosowaniach motoryzacyjnych, w tym w sportach motorowych, gdzie wysoka wydajność i stabilność są kluczowe. Przy odpowiednim ciśnieniu azot wspomaga przenoszenie sił i wpływa na charakterystykę pracy amortyzatora, co jest istotne dla komfortu jazdy oraz bezpieczeństwa pojazdu. Zastosowanie azotu zgodne jest z normami i zaleceniami producentów, co czyni je najlepszym praktycznym rozwiązaniem w tego typu konstrukcjach.

Pytanie 5

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. gaźnik
B. pompa paliwowa
C. pompa wtryskowa
D. wtryskiwacz
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 6

Urządzenia warsztatowe nie obejmują

A. kanału najazdowego
B. miernika
C. prasy
D. podnośnika hydraulicznego
Kanał najazdowy to struktura umożliwiająca wjazd pojazdu na poziom warsztatu, nie jest jednak urządzeniem warsztatowym w sensie stricte. W kontekście standardów branżowych, urządzenia warsztatowe to narzędzia lub maszyny, które służą do wykonania określonych zadań, takich jak naprawa, konserwacja czy montaż. Przykładem takiego urządzenia jest podnośnik hydrauliczny, który pozwala na uniesienie pojazdu w celu przeprowadzenia inspekcji lub naprawy podwozia. Miernik z kolei służy do precyzyjnego pomiaru parametrów technicznych, co również jest kluczowym aspektem w pracach warsztatowych. Prasy, stosowane do formowania lub łączenia materiałów, również zaliczają się do tej grupy, ponieważ umożliwiają realizację specyficznych procesów technologicznych. W praktyce kanał najazdowy współdziała z wymienionymi urządzeniami, ale nie pełni ich funkcji, co czyni go nieklasyfikującym się jako urządzenie warsztatowe.

Pytanie 7

Zacisk hamulca stanowi część systemu hamulcowego

A. bębnowego
B. taśmowego
C. elektromagnetycznego
D. tarczowego
Zacisk hamulcowy to mega ważny element w układzie hamulcowym tarczowym, który jest teraz bardzo popularny w autach. Jego główna rola to przytrzymywanie i dociskanie klocków hamulcowych do tarczy, co w rezultacie tworzy siłę hamującą. Kiedy kierowca wciska pedał hamulca, ciśnienie hydrauliczne wędruje do zacisków, co sprawia, że tłoczki przesuwają się i dociskają klocki do obracającej się tarczy. Tak to działa, a efektem jest skuteczne hamowanie. Z mojego doświadczenia, warto regularnie sprawdzać stan klocków hamulcowych i poziom płynu hamulcowego, bo to wpływa na bezpieczeństwo na drodze. Ostatnio w autach często pojawiają się systemy ABS, które współpracują z układem tarczowym, żeby nie blokować kół i stabilizować pojazd podczas hamowania. Warto wiedzieć, że układ tarczowy jest lepszy w sytuacjach, gdzie potrzebne jest mocne hamowanie i lepsze chłodzenie, dlatego często można go spotkać w sportowych i osobowych autach.

Pytanie 8

Woda używana do mycia aut w myjni musi być odprowadzana

A. bezpośrednio do systemu kanalizacji komunalnej
B. bezpośrednio do kanalizacji deszczowej
C. do wykopu w ziemi na zewnątrz myjni
D. do separatorów ściekowych
Odpowiedzi sugerujące odprowadzanie wody do kanalizacji ścieków komunalnych, wykopu w ziemi czy kanalizacji burzowej są niepoprawne z kilku kluczowych powodów. Odprowadzanie wody z myjni samochodowej bezpośrednio do kanalizacji ścieków komunalnych jest niewłaściwe, ponieważ woda ta zawiera substancje chemiczne, które mogą negatywnie wpływać na system oczyszczania ścieków oraz jakość wody w odbiornikach. Zanieczyszczenia mogą przekraczać dopuszczalne normy, co stawia pod znakiem zapytania zgodność z regulacjami ochrony środowiska. Przeniesienie odpowiedzialności za oczyszczanie zanieczyszczonej wody na system komunalny jest nieetyczne i może skutkować wysokimi karami finansowymi. Odprowadzanie wody do wykopu w ziemi poza pomieszczeniem myjni również budzi poważne wątpliwości, ponieważ może prowadzić do bezpośredniego zanieczyszczenia gleb i wód gruntowych, co jest zabronione przepisami ochrony środowiska. Natomiast kierowanie ścieków do kanalizacji burzowej jest kolejnym błędem, gdyż nie jest ona przystosowana do odbioru zanieczyszczonych wód, co może prowadzić do ich wypływu do rzek czy jezior, zagrażając lokalnym ekosystemom. Kluczowe jest, aby myjnie samochodowe stosowały odpowiednie technologie, takie jak separatorów ściekowych, które zgodnie z normami środowiskowymi, skutecznie usuwały zanieczyszczenia przed ich odprowadzeniem.

Pytanie 9

Wymiana 4 dm3 oleju silnikowego i filtra oleju trwa 1 godzinę. Na podstawie fragmentu cennika ustal koszt usługi.

Fragment cennika

WyszczególnienieJednostka miaryCena w zł
Robocziznaroboczogodzina50,00
Olej silnikowy1dm³20,00
Filtr olejusztuka20,00

A. 90,00 zł
B. 150,00 zł
C. 110,00 zł
D. 130,00 zł
Odpowiedź 150,00 zł jest poprawna, ponieważ dokładnie odzwierciedla całkowity koszt związany z wymianą oleju silnikowego i filtra. Koszt roboczogodziny wynosi 50,00 zł, co jest standardowym stawka w branży motoryzacyjnej, uwzględniającym wynagrodzenie technika oraz ogólne koszty operacyjne warsztatu. Następnie, do wymiany potrzebne są 4 dm³ oleju silnikowego, a przy cenie za 1 dm³ wynoszącej 20,00 zł, koszt oleju wyniesie 80,00 zł. Koszt filtra oleju, standardowo wynoszący 20,00 zł, również musi być uwzględniony w całkowitym kosztorysie. Sumując wszystkie składniki: 50,00 zł (robocizna) + 80,00 zł (olej) + 20,00 zł (filtr), otrzymujemy 150,00 zł. Takie podejście do kalkulacji kosztów jest zgodne z dobrymi praktykami w branży, co pozwala na przejrzystość w ustalaniu cen usług motoryzacyjnych, a także umożliwia klientom dokładne zrozumienie, za co płacą.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie ubezpieczenie jest obowiązkowe dla każdego środka transportu?

A. Od następstw nieszczęśliwych wypadków NNW
B. Assistance
C. Autocasco AC
D. Od odpowiedzialności cywilnej OC
Ubezpieczenie od odpowiedzialności cywilnej, czyli to OC, to rzecz, którą każdy kierowca musi mieć w Polsce. Dzięki temu ubezpieczeniu osoby, które ucierpiały w wyniku naszego wypadku, dostaną pomoc w pokryciu szkód. Na przykład, jak ktoś rozbije auto innej osoby, to właśnie OC płaci za naprawę. Musisz pamiętać, że nie mając takiego ubezpieczenia, możesz nadziać się na poważne kary, więc lepiej nie ryzykować. Warto też porównywać różne oferty ubezpieczeniowe, bo mogą być naprawdę spore różnice w cenach i warunkach, co w efekcie i tak przyniesie oszczędności w dłuższej perspektywie. Z mojego doświadczenia, czasami lepiej zainwestować trochę czasu w szukanie, niż później żałować.

Pytanie 12

Aby ocenić skuteczność działania systemu bezpieczeństwa aktywnego w pojeździe, należy zweryfikować

A. mechanizmy napinaczy pasów bezpieczeństwa
B. szczelność systemu paliwowego
C. oświetlenie zewnętrzne pojazdu
D. stan oleju w silniku
Weryfikacja działania układu bezpieczeństwa czynnego pojazdu powinna koncentrować się na elementach, które bezpośrednio wpływają na zdolność do bezpiecznego prowadzenia. Poziom oleju w silniku, choć istotny dla ogólnej kondycji silnika, nie jest bezpośrednio związany z systemem bezpieczeństwa czynnego. Odpowiedzialność za prawidłowe smarowanie silnika ma na celu przede wszystkim zapobieganie uszkodzeniom, a nie aktywne zabezpieczenie w sytuacji zagrożenia. Napinacze pasów bezpieczeństwa, mimo iż są elementem, który wpływa na bezpieczeństwo pasażerów, nie stanowią same w sobie aktywnego elementu bezpieczeństwa, który byłby weryfikowany w kontekście ogólnej funkcjonalności pojazdu. Kontrola szczelności układu paliwowego, chociaż istotna dla uniknięcia ryzyka pożaru, również nie należy do czynnych systemów bezpieczeństwa, które obowiązkowo muszą być weryfikowane przed jazdą. Oświetlenie zewnętrzne jest tym elementem, który z jasno określonym celem ma na celu zapewnienie widoczności. Prawidłowe działania w tym zakresie są niezbędne dla bezpieczeństwa na drogach, a zaniedbanie może prowadzić do niebezpiecznych sytuacji. Kierowcy często błędnie oceniają wagę poszczególnych elementów, wybierając te, które nie są kluczowe dla aktywnego bezpieczeństwa, co może prowadzić do poważnych konsekwencji w ruchu drogowym.

Pytanie 13

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. próbie usunięcia ciała obcego z oka
B. aplikacji kropli do oczu
C. spłukaniu oka
D. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
Nałożenie wyjałowionej gazy na oko i wezwanie pomocy lekarskiej to kluczowy krok w udzielaniu pierwszej pomocy przy urazie mechanicznym oka. W przypadku kontuzji, takich jak uraz mechaniczny, istotne jest, aby nie próbować samodzielnie usunąć ciała obcego ani nie stosować płukania, ponieważ może to prowadzić do dalszych uszkodzeń lub zakażeń. Wyjałowiona gaza służy jako bariera ochronna, chroniąca oko przed zanieczyszczeniami oraz minimalizująca ryzyko pogorszenia stanu. Po nałożeniu gazy niezbędne jest jak najszybsze wezwanie pomocy medycznej, ponieważ urazy oka mogą prowadzić do poważnych komplikacji, w tym do utraty wzroku. Warto również podkreślić, że w przypadku urazów oka, czas reakcji jest kluczowy; jak najszybsze udzielenie profesjonalnej pomocy zwiększa szansę na pozytywne rokowanie. W sytuacjach takich jak te, stosuje się wytyczne i standardy dotyczące pierwszej pomocy, które podkreślają znaczenie ochrony urazu oraz unikania działań mogących pogorszyć stan pacjenta.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Zgodnie z aktualnymi regulacjami, maksymalna dopuszczalna różnica w ocenach efektywności tłumienia amortyzatorów na jednej osi wynosi

A. 25%
B. 20%
C. 15%
D. 10%
Maksymalna różnica w skuteczności tłumienia amortyzatorów na jednej osi nie może przekraczać 20%. To istotne, bo sprawia, że samochód zachowuje się stabilnie na drodze. Przykładowo, jeśli w autach osobowych amortyzatory działają nierówno, może to prowadzić do nieprzewidywalnego zachowania się pojazdu, a to już niebezpieczne. No i trzeba pamiętać, że producenci muszą wykazać zgodność ze standardami, żeby ich auta mogły być sprzedawane. Oprócz tego, trzymanie się tej zasady poprawia komfort jazdy i wydłuża żywotność zawieszenia. Dlatego przestrzeganie tego przepisu to kluczowa sprawa dla bezpieczeństwa na drodze i efektywności auta.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. passametr
B. głębokościomierz
C. mikrometr
D. szczelinomierz
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,1 mm
B. 0,5 mm
C. 0,01 mm
D. 0,05 mm
Pojawia się wiele nieporozumień dotyczących dokładności pomiarowej mikrometrów, szczególnie w odniesieniu do parametrów takich jak skok śruby czy liczba nacięć na bębnie. Odpowiedzi sugerujące dokładność na poziomie 0,1 mm, 0,5 mm lub 0,05 mm bazują na błędnym oszacowaniu lub pomyłkach w obliczeniach. Na przykład, wybór 0,1 mm jako dokładności może wynikać z przeoczenia faktu, że mikrometr jest narzędziem, które służy do bardzo dokładnych pomiarów, a 0,1 mm byłoby zbyt dużym błędem w kontekście precyzyjnych aplikacji inżynieryjnych. Z kolei odpowiedź 0,5 mm w ogóle nie odnosi się do metody pomiarowej mikrometru, ponieważ wskazuje na wartość całkowitego skoku, a nie na rozdzielczość pomiarową. Odpowiedź 0,05 mm również nie uwzględnia liczby nacięć, prowadząc do mylnego przekonania, że taka wartość pomiaru jest odpowiednia dla narzędzi, które są zbudowane z myślą o znacznie większej precyzji. Wszelkie niepoprawne podejścia do tego tematu mogą prowadzić do istotnych błędów w projektach inżynieryjnych, gdzie precyzja jest kluczowa dla sukcesu operacji. W praktyce, właściwe zrozumienie zasad działania mikrometrów i ich dokładności pomiarowej jest niezbędne do efektywnego wykorzystania ich w różnych dziedzinach techniki.

Pytanie 21

W trakcie diagnozowania pojazdu na linii testowej przeprowadza się pomiar geometrii przedniego zawieszenia w formie

A. kąta nachylenia osi zwrotnicy
B. zbieżności całkowitej kół
C. kąta nachylenia koła
D. kąta wyprzedzenia sworznia zwrotnicy
Pojęcie kąta wyprzedzenia sworznia zwrotnicy, kąta pochylenia osi zwrotnicy oraz kąta pochylenia koła są istotnymi elementami geometrii układu zawieszenia, lecz ich pomiar nie jest bezpośrednio związany z badaniem zbieżności całkowitej kół. Kąt wyprzedzenia sworznia zwrotnicy to miara, która wpływa na stabilność pojazdu podczas jazdy na prostych odcinkach drogi oraz podczas skręcania, jednak nie odnosi się do zbieżności, lecz do geometrii układu kierowniczego. Kąt pochylenia osi zwrotnicy jest istotny dla analizy stabilności i zachowania pojazdu, jednak nie jest to kąt informujący o zbieżności kół. Wreszcie, kąt pochylenia koła, choć istotny dla kontaktu opony z nawierzchnią, jest jednym z parametrów geometrii zawieszenia, który nie wpływa bezpośrednio na zbieżność. Myląc te pojęcia można dojść do błędnych wniosków co do przyczyn problemów związanych z zużyciem opon czy stabilnością jazdy. W praktyce, aby skutecznie diagnozować problemy z pojazdem, konieczne jest zrozumienie roli każdego z tych kątów oraz ich wzajemnych interakcji w kontekście geometrii zawieszenia. Wiedza o zbieżności kół jest kluczowa dla zapewnienia bezpieczeństwa i efektywności użytkowania pojazdu, a jej pomiar powinien być priorytetem w procesie diagnostycznym.

Pytanie 22

Aby zmierzyć luz w zamku pierścienia tłokowego, jakie narzędzie powinno się zastosować?

A. szczelinomierza
B. czujnika zegarowego
C. suwmiarki
D. średnicówki mikrometrycznej
Szczelinomierz jest narzędziem pomiarowym, które doskonale nadaje się do pomiaru luzów w zamkach pierścieni tłokowych, ponieważ pozwala na precyzyjne określenie odległości między powierzchniami. Luz w zamku pierścienia tłokowego odgrywa kluczową rolę w prawidłowym funkcjonowaniu silnika, gdyż zbyt duży luz może prowadzić do nieefektywnego spalania, a w konsekwencji do zwiększonego zużycia paliwa i emisji spalin. Dobór odpowiedniego szczelinomierza, którego zakres pomiarowy odpowiada wymaganemu luzowi, umożliwia zachowanie optymalnych parametrów silnika. W praktyce, szczelinomierz wstawia się w szczelinę, a jego odczyt pozwala na szybkie i precyzyjne określenie wymiarów. W warunkach przemysłowych i warsztatowych, stosowanie szczelinomierzy jest normą, a ich wykorzystanie w zgodzie z wytycznymi producentów silników i komponentów mechanicznych jest zalecane dla zapewnienia jakości i niezawodności. Incorporacja tego narzędzia w rutynowych przeglądach i serwisach silników pozwala na wczesne wykrywanie problemów i podejmowanie odpowiednich działań serwisowych.

Pytanie 23

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. rękawice lateksowe
B. okulary ochronne
C. obuwie ochronne
D. czapkę z daszkiem
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 24

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu zapłonowego
B. systemu napędowego
C. systemu hamulcowego
D. systemu kierowniczego
Wybór układu hamulcowego, kierowniczego lub napędowego jako obszaru diagnozy za pomocą lampy stroboskopowej jest błędny, ponieważ te układy nie są związane z funkcjonowaniem systemu zapłonowego silnika. Układ hamulcowy opiera się na mechanizmach hydraulicznych i pneumatycznych, a jego skuteczność można ocenić przez testy ciśnienia, zużycia klocków hamulcowych, a także poprzez wizualną inspekcję komponentów. Diagnoza układu kierowniczego polega głównie na ocenie luzy oraz stanu elementów takich jak drążki kierownicze czy przekładnie, co również nie ma związku z użyciem lampy stroboskopowej. Układ napędowy wymaga analizy zużycia elementów takich jak sprzęgło, skrzynia biegów czy półosie, co jest realizowane za pomocą innych narzędzi diagnostycznych. Wybierając odpowiednie metody, mechanicy muszą kierować się specyfiką każdego z układów, ponieważ każda metoda ma swoje miejsce i zastosowanie. Typowym błędem myślowym jest założenie, że lampa stroboskopowa może być używana w diagnostyce wszystkich układów pojazdu, co prowadzi do nieefektywnego wykorzystania narzędzi i nieprawidłowych diagnoz. Właściwe zrozumienie, jakie narzędzia są adekwatne do konkretnego układu, jest kluczowe w procesie diagnostycznym.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Część przegubu Cardana należy do

A. koła dwumasowego
B. sprzęgła ciernego
C. skrzyni biegów
D. wału napędowego
Przegub Cardana jest kluczowym elementem wału napędowego, który jest używany w systemach przeniesienia napędu w pojazdach. Jego głównym zadaniem jest przenoszenie momentu obrotowego z jednego elementu na inny, przy jednoczesnym pozwoleniu na pewne ruchy kątowe, co jest szczególnie istotne w pojazdach z niezależnym zawieszeniem. Przegub Cardana umożliwia współpracę między elementami, które są w różnych płaszczyznach, co jest niezbędne w przypadku skręcania kół. Na przykład, w samochodach osobowych, przegub Cardana znajduje zastosowanie w systemach napędowych, gdzie łączy wał napędowy z dyferencjałem, co pozwala na przekazywanie mocy z silnika na koła. Warto również zaznaczyć, że przeguby Cardana są projektowane zgodnie z normami bezpieczeństwa oraz niezawodności, co czyni je nieodłącznym elementem nowoczesnych układów napędowych. Ich regularne serwisowanie oraz kontrola stanu technicznego są kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy pojazdu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Hamulec parkingowy musi zapewnić zatrzymanie pojazdu (w pełni załadowanego) na nachyleniu lub zboczu wynoszącym co najmniej

A. 12%
B. 20%
C. 24%
D. 16%
Hamulec postojowy, znany również jako hamulec ręczny, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa pojazdu, szczególnie na wzniesieniach i spadkach. Poprawna odpowiedź, 16%, wynika z obowiązujących norm, które określają minimalne wymagania dotyczące hamulców postojowych. W standardach branżowych, takich jak norma UNECE R13, wskazuje się, że hamulec postojowy powinien być w stanie utrzymać pojazd na pochyleniu 16% z pełnym obciążeniem, co oznacza, że ​​jest on przystosowany do różnych warunków drogowych. Przykładowo, jeżeli samochód zatrzymuje się na wzniesieniu, hamulec postojowy powinien skutecznie unieruchomić go, aby uniknąć niebezpieczeństwa stoczenia się. W praktyce, takie wymagania są istotne dla użytkowników, którzy często parkują w terenach górzystych lub na stromych ulicach. Oprócz tego, regularne sprawdzanie skuteczności hamulca postojowego powinno stać się rutyną dla kierowców, co jest zgodne z dobrymi praktykami utrzymania pojazdu. Pamiętajmy, że odpowiednie zastosowanie hamulca postojowego nie tylko wpływa na komfort parkowania, ale również znacząco podnosi bezpieczeństwo na drodze.

Pytanie 29

Oznaczenie symbolem dla systemu monitorowania ciśnienia w oponach pojazdu jest

A. BAS
B. TPMS
C. SOHC
D. ACC
System TPMS (Tire Pressure Monitoring System) to nowoczesne rozwiązanie stosowane w pojazdach, które ma na celu monitorowanie ciśnienia w oponach w czasie rzeczywistym. Prawidłowe ciśnienie w oponach jest kluczowe dla bezpieczeństwa, wydajności paliwowej oraz komfortu jazdy. TPMS informuje kierowcę o niskim ciśnieniu w oponach, co pozwala na szybką reakcję i uniknięcie potencjalnych awarii, takich jak uszkodzenie opony czy zwiększone zużycie paliwa. W praktyce, TPMS może być podzielony na dwa główne typy: systemy bezpośrednie, które wykorzystują czujniki ciśnienia zamontowane w oponach, oraz systemy pośrednie, które monitorują prędkość obrotową kół, aby ocenić różnice ciśnienia. Obecnie w wielu krajach stosowanie TPMS jest obowiązkowe w nowych pojazdach, co podkreśla znaczenie tego systemu w poprawie bezpieczeństwa na drogach. W związku z tym kierowcy powinni regularnie sprawdzać działanie systemu TPMS oraz dbać o prawidłowe ciśnienie w oponach, co jest zgodne z zaleceniami producentów pojazdów oraz standardami bezpieczeństwa.

Pytanie 30

W klasyfikacji olejów American Petroleum Institute /API/ olej oznaczony symbolem GL to olej

A. do silników o ZI
B. przekładniowy
C. do silników o ZS
D. hydrauliczny
Symbol GL w klasyfikacji olejów American Petroleum Institute (API) odnosi się do olejów przekładniowych, które są zaprojektowane do smarowania różnych typów układów przeniesienia napędu. Oleje te charakteryzują się odpowiednimi właściwościami, takimi jak odporność na utlenianie, stabilność termiczna oraz właściwości przeciwzużyciowe. Zastosowanie olejów GL jest powszechne w pojazdach mechanicznych, w tym w skrzyniach biegów, dyferencjałach i innych komponentach, gdzie niezbędne jest zapewnienie skutecznej ochrony przed zużyciem i korozją. W praktyce, oleje przekładniowe muszą spełniać określone normy, które zapewniają ich wydajność w trudnych warunkach eksploatacyjnych. Na przykład, olej klasy GL-5 jest odpowiedni do smarowania skrzyń biegów w pojazdach osobowych i ciężarowych, a jego formulacja zapewnia dodatkową ochronę przed pittingiem, co jest istotne w kontekście obciążeń mechanicznych, jakie mogą występować w tych układach. Użycie odpowiedniego oleju przekładniowego jest kluczowe dla zapewnienia prawidłowego funkcjonowania układów przeniesienia napędu, co wpływa na trwałość i efektywność pojazdu.

Pytanie 31

Wysokie zadymienie spalin w silniku o zapłonie samoczynnym może wynikać z

A. nadmiaru podawanego powietrza
B. zamykania filtra DPF
C. wadliwości świecy żarowej
D. niewystarczającego ciśnienia wtrysku
Zatkany filtr DPF w dieslu może faktycznie powodować większe opory w układzie wydechowym, co może wpływać na wydobywanie spalin, ale nie jest to bezpośrednia przyczyna zwiększonego zadymienia. Filtr DPF ma za zadanie łapanie cząstek stałych, a nie wpływanie na ciśnienie wtrysku czy spalanie. Jeśli świeca żarowa jest uszkodzona, to nie musi to od razu oznaczać większego zadymienia. Jej rola to podgrzewanie mieszanki powietrzno-paliwowej, co jest szczególnie ważne przy rozruchu, zwłaszcza w zimnych warunkach. Takie uszkodzenie może utrudnić start silnika, ale nie ma wpływu na ciśnienie wtrysku w trakcie normalnej pracy. Za dużo powietrza w silniku raczej nie spowoduje zwiększonego zadymienia, bo nadmiar powietrza prowadzi do ubogiej mieszanki, co na ogół zmniejsza emisję cząstek. Kluczowe jest zrozumienie, że odpowiednie ciśnienie wtrysku jest super ważne dla efektywności spalania i mniejszych emisji. Warto korzystać z norm i standardów w diagnostyce układów wtryskowych, żeby silnik działał jak należy i spełniał normy ekologiczne.

Pytanie 32

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 5,0 h
B. 3,5 h
C. 4,5 h
D. 4,0 h
Odpowiedź 4,5 h jest poprawna, ponieważ czas wymiany uszczelnień tłoczków hamulcowych w samochodzie Polonez 1500 został dokładnie określony w taryfikatorze czasochłonności napraw. Wymiana uszczelnień tłoczków hamulcowych z przodu zajmuje 1,5 h, a z tyłu 2 h, co razem daje 3,5 h. Dodatkowo, odpowietrzenie układu hamulcowego to kolejny proces, który wymaga dodatkowej godziny. Sumując te czasy, otrzymujemy całkowity czas naprawy wynoszący 4,5 h. W praktyce, właściwe oszacowanie czasu naprawy jest kluczowe dla efektywności pracy warsztatu, umożliwiając lepsze planowanie zadań oraz obliczanie kosztów usług. Zrozumienie taryfikatorów oraz umiejętność ich stosowania w codziennej praktyce jest niezbędne dla mechaników, by móc świadczyć usługi zgodnie z przyjętymi standardami branżowymi.

Pytanie 33

Termin "mokra tuleja cylindrowa" odnosi się do

A. tulei cylindrowej silnika chłodzonego cieczą, oddzielonej cienką ścianką kadłuba od płynu chłodzącego
B. tulei cylindrowej silnika chłodzonego powietrzem
C. tulei cylindrowej silnika chłodzonego cieczą kontaktującej się zewnętrzną powierzchnią z płynem chłodzącym
D. otworu stworzonego w jednoczęściowych odlewach kadłuba silnika lub bloku cylindrowego
Mokra tuleja cylindrowa to naprawdę ważny element w silnikach spalinowych. Działa to tak, że jest otoczona cieczą chłodzącą, co pomaga w lepszym odprowadzaniu ciepła. W przeciwieństwie do silników chłodzonych powietrzem, w których tuleje nie mają kontaktu z cieczą, tutaj mamy dużo lepszą efektywność w utrzymywaniu właściwej temperatury silnika. Przykładowo, w autach osobowych czy ciężarowych często spotyka się tę konstrukcję. Moim zdaniem, dzięki mokrej tulei silniki są bardziej trwałe i efektywne energetycznie. Warto zwrócić uwagę, że takie rozwiązania są zgodne z tym, co inżynierowie uznają za najlepsze praktyki w branży. Krótko mówiąc, mokra tuleja cylindrowa to coś, co naprawdę robi różnicę w działaniu silnika.

Pytanie 34

W pojazdach z tradycyjnym systemem napędowym właściwa zbieżność kół powinna być

A. zerowa
B. ujemna
C. bez znaczenia
D. dodatnia
Ogólnie rzecz biorąc, zbieżność kół w samochodach z klasycznym napędem powinna być dodatnia. Chodzi o to, że przednie koła są trochę skierowane do siebie na górze. Taki sposób ustawienia kół pomaga utrzymać stabilność pojazdu, zarówno kiedy jedziemy prostą drogą, jak i przy skrętach. Dodatnia zbieżność zmniejsza ryzyko zużycia opon i poprawia ich kontakt z nawierzchnią. W warsztatach często zajmują się regulacją zbieżności i używają do tego różnych urządzeń, żeby wszystko było zgodne z tym, co mówi producent. Moim zdaniem, dobrze jest dostosować zbieżność do wartości dodatniej, bo to również wpływa na komfort jazdy i bezpieczeństwo, a pojazd zachowuje się przewidywalnie. Z tego, co wiem, różne pojazdy mogą mieć różne zalecenia odnośnie zbieżności, więc warto sprawdzić dokumentację techniczną swojego auta.

Pytanie 35

Klient odwiedził warsztat, aby wymienić amortyzatory tylnej osi. Jaki jest łączny koszt tej usługi, jeśli czas potrzebny na wymianę jednego amortyzatora tylnej osi wynosi 0,6 rbg, stawka za roboczogodzinę to 125,00 zł, a koszt jednego amortyzatora to 70,00 zł?

A. 290,00 zł
B. 145,00 zł
C. 220,00 zł
D. 215,00 zł
Aby obliczyć całkowity koszt wymiany amortyzatorów osi tylnej, należy uwzględnić zarówno koszt robocizny, jak i koszt części. Czas pracy na wymianę jednego amortyzatora wynosi 0,6 rbg. Dla dwóch amortyzatorów, czas roboczy wynosi 0,6 rbg × 2 = 1,2 rbg. Koszt robocizny wynosi 125,00 zł za roboczogodzinę, co oznacza, że za 1,2 rbg zapłacimy 1,2 × 125,00 zł = 150,00 zł. Koszt dwóch amortyzatorów to 70,00 zł × 2 = 140,00 zł. Zatem całkowity koszt naprawy to 150,00 zł (robocizna) + 140,00 zł (amortyzatory) = 290,00 zł. Tego rodzaju obliczenia są standardem w branży motoryzacyjnej, gdzie precyzyjne kalkulacje kosztów są niezbędne do prawidłowego wyceny usług. Zrozumienie struktury kosztów pozwala na dostosowanie cen do oczekiwań klientów oraz utrzymanie konkurencyjności na rynku.

Pytanie 36

EGR to skrót oznaczający system

A. zmiennych faz rozrządu
B. recyrkulacji spalin
C. wspomagania układu hamulcowego
D. wspomagania układu kierowniczego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 37

Częstym symptomem wskazującym na poślizg sprzęgła jest

A. spadek prędkości pojazdu w trakcie jazdy pod górkę
B. niemożność zmiany biegów
C. drgania pojawiające się podczas hamowania
D. nierównomierna praca silnika na biegu jałowym
Brak możliwości zmiany biegów, drganie występujące w czasie hamowania oraz nierówna praca silnika na biegu jałowym to objawy, które mogą być mylone z problemami związanymi ze sprzęgłem, ale nie są bezpośrednio związane z jego poślizgiem. Kiedy pojazd nie może zmieniać biegów, zazwyczaj wynika to z problemów z mechanizmem zmiany biegów lub z uszkodzoną skrzynią biegów, a nie z poślizgiem sprzęgła. Drgania przy hamowaniu mogą wskazywać na problemy z układem hamulcowym, na przykład zużyte tarcze hamulcowe, co jest zupełnie innym zagadnieniem technicznym. Nierówna praca silnika na biegu jałowym może być spowodowana różnymi czynnikami, takimi jak niewłaściwe ustawienie zapłonu, uszkodzenie wtryskiwaczy lub problemy z układem dolotowym. Tego rodzaju błędne wnioski mogą prowadzić do nieprawidłowej diagnostyki problemu, co w rezultacie może skutkować nieefektywnym usuwaniem usterek. Właściwa diagnoza wymaga zrozumienia, jakie objawy rzeczywiście wskazują na poślizg sprzęgła i jakie inne elementy mogą wpływać na działanie pojazdu. Wiedza ta jest kluczowa dla mechaników oraz właścicieli pojazdów w celu skutecznej konserwacji i naprawy systemów napędowych.

Pytanie 38

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. zatrucia spalinami
B. urazów rąk
C. oparzenia spalinami
D. porażenia prądem
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 39

Substancja eksploatacyjna oznaczona symbolem 10W/40 to

A. olej silnikowy
B. ciecz hamulcowa.
C. ciecz do spryskiwaczy.
D. ciecz chłodząca silnik.
Odpowiedź "olej silnikowy" jest poprawna, ponieważ oznaczenie 10W/40 odnosi się do klasyfikacji olejów silnikowych według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' (winter) oznacza lepkość oleju w niskich temperaturach, co jest istotne podczas uruchamiania silnika w zimie. W tym przypadku '10' wskazuje, że olej ma odpowiednią lepkość w temperaturach poniżej zera. Druga liczba, '40', określa lepkość oleju w wysokich temperaturach pracy silnika, co jest kluczowe dla zapewnienia odpowiedniej ochrony silnika w czasie jego eksploatacji. Oleje 10W/40 są powszechnie stosowane w silnikach benzynowych i diesla, oferując dobrą ochronę przy różnych warunkach temperaturowych. Zastosowanie takiego oleju wspiera właściwą pracę silnika, zapewniając jego smarowanie, a także redukując tarcie i zużycie części silnika. Używanie oleju o niewłaściwej specyfikacji może prowadzić do nadmiernego zużycia silnika oraz zwiększonego ryzyka awarii.

Pytanie 40

Układ hamulcowy należy odpowietrzyć

A. rozpoczynając od koła najbliższego pompie hamulcowej
B. w przeciwnym kierunku do wskazówek zegara
C. w tym samym kierunku co wskazówki zegara
D. rozpoczynając od koła najdalszego od pompy hamulcowej
Odpowietrzanie układu hamulcowego należy przeprowadzać zaczynając od najdalszego koła od pompy hamulcowej, ponieważ w takim układzie powietrze, które ma tendencję do gromadzenia się w najdalszych częściach systemu, zostanie usunięte w pierwszej kolejności. Ta metoda zapewnia, że wszelkie zanieczyszczenia i powietrze są eliminowane w sposób efektywny, co umożliwia uzyskanie pełnej efektywności hamowania. Standardowe praktyki w branży motoryzacyjnej wskazują, że odpowiednie odpowietrzenie układu hamulcowego nie tylko poprawia jego wydajność, ale także zwiększa bezpieczeństwo pojazdu. W wielu warsztatach korzysta się z instrukcji producenta, które zazwyczaj zalecają tę metodę. Przykładowo, przy odpowietrzaniu układu hamulcowego w samochodach osobowych, technicy często rozpoczynają od tylnego koła po przeciwnej stronie od pompy, aby uniknąć ponownego wprowadzenia powietrza do systemu. Prawidłowo wykonane odpowietrzanie skutkuje sztywniejszym pedale hamulca oraz lepszą reakcją na nacisk.