Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 9 maja 2025 10:43
  • Data zakończenia: 9 maja 2025 11:11

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na dokumentacji dotyczącej zapotrzebowania materiałowego do realizacji instalacji znajduje się symbol Cu-DHP 22x1 R220. Co to oznacza w kontekście rur?

A. o średnicy 22 mm i grubości 1mm, miękka
B. o promieniu 22 mm i grubości 1 mm, twarda
C. o średnicy 22 mm i długości 1m, twarda
D. o średnicy 22 mm i długości 1m, miękka
Odpowiedź wskazująca, że jest to rura miedziana o średnicy 22 mm i grubości 1 mm, miękka, jest poprawna ze względu na standardowe oznaczenia rur miedzianych. Symbol Cu-DHP oznacza miedź dekarbonizowaną, która jest szeroko stosowana w instalacjach wodnych i grzewczych. Średnica 22 mm to typowy rozmiar dla rur stosowanych w instalacjach domowych, co czyni je idealnymi do transportu wody oraz dla systemów grzewczych. Grubość 1 mm wskazuje na uniwersalność i łatwość w montażu, co jest korzystne w przypadku zastosowań, gdzie elastyczność materiału jest ważna. Rury miękkie są często wykorzystywane, gdyż łatwiej je formować i dopasowywać do istniejącej instalacji. Przykłady zastosowań obejmują instalacje hydrauliczne w budynkach mieszkalnych, gdzie miedź jest preferowana ze względu na swoją odporność na korozję oraz właściwości antybakteryjne. Dobrą praktyką jest stosowanie takich rur w miejscach, które wymagają częstych zmian kierunku lub w przypadku trudnego dostępu do instalacji.

Pytanie 2

Czym jest mostek termiczny?

A. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
B. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
C. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
D. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 3

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 3 m
B. 5m
C. 6m
D. 4m
Ustalanie maksymalnej wysokości hałd na poziomie 3 m, 5 m lub 6 m może prowadzić do szeregu problemów związanych z bezpieczeństwem oraz oddziaływaniem na środowisko. Przykładowo, 3 m może wydawać się odpowiednią wysokością, ale w praktyce może to ograniczać efektywność składowania oraz zwiększać ilość wymaganej przestrzeni. Wysokości przekraczające 4 m, takie jak 5 m czy 6 m, stwarzają ryzyko osuwania się materiału oraz mogą prowadzić do poważnych incydentów w przypadku silnych opadów deszczu, co może skutkować niekontrolowanym wypływem substancji bioaktywnych. Wysokie hałdy są trudniejsze do monitorowania i kontrolowania, co zwiększa ryzyko rozwoju szkodników oraz emisji nieprzyjemnych zapachów. Ponadto, przekroczenie norm wysokości może naruszać lokalne przepisy dotyczące ochrony środowiska, co wiąże się z sankcjami i kosztami. Z perspektywy zarządzania ryzykiem, składowanie materiałów bioaktywnych w sposób niezgodny z najlepszymi praktykami branżowymi może prowadzić do znacznych problemów zdrowotnych, zarówno dla pracowników, jak i mieszkańców okolicznych terenów. Niewłaściwe podejście do składowania może także negatywnie wpłynąć na wizerunek firmy oraz jej relacje z organami regulacyjnymi.

Pytanie 4

Zalecana objętość zbiornika solarnego wynosi

A. od 2 do 2,5 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
B. mniejsza niż dzienne zapotrzebowanie na ciepłą wodę użytkową
C. taka sama jak dzienne zapotrzebowanie na ciepłą wodę użytkową
D. od 1,5 do 2 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
Zalecana pojemność zasobnika solarnego powinna być większa od dziennego zapotrzebowania na ciepłą wodę użytkową, aby umożliwić efektywne wykorzystanie energii słonecznej. W praktyce, pojemność zasobnika od 1,5 do 2 razy większa od zapotrzebowania zapewnia, że woda jest odpowiednio podgrzewana w ciągu dnia, a nadmiar ciepła może być magazynowany na wieczór lub noc. Takie podejście jest zgodne z wytycznymi i normami zawartymi w standardach budowlanych oraz praktykami w zakresie systemów grzewczych. Dla przykładu, jeśli średnie dzienne zapotrzebowanie na ciepłą wodę wynosi 100 litrów, to pojemność zasobnika powinna wynosić od 150 do 200 litrów. Umożliwia to nie tylko zaspokojenie bieżącego zapotrzebowania, ale także buforowanie ciepła, co jest niezbędne w okresach niskiej inszolacji słonecznej. Dodatkowo, zwiększona pojemność zasobnika przyczynia się do lepszej stabilności systemu, minimalizując ryzyko przegrzania i strat ciepła.

Pytanie 5

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00

A. 900 zł
B. 1 500 zł
C. 500 zł
D. 2 900 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 6

Sonda lambda wykorzystywana w piecach na biomasę ma na celu pomiar

A. stężenia tlenu w spalinach
B. stężenia tlenków azotu w spalinach
C. stężenia tlenku węgla w spalinach
D. stężenia dwutlenku węgla w spalinach
Sonda lambda, znana również jako czujnik tlenu, odgrywa kluczową rolę w procesie spalania, zwłaszcza w urządzeniach grzewczych, takich jak kotły na biomasę. Jej podstawowym zadaniem jest mierzenie poziomu tlenu w spalinach, co pozwala na optymalizację stosunku powietrza do paliwa. Dzięki precyzyjnym pomiarom, systemy zarządzania kotłami mogą regulować proces spalania, aby uzyskać maksymalną efektywność energetyczną oraz minimalizować emisję szkodliwych substancji. Poprawne funkcjonowanie sondy lambda jest istotne dla osiągnięcia norm emisji, takich jak te określone w dyrektywie Unii Europejskiej 2010/75/UE w sprawie emisji przemysłowych. W praktyce, sonda lambda pozwala na adaptacyjne sterowanie procesem spalania, co przyczynia się do oszczędności paliwa i ograniczenia wpływu na środowisko. Regularne serwisowanie i kalibracja sondy są niezbędne, aby zapewnić jej niezawodność i precyzyjność pomiarów, co jest kluczowe w dążeniu do zrównoważonego rozwoju w sektorze energetycznym.

Pytanie 7

Wskaż gaz, który powinien być wykorzystywany do przewozu biomasy w formie pyłu?

A. Błotny
B. Ziemny
C. Węglowy
D. Inertny
Odpowiedź "Inertny" jest prawidłowa, ponieważ gazy inertne, takie jak azot czy argon, są stosowane do transportu materiałów pylistych, w tym biomasy. Gazy te nie reagują chemicznie z transportowanym materiałem, co minimalizuje ryzyko reakcji, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak zapłon czy wybuch. W praktyce, w transporcie biomasy w postaci pyłu, stosowanie gazów inertnych pozwala na stworzenie atmosfery ochronnej, która nie tylko zabezpiecza materiał przed utlenieniem, ale również chroni przed pyłami, które mogą być łatwopalne. Zgodnie z normami ISO oraz dobrymi praktykami branżowymi, użycie gazów inertnych jest rekomendowane w wielu procesach przemysłowych, szczególnie tam, gdzie występują substancje łatwopalne lub reaktywne. Przykładowo, w przemysłowych systemach transportu biomasy, takich jak linie do pneumatycznego transportu, zastosowanie atmosfery azotowej pozwala na bezpieczne przewożenie pyłu drzewnego, który jest powszechnie wykorzystywany jako źródło energii.

Pytanie 8

Na podstawie danych zawartych w tabeli dobierz średnicę rury, jeżeli w instalacji solarnej przewidziano montaż 16 kolektorów.

Średnica rury
[mm]
Ilość czynnika w 1 mb rury
[dm³/mb]
Liczba podłączonych
kolektorów
15 x 1,00,131 – 3
18 x 1,00,24 – 6
22 x 1,00,317 – 9
28 x 1,50,4910 – 20
35 x 1,50,821 – 30
42 x 1,51,231 – 40

A. 35 x 1,5
B. 22 x 1,0
C. 42 x 1,5
D. 28 x 1,5
Wybór średnicy rury 28 x 1,5 jest uzasadniony, ponieważ w tabeli przedstawiono zakresy średnic rur, które są odpowiednie dla określonej liczby kolektorów. W przypadku instalacji solarnej z 16 kolektorami, średnica 28 x 1,5 mieści się w przedziale od 10 do 20 kolektorów, co jest zgodne z zaleceniami branżowymi. Użycie rury o tej średnicy zapewnia optymalne przepływy cieczy w systemie, co przekłada się na efektywność całej instalacji. Dobrze dobrana średnica rury jest kluczowa dla minimalizacji strat ciśnienia oraz zapewnienia odpowiedniego transportu ciepła z kolektorów do zbiorników magazynowych. Ponadto, w praktyce, zastosowanie rur o właściwych średnicach pozwala na uniknięcie problemów z hałasem czy drganiami, które mogą wystąpić przy niewłaściwym doborze. Zgodnie z normami branżowymi, dobór średnicy powinien być także oparty na przepływach cieczy oraz ich prędkości, co w tym przypadku zostało spełnione. Dlatego odpowiedź 28 x 1,5 jest nie tylko poprawna, ale również zgodna z najlepszymi praktykami w tej dziedzinie.

Pytanie 9

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 15
B. 20
C. 10
D. 5
Minimalna odległość między sąsiadującymi turbinami wiatrowymi, wyrażona w średnicach wirnika turbiny, wynosząca co najmniej 5, jest uzasadniona wieloma czynnikami technicznymi i praktycznymi. Przestrzeganie tej normy pozwala na zminimalizowanie wpływu turbulencji powietrza generowanych przez jedną turbinę na drugą. W praktyce, turbiny wiatrowe wymagają odpowiedniej separacji, aby zapewnić optymalną wydajność oraz efektywność wytwarzania energii. Ponadto, odpowiednia odległość ogranicza ryzyko uszkodzeń mechanicznych związanych z wiatrem, co może prowadzić do zwiększenia kosztów eksploatacji. Standardy branżowe, takie jak those recommended by the International Electrotechnical Commission (IEC), podkreślają znaczenie odpowiednich odległości między turbinami, co jest kluczowe dla zapewnienia ich długowieczności oraz stabilności operacyjnej. W przypadku turbin o dużych średnicach wirnika, zalecenia dotyczące minimalnych odległości są jeszcze bardziej istotne, aby zminimalizować wpływ na ich wydajność i bezpieczeństwo. Przykłady dobrych praktyk w tej dziedzinie można zaobserwować w projektach dużych farm wiatrowych, gdzie optymalizacja układu turbin jest kluczowa dla maksymalizacji produkcji energii.

Pytanie 10

Jakie są jednostkowe koszty robocizny na 1 sztukę kolektora słonecznego, jeśli całkowity koszt robocizny za realizację 5 kolektorów wynosi 5 500,00 zł, a ustalona stawka za roboczogodzinę wynosi 11,00 zł?

A. 55 r-g/szt.
B. 1 100 r-g/szt.
C. 100 r-g/szt.
D. 500 r-g/szt.
Jednostkowe nakłady robocizny na 1 sztukę kolektora słonecznego można obliczyć, dzieląc całkowity koszt robocizny przez liczbę wykonanych kolektorów. W tym przypadku wartość kosztorysowa robocizny za wykonanie 5 kolektorów wynosi 5 500,00 zł. Dzieląc tę kwotę przez 5, otrzymujemy jednostkowy koszt robocizny równy 1 100,00 zł na jeden kolektor. Następnie, aby uzyskać jednostkowe nakłady robocizny w roboczogodzinach, musimy obliczyć, ile roboczogodzin stanowi ta kwota w odniesieniu do stawki za roboczogodzinę, która wynosi 11,00 zł. Dzieląc jednostkowy koszt robocizny (1 100,00 zł) przez stawkę za roboczogodzinę (11,00 zł), otrzymujemy 100 roboczogodzin na jeden kolektor. To pokazuje, jak ważne jest zrozumienie zasad wyceny robocizny oraz umiejętność zastosowania ich w praktyce. W branży budowlanej i instalacyjnej, precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania projektami oraz budżetami.

Pytanie 11

Jaką wartość ma maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 roku przy t1 >= 16°C?

A. 0,23 W/m2∙K
B. 0,28 W/m2∙K
C. 0,20 W/m2∙K
D. 0,25 W/m2∙K
Maksymalny współczynnik przenikania ciepła dla ścian zewnętrznych nowych budynków, wynoszący 0,23 W/m2∙K, jest zgodny z obowiązującymi normami budowlanymi, które weszły w życie 1 stycznia 2017 roku. Wartość ta wynika z założeń dotyczących efektywności energetycznej budynków oraz polityki zrównoważonego rozwoju, mającej na celu zmniejszenie zużycia energii oraz ograniczenie emisji CO2. Niska wartość Uc ma kluczowe znaczenie dla zapewnienia komfortu cieplnego wewnątrz budynków, a także dla obniżenia kosztów ogrzewania. Przykładem zastosowania tej normy jest budownictwo pasywne, w którym projektowane budynki muszą spełniać rygorystyczne wymogi dotyczące izolacyjności termicznej. Zastosowanie technologii, takich jak panele izolacyjne o wysokiej wydajności, może znacząco przyczynić się do osiągnięcia wymaganej wartości współczynnika Uc. W praktyce, deweloperzy i architekci powinni zwracać szczególną uwagę na wybór materiałów oraz technologii budowlanych, które pozwolą na spełnienie tych norm, co wpływa na ogólną jakość budynku oraz jego efektywność energetyczną.

Pytanie 12

Podstawą do stworzenia szczegółowego kosztorysu instalacji pompy ciepła są

A. katalogi nakładów rzeczowych
B. atestacje higieniczne
C. aprobacje techniczne
D. harmonogramy prac
Podstawą opracowania kosztorysu szczegółowego instalacji pompy ciepła są katalogi nakładów rzeczowych, które stanowią kluczowe narzędzie dla inżynierów i kosztorysantów. Katalogi te zawierają szczegółowe informacje na temat kosztów materiałów, robocizny i innych nakładów, co pozwala na precyzyjne oszacowanie całkowitego kosztu inwestycji. Przykładowo, przy instalacji pompy ciepła ważne jest uwzględnienie kosztów nie tylko samej pompy, ale także materiałów niezbędnych do montażu, takich jak rury, izolacje, czy armatura. Korzystanie z aktualnych katalogów, takich jak KNR (Katalogi Nakładów Rzeczowych) lub ZK (Zbiory Kosztorysowe), zapewnia, że kosztorys będzie zgodny z rynkowymi standardami i rzeczywistymi cenami, co jest niezbędne dla efektywnego zarządzania budżetem projektu. Dobre praktyki w tej dziedzinie obejmują również regularne aktualizowanie danych w kosztorysach oraz analizowanie cen rynkowych, co umożliwia dostosowanie kosztorysu do zmieniających się warunków rynkowych.

Pytanie 13

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. konwencjonalnie nieodnawialnej
B. nieodnawialnej
C. hydrotermalnej
D. petrotermalnej
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 14

Filtry powietrza w rekuperatorze powinny być wymieniane

A. co 5-6 miesięcy.
B. na podstawie oceny ich stanu.
C. na podstawie wskazówek od instalatora.
D. co 7-8 miesięcy.
Wymiana filtrów powietrza w rekuperatorze nie powinna być oparta na ogólnych zaleceniach czasowych, takich jak co 7-8 lub co 5-6 miesięcy. Takie podejście może prowadzić do nieefektywności kosztowej, ponieważ niektóre filtry mogą wymagać wymiany znacznie rzadziej, podczas gdy inne mogą wymagać częstszej interwencji. Ustalanie harmonogramu wymiany na podstawie danych od wykonawcy instalacji również nie jest najlepszym rozwiązaniem, ponieważ może nie uwzględniać rzeczywistych warunków pracy systemu. Różne czynniki, takie jak poziom zanieczyszczenia powietrza, intensywność użytkowania systemu, a także rodzaj filtrów, mają znaczący wpływ na ich trwałość i efektywność. Bezkrytyczne stosowanie standardowych ram czasowych do wymiany filtrów może prowadzić do sytuacji, w której filtry są wymieniane, gdy nie jest to jeszcze konieczne, co generuje dodatkowe koszty i odpady. Rozwiązaniem jest przeprowadzanie regularnych inspekcji oraz stosowanie monitorowania parametrów technicznych, które dostarczą precyzyjnych informacji na temat stanu filtrów. Rekomendowane jest także stosowanie filtrów o określonej klasie efektywności, co pozwoli na dłuższe ich utrzymanie w dobrym stanie, a także na lepsze zarządzanie jakością powietrza wewnętrznego.

Pytanie 15

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. ekogroszek
B. zrębki
C. ziarno
D. pelet
Pelet to paliwo stałe, które powstaje poprzez sprasowanie trocin, wiórów oraz innych odpadów drzewnych. Jest to produkt ściśle związany z wykorzystaniem surowców drzewnych w sposób efektywny i ekologiczny. Pelet charakteryzuje się wysoką gęstością energetyczną, co sprawia, że jest chętnie stosowany w piecach i kotłach na biomasę. Dzięki odpowiedniej technologii produkcji, pelet cechuje się niską wilgotnością oraz stałą wielkością, co ułatwia jego transport i magazynowanie. Zastosowanie peletu w systemach grzewczych przyczynia się do redukcji emisji spalin oraz wykorzystania odnawialnych źródeł energii. Warto również zauważyć, że pelet podlega różnym normom jakościowym, co zapewnia jego wysoką efektywność spalania oraz minimalizację osadów popiołu, co jest istotne w kontekście ochrony środowiska. Pelet może być wykorzystywany w domach jednorodzinnych, a także w przemyśle, gdzie coraz częściej zastępuje tradycyjne paliwa kopalne.

Pytanie 16

Inspekcję techniczną systemu solarnego należy wykonywać co

A. jeden rok
B. trzy lata
C. pół roku
D. dwa lata
Przegląd techniczny instalacji solarnej powinien być przeprowadzany co najmniej raz w roku, co jest zgodne z zaleceniami wielu organizacji zajmujących się energią odnawialną oraz regulacjami prawnymi w wielu krajach. Regularne przeglądy pozwalają na wczesne wykrywanie usterek, co może znacznie zwiększyć efektywność systemu oraz wydłużyć jego żywotność. Przykładowo, w przypadku systemów fotowoltaicznych, przegląd obejmuje nie tylko inspekcję fizyczną paneli, ale także sprawdzenie stanu inwertera oraz monitorowanie wydajności systemu. W ciągu roku, na podstawie wyników przeglądów, można podjąć działania naprawcze, które mogą obejmować czyszczenie paneli, wymianę uszkodzonych elementów czy aktualizację oprogramowania inwertera. Taki cykl przeglądów jest zgodny z najlepszymi praktykami branżowymi, które sugerują, że systemy energii odnawialnej powinny być regularnie konserwowane w celu zapewnienia ich optymalnej wydajności oraz zgodności z normami bezpieczeństwa.

Pytanie 17

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C

A. 60,00 zł
B. 30,00 zł
C. 12,00 zł
D. 45,00 zł
Wybór odpowiedzi, która nie jest poprawna, może wynikać z kilku powszechnych błędów obliczeniowych. Na przykład, wybierając odpowiedź 60,00 zł, można było błędnie założyć, że dobowe straty energii są wyższe niż podane 2 kWh, co prowadzi do zawyżenia miesięcznych kosztów. Z kolei odpowiedzi takie jak 12,00 zł oraz 45,00 zł mogą wynikać z nieprawidłowego zastosowania wzoru, gdzie użytkownik mógł pomylić jednostki lub błędnie obliczyć ilość dni w miesiącu. Należy pamiętać, że przy obliczeniach finansowych istotne jest zachowanie precyzji w jednostkach oraz poprawne zrozumienie, jak różne parametry wpływają na końcowy wynik. Często zdarza się, że w zadaniach tego typu pomija się kluczowe założenia, takie jak cena jednostkowa energii czy obliczenie strat energii na poziomie dziennym, co prowadzi do nieprawidłowych wniosków. Niezrozumienie procesu obliczeń może skutkować poważnymi konsekwencjami w rzeczywistych aplikacjach przemysłowych, gdzie dokładność kosztów operacyjnych jest kluczowa dla efektywności ekonomicznej działalności.

Pytanie 18

Czym charakteryzują się kolektory CPC?

A. posiadają podwójny absorber
B. mają dodatkowe zwierciadła skupiające promieniowanie
C. są wyposażone w dodatkową izolację cieplną
D. zawierają kanały do ogrzewania powietrza
Podwójny absorber, jako koncepcja, jest stosunkowo rzadko spotykany w systemach kolektorów słonecznych, ponieważ klasyczne rozwiązania bazują na pojedynczych absorberach, które są wystarczające dla wielu aplikacji. Dodatkowa izolacja cieplna, choć ważna dla ograniczenia strat ciepła, nie jest specyficzną cechą kolektorów CPC, ponieważ te konstrukcje są projektowane z myślą o maksymalizacji efektywności optycznej poprzez wykorzystanie zwierciadeł. Kanały do ogrzewania powietrza są również funkcjonalnością, która nie znajduje zastosowania w kolektorach CPC, gdyż te urządzenia są zaprojektowane głównie do podgrzewania cieczy, a nie powietrza. Takie błędne myślenie może wynikać z mylnych założeń dotyczących działania różnych technologii solarnych, gdzie niektórzy mogą mylić zastosowanie kolektorów słonecznych z systemami słonecznymi do ogrzewania powietrza. Zrozumienie zasad działania kolektorów CPC i ich specyfiki jest kluczowe dla prawidłowego ich wykorzystania oraz maksymalizacji efektywności energetycznej, co jest szczególnie istotne w kontekście obecnych standardów dotyczących efektywności energetycznej budynków oraz zrównoważonego rozwoju.

Pytanie 19

Dwuosobowa ekipa monterów wykonała instalację solarną w czasie 8 godzin. Stawka za jedną godzinę pracy wynosi 25 zł. Do kosztów robocizny doliczono wydatki pośrednie równe 50% kosztów robocizny. Dodatkowo, obliczono zysk w wysokości 10% od całkowitej sumy robocizny oraz wydatków pośrednich. Jaka jest wartość prac?

A. 660 zł
B. 560 zł
C. 600 zł
D. 550 zł
Aby obliczyć wartość robót związanych z instalacją solarną, należy najpierw określić całkowity koszt robocizny. Dwóch monterów pracowało przez 8 godzin, co daje łącznie 16 roboczogodzin (2 monterów x 8 godzin). Przy stawce 25 zł za roboczogodzinę, całkowity koszt robocizny wynosi 16 roboczogodzin x 25 zł = 400 zł. Następnie należy uwzględnić koszty pośrednie, które wynoszą 50% robocizny, co daje dodatkowe 200 zł (50% z 400 zł). Łączne koszty robocizny oraz koszty pośrednie wynoszą więc 400 zł + 200 zł = 600 zł. Na końcu doliczamy zysk, który wynosi 10% od tej sumy. 10% z 600 zł to 60 zł, co daje całkowitą wartość robót równą 600 zł + 60 zł = 660 zł. Takie podejście do kalkulacji kosztów jest zgodne z zasadami rachunkowości budowlanej oraz dobrymi praktykami w zakresie wyceny robót budowlanych, gdzie uwzględnia się wszystkie aspekty kosztowe, aby osiągnąć realistyczną i dokładną wycenę projektu.

Pytanie 20

Jaką obudowę o oznaczeniu stopnia ochrony należy zastosować w przypadku urządzenia elektrycznego działającego w zapylonym środowisku?

A. IP 65
B. IP 2X
C. IP 45
D. IP 46
Obudowy elektryczne o stopniu ochrony IP 65 zapewniają wysoki poziom ochrony przed pyłem oraz wodą. Wartym podkreślenia jest, że pierwsza cyfra (6) oznacza całkowitą ochronę przed wnikaniem pyłu, co jest kluczowe w środowiskach zapylonych, gdzie obecność cząstek stałych może prowadzić do uszkodzeń urządzeń. Druga cyfra (5) natomiast wskazuje na ochronę przed strumieniami wody, co czyni je odpowiednimi do stosowania w trudnych warunkach atmosferycznych. Przykładowo, urządzenia takie jak czujniki, napędy czy skrzynki rozdzielcze wykorzystywane w przemyśle budowlanym lub w produkcji mogą być narażone na działanie pyłu oraz wilgoci, stąd zastosowanie obudowy IP 65 jest nie tylko zalecane, ale wręcz wymagane w celu zapewnienia ich niezawodności i wydajności operacyjnej. Takie rozwiązania są zgodne z normami IEC 60529, które określają wymagania dla stopni ochrony obudów.

Pytanie 21

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. zatrzasków
B. nitów
C. śrub
D. kołków montażowych
Zatrzaski są preferowanym rozwiązaniem montażowym dla uchwytów PV bezpieczników na szynach DIN, ponieważ zapewniają szybki i łatwy sposób instalacji bez konieczności użycia narzędzi. Dzięki nim można szybko zamocować elementy, co jest szczególnie istotne w środowisku przemysłowym, gdzie efektywność czasowa ma kluczowe znaczenie. Zatrzaski umożliwiają również łatwe demontowanie, co jest przydatne w przypadku konserwacji lub wymiany elementów. W kontekście standardów, montaż za pomocą zatrzasków jest zgodny z normami IEC 60715, które określają wymagania dla systemów montażowych. Prawidłowe użycie zatrzasków gwarantuje stabilność i bezpieczeństwo instalacji, co wpływa na niezawodność całego systemu. W praktyce, podczas instalacji systemów fotowoltaicznych, zastosowanie zatrzasków przyczynia się do obniżenia kosztów pracy oraz skrócenia czasu realizacji projektów, co czyni je optymalnym rozwiązaniem w branży elektroenergetycznej.

Pytanie 22

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 5
B. 3
C. 7
D. 2
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 23

Jakie metody łączenia kształtek i rur systemu PP-R w instalacji sanitarnej ciepłej wody użytkowej są dostępne?

A. obciskanie
B. zaciskanie
C. lutowanie
D. zgrzewanie
Zgrzewanie jest najpowszechniejszą metodą łączenia kształtek i rur wykonanych z polipropylenu (PP-R) w instalacjach sanitarnych, w tym w systemach ciepłej wody użytkowej. Proces zgrzewania polega na podgrzewaniu końców rur i kształtek do określonej temperatury, a następnie ich połączeniu pod ciśnieniem. W wyniku tego działania dochodzi do rozpuszczenia materiału i jego solidaryzacji, co zapewnia szczelność i trwałość połączenia. Zgrzewanie jest zgodne z normami branżowymi, takimi jak PN-EN ISO 15874, które definiują wymagania dla systemów rur z tworzyw sztucznych. Dzięki tej metodzie można uzyskać bardzo silne i wytrzymałe połączenia, co ma istotne znaczenie w kontekście bezpieczeństwa i niezawodności instalacji. Przykładem zastosowania zgrzewania w praktyce są połączenia w instalacjach ogrzewania podłogowego, gdzie zgrzewane rury PP-R są często wykorzystywane do efektywnego i równomiernego rozprowadzenia ciepła.

Pytanie 24

Brak diodek blokujących w systemie off-grid może prowadzić do

A. przeładowania akumulatora
B. przepływu prądu przez ogniwo w czasie zacienienia
C. uszkodzenia ogniwa w przypadku intensywnego zacienienia ogniwa
D. całkowitego wyczerpania akumulatora
Brak diody blokującej w instalacji off-grid prowadzi do niekontrolowanego przepływu prądu przez ogniwa fotowoltaiczne w sytuacji, gdy są one zacienione. W momencie, gdy ogniwa są w cieniu, ich wydajność spada, co może skutkować generowaniem ujemnych napięć, co z kolei może prowadzić do sytuacji, w której prąd z akumulatora przepływa z powrotem przez ogniwo. To zjawisko jest szczególnie niebezpieczne, ponieważ może prowadzić do uszkodzenia ogniw w wyniku przegrzewania lub odwrócenia ich działania. Użycie diody blokującej jest standardową praktyką w projektowaniu systemów fotowoltaicznych, aby zapobiec takim sytuacjom. Dobrze zaprojektowany system powinien zatem zawierać diody blokujące w celu zwiększenia trwałości ogniw oraz maksymalizacji ich efektywności, co jest zgodne z wytycznymi branżowymi, takimi jak IEC 61215 dotycząca oceny wydajności modułów fotowoltaicznych. Przykład zastosowania można zobaczyć w systemach off-grid, gdzie każda nieprawidłowość może wpłynąć na cały system zasilania, więc kluczowe jest przestrzeganie najlepszych praktyk, aby uniknąć problemów związanych z zacienieniem.

Pytanie 25

Rury miedziane miękkie pakowane w kręgach umieszczane są w kartonach. Waga jednego opakowania nie powinna być większa niż

A. 50 kg
B. 35 kg
C. 25 kg
D. 40 kg
Poprawna odpowiedź to 50 kg, ponieważ zgodnie z normami branżowymi i przepisami dotyczącymi pakowania rur miedzianych, masa jednego opakowania nie powinna przekraczać tego limitu. Przekroczenie tej wartości może prowadzić do problemów z transportem, w tym do trudności w podnoszeniu i przenoszeniu ciężkich paczek przez pracowników, co może z kolei zwiększać ryzyko wypadków i kontuzji. W praktyce, stosowanie limitów masowych, takich jak 50 kg, jest zgodne z zasadami ergonomii i zapewnia bezpieczeństwo w miejscu pracy. Takie limity są także zgodne z regulacjami dotyczącymi transportu i logistyki, które wprowadzają wymogi dotyczące maksymalnej masy ładunków, aby uniknąć przeciążenia pojazdów transportowych. Warto również zauważyć, że stosowanie odpowiednich materiałów opakowaniowych, które nie tylko zabezpieczają rury, ale również są dostosowane do ich masy, jest kluczowe dla zachowania jakości produktu podczas transportu.

Pytanie 26

Na podstawie cech przewodnictwa cieplnego, wybierz materiał szeroko wykorzystywany do ociepleń budynków?

A. Pustak ceramiczny.
B. Cement.
C. Miedź.
D. Styropian.
Styropian, znany także jako polistyren ekspandowany (EPS), jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie, zwłaszcza do dociepleń budynków. Jego niska przewodność cieplna, wynosząca około 0,035-0,040 W/mK, sprawia, że jest on bardzo skuteczny w ograniczaniu strat ciepła. Styropian jest lekki, odporny na wilgoć, a także charakteryzuje się dobrą odpornością na działanie chemikaliów. Dla przykładu, powszechnie stosuje się go w systemach ociepleń ścian zewnętrznych (ETICS), gdzie przyklejany jest do powierzchni budynku, a następnie pokrywany tynkiem. W zgodzie z normami budowlanymi, takimi jak PN-EN 13163, styropian spełnia wymagania dotyczące trwałości i efektywności energetycznej, co czyni go podstawowym materiałem w praktykach budowlanych dotyczących izolacji termicznej. Dodatkowo, jego zdolność do recyklingu przyczynia się do zrównoważonego rozwoju w budownictwie.

Pytanie 27

Który z typów kolektorów słonecznych, używany w systemie do wspierania ogrzewania wody użytkowej i ogrzewania obiektu, charakteryzuje się najwyższą efektywnością w czasie wspomagania ogrzewania obiektu?

A. Rurowy typu heat-pipe
B. Płaski cieczowy
C. Rurowy próżniowy
D. Płaski gazowy
Płaskie kolektory cieczowe to dość popularne rozwiązanie, ale mają swoje wady, jeśli chodzi o wydajność przy chłodnych temperaturach. Ich konstrukcja polega na tym, że słońce nagrzewa płaską powierzchnię. Jednak zimą często straty ciepła przez konwekcję i promieniowanie powodują, że działają gorzej. Kolektory gazowe, chociaż mogą wyglądać na nowoczesne, są z reguły mało efektywne w porównaniu do rurowych, a ich zastosowanie w domach to raczej wyjątek. Poza tym, rurowe kolektory próżniowe są skuteczne, ale heat-pipe mają lepsze wyniki w niskich temperaturach. W praktyce ludzie często myślą, że większa powierzchnia absorpcyjna to zawsze lepsza wydajność, ale to nie do końca prawda. Efektywność systemu grzewczego zależy od wielu rzeczy, nie tylko od powierzchni, ale też od tego, jak dobrze dobrano technologię i jakie są warunki dookoła.

Pytanie 28

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 40%
B. 30%
C. 20%
D. 50%
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 29

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. jej próba ciśnieniowa
B. napełnianie jej czynnikiem
C. jej odpowietrzenie
D. izolacja jej przewodów
Próba ciśnieniowa jest kluczowym etapem po zakończeniu montażu instalacji grzewczej, w tym instalacji solarnych. Jej celem jest wykrycie ewentualnych nieszczelności w systemie, co jest fundamentalne dla zapewnienia jego efektywności oraz bezpieczeństwa użytkowania. Procedura ta polega na napełnieniu systemu wodą lub innym czynnikiem roboczym pod określonym ciśnieniem i obserwowaniu, czy ciśnienie nie spada, co mogłoby wskazywać na nieszczelności. Pomiar ciśnienia powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 12828 oraz PN-EN 12976, które określają wymagania dotyczące systemów grzewczych. Przykładem zastosowania tej procedury jest instalacja, w której przed pierwszym uruchomieniem systemu słonecznego sprawdza się, czy wszystkie połączenia są szczelne, co zapobiega awariom oraz kosztownym naprawom w przyszłości. Regularne przeprowadzanie prób ciśnieniowych jest także zalecane w ramach konserwacji instalacji, aby zapewnić jej długowieczność oraz efektywność operacyjną.

Pytanie 30

Nie należy stosować technologii PEX-Al-PEX w słonecznych instalacjach grzewczych, ponieważ

A. brakuje odpowiednich złączek do połączenia rur z kolektorem
B. rury nie wytrzymują wysokich temperatur
C. aluminium w rurach prowadzi do degradacji glikolu
D. polietylenowe części rur mają słabe przewodnictwo cieplne
No i super, trafiłeś! Rury PEX-Al-PEX, mimo że łączą w sobie polietylen i aluminium, niestety nie nadają się do instalacji słonecznych, bo nie wytrzymują wysokich temperatur. Polietylen, z którego są zrobione, ma dość kiepską odporność na wysokie temperatury, co grozi ich zniszczeniem. Jak się nagrzeją, mogą zacząć mięknąć, a to już niezła tragedia, bo może to doprowadzić do pęknięć i wycieków. W instalacjach słonecznych zdarzają się temperatury przekraczające 90 stopni Celsjusza, a rury PEX-Al-PEX mają znacznie niższy limit. Dlatego lepiej sięgać po rury z miedzi lub kompozytów, bo te są odporne na wysokie temperatury i na pewno spełniają normy, co zapewnia bezpieczeństwo całego systemu grzewczego.

Pytanie 31

Do prac związanych z konserwacją układu solarnego nie wlicza się

A. wymiany czynnika grzewczego w obiegu solarnym.
B. czyszczenia zbiornika.
C. zweryfikowania i ewentualnego uzupełnienia czynnika w obiegu solarnym.
D. sprawdzenia stanu izolacji rur w obiegu solarnym.
Czyszczenie zasobnika nie jest czynnością konserwacyjną obiegu solarnego, ponieważ zasobnik pełni funkcję przechowywania wody podgrzanej przez kolektory słoneczne, a jego czyszczenie nie wpływa bezpośrednio na działanie samego obiegu. W praktyce, konserwacja obiegu solarnego skupia się na utrzymaniu sprawności układu hydraulicznego oraz zapewnieniu optymalnych warunków pracy dla komponentów, takich jak kolektory, rury, pompy i zbiorniki. Czyszczenie zasobnika można traktować jako osobny proces, którego celem jest utrzymanie higieny i wydajności systemu, ale nie jest to kluczowy element konserwacji samego obiegu. Przykłady właściwych działań konserwacyjnych obejmują regularne sprawdzanie i uzupełnianie czynnika roboczego, co jest niezbędne do prawidłowego funkcjonowania systemu oraz kontrolę stanu izolacji rur, aby zapobiegać stratom ciepła. Dobre praktyki branżowe zalecają przynajmniej coroczne przeglądy systemów solarnych, aby zapewnić ich długotrwałą wydajność i niezawodność.

Pytanie 32

Instalacja gruntowej pompy ciepła wymaga zbudowania kolektora poziomego jako dolnego źródła. W tym przypadku kolektor poziomy to

A. kolektor umiejscowiony płasko na dachu zwrócony w stronę południową
B. wężownica w wymienniku c.w.u.
C. system rurek zakopanych pod powierzchnią gruntu poniżej strefy przemarzania
D. system rur zakopanych pionowo na głębokości około 30 metrów
Kolektor poziomy w gruntowej pompie ciepła to system rurek zakopanych na głębokości poniżej strefy przemarzania, co jest kluczowe dla efektywności działania tego typu instalacji. Wysokiej jakości kolektor poziomy umożliwia wymianę ciepła z gruntem, który ma bardziej stabilną temperaturę w porównaniu z powietrzem. Właściwe umiejscowienie kolektora poniżej strefy przemarzania, zazwyczaj na głębokości od 0,8 do 1,5 metra, zapewnia, że ciepło jest odbierane efektywnie przez rurki wypełnione czynnikiem roboczym. Przykłady zastosowania obejmują domy jednorodzinne oraz budynki użyteczności publicznej, gdzie systemy te są projektowane z uwzględnieniem lokalnych warunków klimatycznych. Zgodnie z dobrymi praktykami branżowymi, projektanci instalacji ciepłowniczych powinni również uwzględniać właściwe obliczenia dotyczące długości i zakupu rur, aby zapewnić odpowiednią wydajność energetyczną oraz zgodność z normami EN 14511 i EN 14825.

Pytanie 33

W systemie grzewczym jednowalentnym występuje

A. wyłącznie pompa ciepła
B. pompa ciepła oraz kocioł olejowy
C. pompa ciepła, kocioł gazowy oraz grzałka elektryczna
D. pompa ciepła oraz kocioł gazowy
W monowalentnym systemie grzewczym zastosowanie ma tylko jedno źródło ciepła, którym w tym przypadku jest pompa ciepła. Pompy ciepła są nowoczesnym rozwiązaniem, które efektywnie przekształca energię z otoczenia, taką jak powietrze, woda czy grunt, na energię cieplną. Użycie tylko pompy ciepła w systemie grzewczym pozwala na uzyskanie wysokiej efektywności energetycznej, co jest zgodne z aktualnymi standardami dotyczącymi ochrony środowiska. Przykładem zastosowania pompy ciepła jako jedynego źródła ciepła mogą być budynki pasywne, które dzięki odpowiedniej izolacji i zastosowaniu technologii OZE (odnawialnych źródeł energii) mogą być efektywnie ogrzewane wyłącznie przy pomocy pompy ciepła. Takie rozwiązania przyczyniają się do obniżenia emisji CO2 oraz kosztów eksploatacyjnych, co jest kluczowe w kontekście zrównoważonego rozwoju. W dobrych praktykach branżowych zaleca się ocenę potencjału zastosowania pomp ciepła w danym budynku oraz dostosowanie systemu grzewczego do specyfikacji budowlanej i potrzeb użytkowników.

Pytanie 34

Jakie kształtki należy wykorzystać do wykonania rozłącznych połączeń rur AluPex w systemie podłogowym zintegrowanym z pompą ciepła?

A. klejenie
B. skręcanie
C. zaciskanie
D. zgrzewanie
Skręcanie jest właściwą metodą łączenia rur AluPex w instalacjach podłogowych, zwłaszcza w systemach współpracujących z pompami ciepła. Ta technika pozwala na uzyskanie szczelnych połączeń, które są niezbędne w instalacjach hydraulicznych z niskim ciśnieniem roboczym. W przypadku rur AluPex, które charakteryzują się warstwą aluminium, połączenia skręcane zapewniają doskonałą wytrzymałość mechaniczną i odporność na zmiany temperatury. W praktyce, skręcanie polega na użyciu specjalnych złączek, które są montowane za pomocą klucza, co zapewnia pewność i trwałość połączenia. Zastosowanie tej metody jest zgodne z normami branżowymi, takimi jak PN-EN 12001, które kładą nacisk na bezpieczeństwo i efektywność instalacji. Warto również zaznaczyć, że prawidłowe skręcanie złączek minimalizuje ryzyko wystąpienia przecieków i zwiększa żywotność całego systemu grzewczego.

Pytanie 35

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 1,0
B. 4,5
C. 4,0
D. 3,0
Współczynnik wydajności pompy ciepła (COP) jest kluczowym wskaźnikiem efektywności energetycznej tych urządzeń. Odpowiedź 3,0 jest poprawna, ponieważ wskazuje na relację między mocą grzewczą a mocą elektryczną potrzebną do jej wytworzenia. W przypadku podanych wartości, moc grzewcza wynosi 3,0 kW, a moc elektryczna 1,0 kW. Obliczenie COP polega na podzieleniu mocy grzewczej przez moc elektryczną: COP = 3,0 kW / 1,0 kW = 3,0. Taki współczynnik oznacza, że pompa ciepła dostarcza trzy razy więcej energii cieplnej niż zużywa energii elektrycznej, co jest korzystne z perspektywy ekonomicznej oraz ekologicznej. W praktyce, wysoki współczynnik COP wskazuje na lepszą wydajność urządzenia, co jest szczególnie istotne przy obliczaniu kosztów eksploatacji systemów ogrzewania. W branży pomp ciepła zaleca się dążenie do COP na poziomie co najmniej 3,0, aby zapewnić opłacalność inwestycji.

Pytanie 36

Jeśli kolektor słoneczny o powierzchni 2 m2 przy nasłonecznieniu wynoszącym 1 000 W/m2 oddał do systemu 1 400 W energii cieplnej, to jaka jest sprawność urządzenia?

A. 70%
B. 80%
C. 50%
D. 60%
Aby obliczyć sprawność kolektora fototermicznego, należy zastosować wzór: sprawność = (przekazane ciepło / moc napromieniowania) x 100%. W tym przypadku moc napromieniowania wynosi 1 000 W/m2, a powierzchnia kolektora to 2 m2, co daje łączną moc napromieniowania równą 2 000 W (1 000 W/m2 * 2 m2). Kolektor przekazał do instalacji 1 400 W ciepła, więc sprawność wynosi: (1 400 W / 2 000 W) x 100% = 70%. Taka efektywność jest istotna w kontekście projektowania systemów solarnych, ponieważ wyższa sprawność oznacza lepsze wykorzystanie energii słonecznej i niższe koszty eksploatacji. W praktyce, projektanci instalacji solarnych dążą do osiągnięcia jak najwyższej sprawności, aby zminimalizować powierzchnię potrzebną do uzyskania wymaganej ilości energii. Przykładem może być zastosowanie różnych rodzajów powłok absorbujących oraz systemów optymalizacji kątów nachylenia kolektorów, co pozwala na lepsze zbieranie promieniowania słonecznego.

Pytanie 37

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 700 m
B. 630 m
C. 650 m
D. 690 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 38

Jakie elementy należy wykorzystać do zamocowania ogniwa fotowoltaicznego na dachu o konstrukcji dwuspadowej?

A. śruby rzymskie
B. nity aluminiowe
C. kołki rozporowe
D. kotwy krokwiowe
Kotwy krokwiowe to takie specjalne elementy, które przydają się, kiedy mocujemy różne konstrukcje do dachu, szczególnie w przypadku instalacji ogniw fotowoltaicznych na dachach dwuspadowych. Ich zadaniem jest zapewnienie, że panele słoneczne są dobrze przymocowane, co jest mega ważne dla ich efektywności i bezpieczeństwa, zwłaszcza podczas niekorzystnej pogody. Te kotwy są zaprojektowane tak, żeby znosiły mocne wiatry i ciężar związany z opadami śniegu. W praktyce montuje się je bezpośrednio do krokwi, co pomaga równomiernie rozłożyć ciężar. Wg norm budowlanych, ważne jest, żeby wybierać odpowiednie kotwy, które pasują do konkretnej specyfiki dachu i materiałów, z jakich jest zbudowany. Użycie tych kotw nie tylko zwiększa bezpieczeństwo, ale też wydłuża żywotność całej instalacji. Wiele firm zajmujących się fotowoltaiką również poleca takie rozwiązania, co pokazuje, jak istotne są w tej branży.

Pytanie 39

Gdzie powinien być umiejscowiony odpowietrznik w instalacji grzewczej zasilanej energią słoneczną?

A. za zaworem bezpieczeństwa
B. w najwyższym punkcie instalacji
C. w najniższym punkcie instalacji
D. bezpośrednio za pompą
Odpowietrznik w słonecznej instalacji grzewczej powinien być umieszczony w najwyższym punkcie instalacji, co jest zgodne z ogólnymi zasadami projektowania systemów grzewczych. Umieszczenie odpowietrznika w najwyższym miejscu umożliwia skuteczne usuwanie powietrza z systemu, które gromadzi się na skutek nagrzewania wody oraz zmieniających się ciśnień. W praktyce, powietrze w instalacji może prowadzić do zakłóceń w obiegu wody, co z kolei może obniżać efektywność systemu grzewczego oraz powodować hałasy. Dlatego w dobrych praktykach branżowych wskazuje się na konieczność umieszczania odpowietrzników w punktach, gdzie gromadzi się powietrze, co najczęściej jest właśnie najwyższy punkt instalacji. Zgodnie z normami, takie rozwiązanie nie tylko zwiększa wydajność, ale również wydłuża żywotność całego systemu. Przykładem mogą być instalacje, w których zastosowano automatyczne odpowietrzniki, które w sposób samoczynny usuwają nadmiar powietrza, co jest korzystne zwłaszcza w większych układach.

Pytanie 40

Aby zainstalować system rur PP, jakie narzędzia są potrzebne?

A. nożyce do rur, gratownik i zgrzewarka
B. nożyce do rur, gratownik oraz zestaw kluczy płaskich
C. obcinaki do rur, kalibrator oraz zaciskarka
D. obcinaki do rur, gratownik oraz klej
Odpowiedź, że do montażu instalacji w systemie rur PP należy dysponować nożycami do rur, gratownikiem i zgrzewarką, jest prawidłowa ze względu na specyfikę materiału i metody łączenia. Nożyce do rur umożliwiają precyzyjne cięcie rur PP, co jest kluczowe dla zachowania integralności połączeń. Gratownik służy do wygładzania krawędzi, co zapobiega uszkodzeniom materiału i zapewnia lepszą jakość połączenia. Zgrzewarka, natomiast, jest niezbędna do efektywnego łączenia rur PP poprzez zgrzewanie, co jest jedną z najlepszych praktyk w instalacjach wodno-kanalizacyjnych. Zgrzewanie rur PP pozwala na uzyskanie trwałego, szczelnego połączenia, które wytrzymuje wysokie ciśnienie oraz zmiany temperatury. Stosowanie tych narzędzi jest zgodne z normami branżowymi, które kładą nacisk na bezpieczeństwo oraz efektywność instalacji. Dobrze przeprowadzony montaż nie tylko przedłuża żywotność instalacji, ale również minimalizuje ryzyko awarii.