Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 stycznia 2025 14:20
  • Data zakończenia: 14 stycznia 2025 14:33

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 2 m2
B. 1 m2
C. 4 m2
D. 3 m2
Przypisanie zbyt małej powierzchni na jednego pracownika, jak 1 m2, 3 m2 lub 4 m2, może prowadzić do różnych problemów ergonomicznych i zdrowotnych. Odpowiedź 1 m2 jest zdecydowanie niewystarczająca, ponieważ w praktyce oznacza brak miejsca na podstawowe elementy wyposażenia, takie jak biurko, krzesło, a także przestrzeń do poruszania się. Zbyt mała powierzchnia może prowadzić do uczucia dyskomfortu, które negatywnie wpływa na zdrowie psychiczne i fizyczne pracowników. W przypadku 3 m2, mimo że pod względem powierzchni może wydawać się to bardziej odpowiednie, nadal nie zapewnia to wystarczającej przestrzeni na swobodny ruch oraz zachowanie dystansu, co jest kluczowe w kontekście pracy w grupie. Z kolei 4 m2 może być w niektórych przypadkach zbyt dużą przestrzenią, co z kolei wiąże się z nieefektywnym wykorzystaniem biura oraz większymi kosztami operacyjnymi. Kluczowe jest zrozumienie, że odpowiednia przestrzeń powinna być dostosowana do potrzeb pracowników, a także specyfiki wykonywanej pracy. Błędem jest również założenie, że mniejsza powierzchnia sprzyja lepszej interakcji między pracownikami; przeciwnie, zbyt bliskie sąsiedztwo może prowadzić do zakłóceń oraz obniżenia efektywności zespołu. W praktyce, przeciwdziałanie tym problemom i dostosowanie przestrzeni do standardów ergonomicznych jest kluczowe dla zdrowia i wydajności pracowników.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
B. Przekazuje informacje pomiędzy satelitami
C. Odbiera programy telewizyjne
D. Nadaje sygnały z satelity
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. nadprądowy
B. czasowy
C. podnapięciowy
D. różnicowoprądowy
Wyłącznik nadprądowy jest kluczowym elementem ochrony instalacji elektrycznej przed skutkami przeciążenia. Działa on na zasadzie detekcji prądu przekraczającego nominalną wartość, co może prowadzić do przegrzewania się przewodów, a w konsekwencji do pożaru lub uszkodzenia urządzeń elektrycznych. Wyłączniki nadprądowe są zaprojektowane zgodnie z normami IEC 60898 oraz IEC 60947, co zapewnia ich niezawodność w zastosowaniach domowych i przemysłowych. W praktyce, wyłącznik nadprądowy można spotkać w rozdzielniach elektrycznych budynków, gdzie zabezpiecza obwody zasilające gniazda i oświetlenie. Jego działanie jest szczególnie istotne w sytuacjach, gdy do obwodu podłączane są urządzenia o dużym poborze mocy, takie jak grzejniki elektryczne czy urządzenia AGD. Właściwe dobranie wyłącznika nadprądowego do charakterystyki obciążenia jest istotne dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wyjściowa
B. Moc wejściowa
C. Selektywność
D. Czułość
Moc wejściowa to parametr, który nie charakteryzuje odbiorników radiowych, ponieważ odnosi się do źródła sygnału, a nie do samego urządzenia odbiorczego. Odbiorniki radiowe są projektowane do przetwarzania sygnałów radiowych, a ich ważnymi parametrami są czułość, selektywność i moc wyjściowa. Czułość definiuje zdolność odbiornika do wykrywania słabych sygnałów, co jest kluczowe w przypadku odbioru stacji oddalonych od nadajnika. Selektywność odnosi się do zdolności odbiornika do rozróżniania różnych częstotliwości, co pozwala na odbieranie konkretnego sygnału w obecności szumów i innych sygnałów. Moc wyjściowa natomiast opisuje, jak mocny sygnał jest dostarczany do głośnika lub innego urządzenia wyjściowego. Każdy z tych parametrów jest istotny w kontekście jakości odbioru sygnału radiowego, a ich zrozumienie jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i eksploatacją systemów radiowych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wietrznej pogody
B. niskiej temperatury
C. wyładowań atmosferycznych
D. ograniczonej widoczności
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 17

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. regulować napięcie w kasecie rozmownej.
B. zwiększyć poziom głośności w panelu.
C. zwiększyć napięcie zasilania elektrozaczepu.
D. dostosować poziom głośności w unifonie.
Podwyższenie poziomu głośności w panelu, a nie w unifonie, nie rozwiązuje problemu pisków, ponieważ to unifon jest bezpośrednim źródłem dźwięku. Zwiększenie głośności na panelu może jedynie intensyfikować problem, zamiast go eliminować. W praktyce, niezrozumienie, że unifon powinien mieć własną regulację głośności, prowadzi do błędnych wniosków. Podobnie, wyregulowanie napięcia w kasecie rozmownej nie jest odpowiednią metodą na rozwiązanie problemu z dźwiękiem. Kasa rozmowna pełni rolę zasilającą i sterującą, a nie audio, więc zmiana napięcia w tym miejscu nie wpłynie na jakość dźwięku. Co więcej, podwyższenie napięcia zasilania elektrozaczepu nie ma związku z problemami audio w unifonie. Elektrozaczep odpowiada za otwieranie drzwi, a nie za przekazywanie dźwięku. Typowym błędem w takich sytuacjach jest mylenie funkcji poszczególnych elementów systemu domofonowego, co prowadzi do nieefektywnych rozwiązań. Zrozumienie, że każdy komponent pełni swoją unikalną funkcję, jest kluczowe dla prawidłowej obsługi systemów audio-wideo, a także działania całego systemu domofonowego.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
B. Częstościomierzem o maksymalnym zakresie 50 MHz
C. Oscyloskopem o podstawie czasu 100 ns/cm
D. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
Pomiary amplitudy przebiegu sygnału z generatora taktującego o częstotliwości 25 MHz przy pomocy woltomierza prądu zmiennego o rezystancji wewnętrznej 100 kOhm/V nie są odpowiednie, ponieważ woltomierze nie są przeznaczone do pomiarów sygnałów o tak dużych częstotliwościach. Woltomierz może nie zarejestrować pełnej amplitudy sygnału, zwłaszcza w przypadku sygnałów o wysokiej częstotliwości, ze względu na swoje ograniczenia pasmowe, co prowadzi do znacznie zaniżonych wyników pomiarów. Podobnie, użycie amperomierza prądu zmiennego z szeregowym rezystorem 10 kOhm jest niewłaściwe, ponieważ amperomierze są zaprojektowane do pomiaru natężenia prądu, a nie napięcia, co w kontekście analizy sygnałów cyfrowych jest nieodpowiednie. Dodatkowo, szeregowe połączenie z rezystorem może wpływać na działanie układu, wprowadzając dodatkowe straty i zmieniając charakterystykę obwodu. Na koniec, częstościomierz o maksymalnym zakresie 50 MHz teoretycznie mógłby być użyty do określenia częstotliwości, lecz nie dostarczyłby żadnych informacji na temat amplitudy sygnału, co jest kluczowe w analizie sygnałów cyfrowych. Typowe błędy myślowe to przekonanie, że jakiekolwiek urządzenie do pomiarów elektrycznych nadaje się do pomiaru amplitudy sygnału o wysokiej częstotliwości, co jest niezgodne z zasadami inżynierii elektronicznej. Praktyką w takich sytuacjach jest zawsze wybór sprzętu dostosowanego do specyfikacji sygnału, co jest fundamentalne dla uzyskania rzetelnych wyników.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. dostosowanie zwory elektromagnetycznej
B. naprawa kontrolera ethernet
C. konfiguracja czasu alarmowania
D. wymiana rejestratora cyfrowego
Regulacja zwory elektromagnetycznej jest kluczowym elementem konserwacji systemu kontroli dostępu, ponieważ to właśnie zwora odpowiada za fizyczne zabezpieczenie drzwi. Zwory elektromagnetyczne działają na zasadzie przyciągania magnetycznego, które utrzymuje drzwi zamknięte, gdy system jest aktywowany. Właściwa regulacja zapewnia, że zwora działa zgodnie z normami bezpieczeństwa, minimalizując ryzyko nieautoryzowanego dostępu. Przykładem zastosowania regulacji może być sytuacja, w której zwora nie trzyma drzwi wystarczająco mocno, co może prowadzić do ich łatwego otwarcia przez osoby trzecie. Regularne kontrole i dostosowania zwory są zgodne z najlepszymi praktykami branżowymi, które zalecają monitoring stanu mechanizmów zabezpieczeń. Ponadto, zwory powinny być sprawdzane pod kątem ewentualnych uszkodzeń oraz korozji, aby zapewnić ich długoterminową efektywność. Odpowiednie szkolenie personelu w zakresie konserwacji i regulacji systemu zabezpieczeń, w tym zwór, jest również istotnym aspektem utrzymania bezpieczeństwa w obiektach.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Który z wymienionych komponentów wykorzystuje się w systemach automatyki przemysłowej do pomiaru temperatury?

A. Warystor
B. Termistor
C. Triak
D. Tyrystor
Termistor jest elementem czujnikowym, który zmienia opór elektryczny w zależności od temperatury. Jest to stosunkowo powszechny komponent w automatyce przemysłowej, wykorzystywany w różnych systemach pomiarowych i kontrolnych. Jego budowa opiera się na materiałach półprzewodnikowych, które charakteryzują się dużą czułością na zmiany temperatury, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur. Przykładowe zastosowania termistorów obejmują kontrolę temperatury w piecach przemysłowych, klimatyzacji, a także w systemach monitorowania procesów chemicznych. Zgodnie ze standardami, termistory są często wykorzystywane w systemach automatyki do zapewnienia efektywnej regulacji i optymalizacji procesów, co przekłada się na zwiększenie efektywności energetycznej oraz bezpieczeństwa operacji. Zastosowanie termistorów w połączeniu z odpowiednim oprogramowaniem pozwala na tworzenie zaawansowanych algorytmów kontroli, co jest zgodne z najlepszymi praktykami w branży automatyki."

Pytanie 26

Podczas instalacji komputerowej na zewnątrz budynku, należy użyć kabla w izolacji

A. papierowej z żyłami miedzianymi
B. papierowej z żyłami aluminiowymi
C. gumowej lub polietylenowej z żyłami aluminiowymi
D. gumowej lub polietylenowej z żyłami miedzianymi
Wybór kabla gumowego lub polietylenowego z żyłami miedzianymi do instalacji komputerowej na zewnątrz obiektu jest zgodny z najlepszymi praktykami w branży elektroinstalacyjnej. Kabel gumowy charakteryzuje się wysoką odpornością na działanie niekorzystnych warunków atmosferycznych, takich jak wilgoć, promieniowanie UV oraz zmienne temperatury. Polietylen natomiast jest materiałem, który zapewnia doskonałą izolację, a jednocześnie jest odporny na działanie chemikaliów. Żyły miedziane cechują się lepszą przewodnością elektryczną w porównaniu do żył aluminiowych, co przekłada się na mniejsze straty energii oraz lepszą efektywność przesyłania sygnałów. Takie kable są często stosowane w zastosowaniach zewnętrznych, takich jak przyłącza do urządzeń zewnętrznych, monitoringu czy instalacji oświetleniowych. Zgodnie z normą PN-EN 60529, kable powinny mieć odpowiednią klasę ochrony przed szkodliwymi warunkami atmosferycznymi, co potwierdza, że wybór gumy lub polietylenu jest zasadne w kontekście chęci zapewnienia trwałości i bezpieczeństwa instalacji elektronicznych na zewnątrz.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. zasilania kamer.
B. dysku twardego.
C. kabelka HDMI.
D. kamer HD.
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.

Pytanie 29

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Diody prostowniczej
B. Kondensatora elektrolitycznego
C. Fotodiody
D. Kondensatora ceramicznego
Kondensatory ceramiczne to jedna z najczęściej stosowanych rodzin kondensatorów, która charakteryzuje się brakiem polaryzacji. Oznacza to, że ich montaż nie wymaga szczególnej uwagi na kierunek podłączenia, co znacznie upraszcza proces instalacji w obwodach elektronicznych. Przykładowo, kondensatory ceramiczne są często stosowane w układach filtrujących oraz w aplikacjach, w których wymagana jest stabilność w szerokim zakresie temperatur i częstotliwości. Warto również zauważyć, że ich niewielkie rozmiary oraz niska cena sprawiają, że są one idealne do zastosowań w urządzeniach mobilnych oraz innych produktach, gdzie przestrzeń i koszt mają kluczowe znaczenie. Zgodnie z najlepszymi praktykami w branży, zaleca się stosowanie kondensatorów ceramicznych w miejscach, gdzie nie występuje ryzyko wystąpienia dużych napięć, co może prowadzić do niepożądanych efektów. Znajomość właściwości tych komponentów jest kluczowa dla projektantów elektroniki, którzy dążą do tworzenia niezawodnych i efektywnych układów elektronicznych.

Pytanie 30

Woltomierz analogowy wskazał 30 działek. Urządzenie jest ustawione na zakres 100 V, a cała skala ma 100 działek. Jaką wartość napięcia odczytał woltomierz?

A. 33,3 V
B. 30 V
C. 3,33 V
D. 3 V
Woltomierz analogowy przedstawia wskazanie w oparciu o skalę, na której 100 działek odpowiada maksymalnemu zakresowi pomiarowemu, czyli 100 V. W tym przypadku, każda działka skali reprezentuje 1 V (100 V / 100 działek = 1 V/działkę). Jeśli wskazówka wychyliła się na 30 działek, oznacza to, że woltomierz wskazuje 30 V (30 działek * 1 V/działkę = 30 V). Ta zasada obliczeń jest szczególnie przydatna w praktyce, ponieważ umożliwia szybkie oszacowanie wartości napięcia na podstawie wskazania miernika. W branży elektrycznej precyzyjne pomiary napięcia są kluczowe do zapewnienia poprawności instalacji oraz bezpieczeństwa urządzeń. Na przykład, w zastosowaniach przemysłowych, takich jak kontrola zasilania maszyn, dokładne odczyty napięcia są niezbędne do monitorowania parametrów pracy urządzeń oraz ochrony przed uszkodzeniami. Zrozumienie, jak interpretować wartości wskazywane przez woltomierz, jest fundamentalne dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 31

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną

A. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
B. baterie są rozładowane i należy je wymienić.
C. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.
D. czujka działa poprawnie i jest w stanie czuwania.
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 32

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
B. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
C. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
D. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
Wybór odpowiednich zakresów pomiarowych w mierniku uniwersalnym jest kluczowy dla uzyskania dokładnych pomiarów oraz zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. W przypadku zasilacza buforowego zasilającego instalację alarmową, istotne jest, aby na wejściu sieciowym transformatora ustawić zakres 750 V AC, co odpowiada typowemu napięciu sieci energetycznej. Pomiar na wyjściu transformatora, gdzie napięcie wynosi nominalnie 18 V, powinien być przeprowadzony w zakresie 20 V AC, co jest zgodne z parametrami transformatora niskonapięciowego. W przypadku pomiaru napięcia na zaciskach akumulatora, które pracuje w systemie 12 V, należy ustawić zakres 20 V DC, co jest standardowym sposobem pomiaru napięć stałych w akumulatorach. Użycie właściwych zakresów zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkownika oraz sprzętu, zgodnie z zasadami BHP oraz dobrą praktyką inżynierską.

Pytanie 33

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Tranzystor bipolarny
B. Dioda prostownicza
C. Rezystor mocy
D. Tranzystor z izolowaną bramką
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. uziemienia ochronnego
B. wyłączników różnicowoprądowych
C. zerowania ochronnego
D. klimatyzacji
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia sprzętu lutowniczego
B. uszkodzenia układów scalonych
C. poparzenia gorącym spoiwem
D. porażenia prądem elektrycznym
Brak opaski uziemiającej na przegubie ręki podczas montażu układów CMOS to spory błąd, bo może prowadzić do uszkodzenia tych układów przez gromadzenie się ładunków elektrostatycznych. Układy CMOS są na to mega wrażliwe, co może skutkować ich trwałym uszkodzeniem, na przykład zmianami w ich właściwościach elektrycznych. Dlatego właśnie używanie opaski jest super ważne w miejscach, gdzie pracuje się z delikatnymi komponentami elektronicznymi. Opaska ta sprawia, że ładunek jest odprowadzany i przez to zmniejsza się ryzyko uszkodzeń. Z własnego doświadczenia wiem, że przestrzeganie norm jak ANSI/ESD S20.20 czy IEC 61340-5-1, które mówią o najlepszych praktykach w ochronie przed ESD, naprawdę się opłaca, jeśli chcemy mieć pewność co do jakości naszych produktów. Regularne szkolenia dla pracowników oraz stosowanie odpowiednich środków ochrony jak maty ESD czy opaski są kluczowe, by zminimalizować ryzyko przy montażu wrażliwych komponentów.

Pytanie 39

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. skrócenia okresu użytkowania
B. pojawienia się napięcia na obudowie
C. uszkodzenia urządzenia
D. wzrostu temperatury pracy urządzenia
Podłączenie urządzenia elektronicznego posiadającego I klasę ochronności do gniazdka instalacji elektrycznej bez bolca ochronnego stwarza ryzyko pojawienia się napięcia na obudowie. Urządzenia te są projektowane w taki sposób, aby ich obudowy były uziemione, co zapobiega przypadkowemu porażeniu prądem w sytuacji awaryjnej. W przypadku, gdy bolca ochronnego brakuje, obudowa nie jest uziemiona, co oznacza, że w przypadku awarii lub zwarcia, napięcie może pojawić się na obudowie urządzenia. Przykładem zastosowania tej zasady jest użycie urządzeń takich jak pralki, lodówki, czy komputery, które powinny być podłączane do gniazdek z uziemieniem, aby zapewnić bezpieczeństwo użytkowników. Normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 61140, podkreślają znaczenie poprawnego uziemienia dla ochrony przed ryzykiem porażenia prądem. Dobre praktyki w zakresie instalacji elektrycznych nakazują, aby każde urządzenie klasy I było zawsze podłączane do gniazdka z bolcem ochronnym, co minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji.

Pytanie 40

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. JACK
B. DIN
C. BNC
D. RJ-45
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.