Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 08:49
  • Data zakończenia: 1 kwietnia 2025 09:17

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie cyfrowe powinno być użyte do porównania dwóch liczb zapisanych w określonym kodzie?

A. Comparator.
B. Adder.
C. Decoder.
D. Converter.
Wybór sumatora, transkodera lub przetwornika w kontekście porównania dwóch liczb jest niewłaściwy z kilku powodów. Sumator to układ, który ma na celu dodawanie dwóch lub więcej liczb, a jego funkcjonalność nie obejmuje analizy relacji między wartościami, co jest kluczowe w przypadku porównania. Przy wykorzystaniu sumatora, mogłoby dojść do sytuacji, w której uzyskujemy jedynie wynik sumy, co nie dostarcza informacji o tym, która liczba jest większa, mniejsza lub czy są one równe. Transkoder z kolei zmienia kod reprezentacji danych, ale nie dostarcza funkcjonalności porównawczej. Może być użyty do konwersji pomiędzy różnymi formatami zapisu liczb, ale nie jest w stanie ocenić ich wartości. Przetwornik, który zazwyczaj konwertuje sygnały analogowe na cyfrowe lub odwrotnie, również nie ma zastosowania w kontekście porównywania liczb, ponieważ jego rolą jest zmiana formy danych, a nie ich analiza. Wybór niewłaściwego układu może wynikać z błędnego zrozumienia funkcji tych komponentów oraz ich zastosowania w systemach cyfrowych, co narusza fundamenty efektywnego projektowania układów elektronicznych, które powinno bazować na precyzyjnej identyfikacji potrzeb i funkcji układów w określonym kontekście zastosowań.

Pytanie 2

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
B. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
C. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
D. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 45 dB
B. 25 dB
C. 35 dB
D. 55 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

THT to metoda

A. realizacji instalacji podtynkowej
B. montowania elementów elektronicznych na płytkach drukowanych
C. umieszczania kabli w rurkach instalacyjnych
D. prowadzenia przewodów przez otwory w ścianach
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas instalacji wzmacniacza antenowego najpierw należy

A. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
B. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
C. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
D. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 12

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 2 440 zł
B. 2 000 zł
C. 3 000 zł
D. 3 660 zł
Wybór innych odpowiedzi może wynikać z błędów w obliczeniach lub niezrozumienia zasad dotyczących kosztów materiałów i robocizny. Na przykład, odpowiedź 2440 zł sugeruje jedynie dodanie podatku VAT do kosztów materiałów, co jest błędne. Koszt wykonania powinien być uwzględniony jako oddzielna kategoria, a jego wielkość wynosi 1000 zł, co czyni tę odpowiedź niekompletną. W przypadku odpowiedzi 3000 zł, pominięto całkowity koszt brutto z uwzględnieniem VAT, co jest kluczowym elementem w obliczeniach. Z kolei opcja 2000 zł wskazuje tylko na koszt materiałów, co jest niewłaściwe, ponieważ nie uwzględnia kosztów robocizny i podatku. W praktyce, ważne jest, aby przy planowaniu budżetu na instalacje uwzględniać wszystkie elementy kosztotwórcze oraz stosować odpowiednie stawki VAT. Ostatecznie, brak zrozumienia zasad naliczania kosztów może prowadzić do poważnych problemów finansowych oraz opóźnień w realizacji projektów. Uczestnicy powinni zatem zwrócić szczególną uwagę na każdy aspekt kalkulacji, aby uniknąć typowych pułapek i osiągnąć efektywność kosztową w swoich projektach.

Pytanie 13

W procesie lutowania komponentów elektronicznych topnik stosuje się w celu

A. chemicznego oczyszczenia powierzchni łączonych metali
B. polepszenia twardości spoiny lutowniczej
C. obniżenia temperatury topnienia lutowia
D. zwiększenia przewodności elektrycznej spoiny lutowniczej
Odpowiedzi sugerujące zwiększenie przewodności elektrycznej spoiny lutowniczej, obniżenie temperatury topnienia stopu lutowniczego oraz zwiększenie twardości spoiny są mylne i wynikają z nieporozumień dotyczących funkcji i właściwości topnika. Zwiększenie przewodności elektrycznej spoiny lutowniczej nie jest bezpośrednio związane z użyciem topnika, ponieważ przewodność elektryczna zależy głównie od właściwości materiałów lutowniczych, a nie od topnika. Topnik działa na zasadzie oczyszczania powierzchni, co może pośrednio wpłynąć na przewodność, ale nie jest jego funkcją. Obniżenie temperatury topnienia stopu lutowniczego to kolejna nieprawidłowa koncepcja. Temperatura topnienia stopu lutowniczego jest właściwością samego stopu, a topnik nie ma na nią bezpośredniego wpływu. Rzeczywiście, niektóre topniki mogą być zaprojektowane do pracy w niższych temperaturach, ale ich głównym celem wciąż pozostaje oczyszczenie powierzchni. Zwiększenie twardości spoiny lutowniczej również nie jest związane z funkcją topnika. Twardość spoiny wynika z właściwości materiału lutowniczego oraz jego interakcji z lutowanymi metalami. Nieprawidłowe zrozumienie roli topnika prowadzi do typowych błędów myślowych, takich jak przypisywanie mu właściwości, które są zarezerwowane dla materiałów lutowniczych, zamiast dostrzegać jego kluczową rolę w zapewnieniu czystości i jakości połączeń. W praktyce, dobre zrozumienie funkcji topnika jest kluczowe dla uzyskania trwałych i niezawodnych połączeń lutowniczych w elektronice.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tyrystor
B. Trymer
C. Tranzystor bipolarny
D. Tranzystor unipolarny
Tranzystor unipolarny, znany również jako tranzystor MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), jest elementem elektronicznym, który charakteryzuje się trzema głównymi terminalami: źródłem (S), bramką (G) oraz drenem (D). Te oznaczenia są standardem w dokumentacji technicznej i umożliwiają zrozumienie, jak tego typu tranzystor funkcjonuje. W tranzystorze unipolarnym prąd przepływa między drenem a źródłem, gdy na bramkę przyłożone jest odpowiednie napięcie, co kontroluje jego stan włączony lub wyłączony. Zastosowania tranzystorów unipolarnych obejmują obwody cyfrowe, wzmacniacze oraz układy przełączające, co czyni je niezwykle wszechstronnymi w różnych dziedzinach elektroniki, od komputerów po systemy komunikacji. Warto zauważyć, że ze względu na ich niskie zużycie energii i wysoką szybkość przełączania, tranzystory MOSFET są szeroko stosowane w nowoczesnych urządzeniach elektronicznych, co podkreśla ich znaczenie w branży.

Pytanie 16

Monter realizuje montaż instalacji telewizji satelitarnej dla 6 mieszkańców w czasie 8 godzin. Koszt materiałów to 2 080 zł, a stawka za roboczogodzinę wynosi 40 zł. Jaka suma przypada na instalację dla jednego lokatora?

A. 333 zł
B. 350 zł
C. 450 zł
D. 400 zł
Analizując inne odpowiedzi, można zauważyć szereg błędów w obliczeniach i podstawowych założeniach. Odpowiedzi takie jak 450 zł czy 350 zł sugerują, że koszt materiałów lub robocizny został niepoprawnie podzielony lub zrozumiany. Na przykład, jeśli ktoś obliczyłby koszt materiałów na podstawie innej liczby lokatorów, może dojść do mylnego wniosku o wyższych kosztach, co nie odzwierciedla rzeczywistego rozkładu kosztów. Ponadto, odpowiedź 333 zł zdaje się ignorować pełne uwzględnienie robocizny, co jest kluczowe w kalkulacji całkowitych wydatków na instalację. W branży instalacji telewizyjnych istotnym standardem jest pełne uwzględnienie nie tylko materiałów, ale również czasu pracy fachowców, który wpływa na końcowy koszt usługi. Pomijanie tych elementów prowadzi do niedoszacowania kosztów, co może skutkować nieprzewidzianymi wydatkami w późniejszych etapach realizacji projektu. Aby skutecznie zarządzać kosztami, należy zawsze przeprowadzać dokładne kalkulacje, uwzględniając wszystkie składniki, co jest podstawową praktyką w profesjonalnym podejściu do instalacji. Kluczowe jest również zrozumienie, że różne czynniki, takie jak lokalizacja, dostępność materiałów czy stawki robocze, mogą wpływać na ostateczny koszt, dlatego warto korzystać z modeli kalkulacyjnych, które uwzględniają te zmienne.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką liczbę wyjść ma konwerter TWIN?

A. cztery wyjścia
B. osiem wyjść
C. dwa wyjścia
D. jedno wyjście
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. wydłużeniem czasu regulacji
B. zmniejszeniem stabilności układu
C. wzrostem amplitudy oscylacji
D. brakiem zmian w czasie regulacji
Stwierdzenie, że zwiększenie stałej czasowej Ti w regulatorze PID zmniejsza stabilność układu, nie znajduje uzasadnienia. Stabilność układu regulacji PID jest przede wszystkim determinowana przez proporcjonalne i różniczkowe składniki regulatora oraz przez charakterystykę samego systemu. Zwiększenie Ti nie wpływa na te parametry w sposób bezpośredni. Czas regulacji to inny wskaźnik, który odnosi się do tego, jak szybko system osiąga wartość zadaną. Zwiększając Ti, wydłużamy czas, po którym system zaczyna reagować na zmiany, co może być mylnie interpretowane jako spadek stabilności. Również przypisanie większej amplitudy oscylacji do wydłużonego czasu całkowania jest nieprawidłowe. Oscylacje w odpowiedzi układu mogą być wynikiem zbyt agresywnego ustawienia parametrów PID, a nie samej wartości Ti. Ponadto, ustalenie, że czas regulacji nie ulegnie zmianie, jest błędne, ponieważ w systemach regulacji czas regulacji jest bezpośrednio powiązany z parametrami regulatora. W praktyce, każde zwiększenie Ti skutkuje spowolnieniem reakcji systemu, co nieuchronnie prowadzi do wydłużenia czasu regulacji. Właściwe podejście do strojenia regulatorów PID jest kluczowe w inżynierii sterowania i powinno opierać się na analizie dynamiki systemu oraz symulacjach, zamiast na błędnych założeniach.

Pytanie 22

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. zmiany natężenia dźwięku
B. pola elektrycznego
C. pola magnetycznego
D. zmiany temperatury
W kontekście czujników bezpieczeństwa i sygnalizacji, istotne jest zrozumienie, jak różne typy czujników działają oraz jakie zjawiska fizyczne są przez nie wykorzystywane. Zmiana temperatury jest jedną z podstawowych metod detekcji, znaną z czujników termicznych, jednak nie ma zastosowania w przypadku czujników kontaktronowych, które są stworzone do detekcji pola magnetycznego. Czujniki te nie reagują na zmiany temperatury, co może prowadzić do nieporozumień w ich zastosowaniu. Z kolei pole elektryczne jest mechanizmem, na który reagują inne typy czujników, takie jak kondensatory elektryczne, ale nie dotyczy to kontaktronów. Zrozumienie mechanizmu działania tych urządzeń jest kluczowe, aby uniknąć błędnych interpretacji ich funkcji. Ponadto, zmiana natężenia dźwięku jest zjawiskiem, które jest wykorzystywane w czujnikach akustycznych, a nie magnetycznych. Nieprawidłowe przypisanie działania czujnika do niewłaściwego zjawiska fizycznego może prowadzić do błędów w projektowaniu systemów zabezpieczeń. Dlatego niezwykle ważne jest, aby przy projektowaniu systemów alarmowych i zabezpieczeń znać specyfikację oraz zasadę działania używanych urządzeń, co pozwala na ich odpowiednie umiejscowienie i wykorzystanie w praktyce.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji Rx=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,06 Ω
B. Rx = 10,09 Ω
C. Rx = 10,00 Ω
D. Rx = 10,03 Ω
Odpowiedzi Rx = 10,06 Ω, Rx = 10,03 Ω oraz Rx = 10,09 Ω mogą wydawać się na pierwszy rzut oka poprawne, ponieważ mieszczą się w dopuszczalnym zakresie tolerancji. Jednakże, każda z tych wartości wskazuje na pewne błędne podejście do interpretacji wyników pomiarów. Po pierwsze, wartość 10,06 Ω jest dokładnie na granicy normy, co nie czyni jej błędną, ale nie jest przydatne, jeśli celem jest identyfikacja wartości, która nie spełnia normy. Druga wartość, 10,03 Ω, jest również na dolnej granicy tolerancji, co oznacza, że jest to wartość minimalna, która wciąż mieści się w akceptowalnym zakresie. Wreszcie, wartość 10,09 Ω znajduje się na górnej granicy tolerancji, co również nie stanowi naruszenia normy, a wręcz przeciwnie, jest akceptowalna. Często mylone są pojęcia tolerancji i wartości docelowej. Wartość rezystancji powinna być interpretowana w kontekście nie tylko samego wyniku, ale również jego znaczenia w zastosowaniach praktycznych, gdzie nawet niewielkie odchylenia mogą prowadzić do niesprawności urządzeń. Aby prawidłowo ocenić pomiary, należy stosować się do norm i standardów dotyczących tolerancji, takich jak ANSI/IEEE C37.90, które definiują zasady pomiarów wymaganych do zapewnienia jakości i funkcjonalności produktów elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Firma zajmująca się pomiarami wydaje każdego roku 12 000 zł na legalizację sprzętu pomiarowego. Jaką kwotę zaoszczędzono, jeśli w drugim półroczu uzyskano 30% zniżki?

A. 3 600 zł
B. 1 800 zł
C. 1 200 zł
D. 1 000 zł
Wybór niepoprawnych odpowiedzi może wynikać z błędnej interpretacji danych dotyczących rabatu oraz niepełnego uwzględnienia rocznego kontekstu wydatków. Na przykład, odpowiedzi sugerujące kwoty w przedziale od 1 000 zł do 3 600 zł opierają się na mylnych obliczeniach. Często myśli się, że rabat powinien być stosowany do całkowitych wydatków rocznych, co jest błędne. Należy pamiętać, że rabat dotyczy tylko drugiego półrocza, co oznacza, że kluczowe jest uwzględnienie tylko połowy rocznych kosztów, a nie całkowitych. Ponadto, błędne odpowiedzi mogą też pochodzić z niepełnego zrozumienia pojęcia procentu i jego zastosowania w kontekście rabatów. Dla przykładu, obliczenie 30% z całkowitych wydatków rocznych 12 000 zł prowadzi do błędnych oszczędności w wysokości 3 600 zł, co nie ma zastosowania w danym przypadku. W obliczeniach finansowych istotne jest precyzyjne zrozumienie zakresu, na który ma wpływ rabat, a także umiejętność analizy wydatków w kontekście czasowym, co jest niezbędne dla właściwego zarządzania finansami w przedsiębiorstwie. Dobre praktyki w zarządzaniu kosztami podkreślają znaczenie dokładności oraz umiejętności modelowania scenariuszy, co pozwala na lepsze przewidywanie efektów finansowych działań biznesowych.

Pytanie 29

Jakie przepisy prawne dotyczą zarządzania odpadami niebezpiecznymi?

A. Ustawa o zamówieniach publicznych
B. Ustawa dotycząca budownictwa
C. Ustawa o energetyce
D. Ustawa o odpadach
Ustawa o odpadach jest kluczowym aktem prawnym regulującym gospodarkę odpadami niebezpiecznymi w Polsce. Ustawa ta również implementuje dyrektywy unijne dotyczące zarządzania odpadami, w szczególności odpady niebezpieczne, co pozwala na harmonizację przepisów krajowych z normami europejskimi. Główne zasady wynikające z tej ustawy obejmują klasyfikację odpadów, obowiązki producentów oraz sposoby ich zbierania, transportu, przechowywania i unieszkodliwiania. Przykładem zastosowania tych przepisów jest konieczność posiadania odpowiednich zezwoleń na transport i unieszkodliwianie odpadów niebezpiecznych, które muszą być zgodne z wymaganiami ustawy. Dobre praktyki w zakresie gospodarki odpadami niebezpiecznymi obejmują również prowadzenie ewidencji tych odpadów, co pozwala na lepsze zarządzanie i kontrolę nad nimi. W kontekście międzynarodowym, Polska jest zobowiązana do przestrzegania konwencji takich jak Konwencja Bazylejska, co podkreśla znaczenie Ustawy o odpadach w kontroli i minimalizacji negatywnego wpływu na środowisko.

Pytanie 30

Aby zabezpieczyć naprawiane urządzenie elektroniczne przed działaniem ESD, należy

A. przy demontażu obudowy wykazać szczególną ostrożność
B. otwierać urządzenie umieszczone na uziemionej macie
C. zasilać urządzenie poprzez transformator separujący
D. podłączyć urządzenie do źródła zasilania
Otwarcie urządzenia umieszczonego na uziemionej macie jest kluczowym krokiem w zapobieganiu uszkodzeniom spowodowanym przez wyładowania elektrostatyczne (ESD). Uziemiona mata działa jak bariera ochronna, odprowadzając ładunki elektrostatyczne zgromadzone na powierzchni urządzenia lub na osobie wykonującej naprawy. Zgodnie z normą IEC 61340-5-1, takie praktyki są zalecane w środowiskach, gdzie wrażliwe komponenty elektroniczne są regularnie naprawiane. Używanie uziemionej maty minimalizuje ryzyko uszkodzenia delikatnych układów elektronicznych, które mogą być podatne na uszkodzenia spowodowane nawet niewielkimi wyładowaniami. Przykładem zastosowania takiej praktyki jest praca w laboratoriach serwisowych, gdzie technicy muszą często demontować i montować komponenty wrażliwe na ESD. Użycie uziemionej maty, w połączeniu z odpowiednim ubraniem antystatycznym, stanowi kompleksowe podejście do ochrony przed ESD.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W instrukcji uruchomienia urządzenia znalazło się polecenie: "....dostroić obwód rezonansowy trymerem do częstotliwości....". Jakie jest inne określenie na trymer?

A. kondensatora dostrojczego
B. cewki regulowanej
C. filtru z regulowaną indukcyjnością
D. potencjometru
Cewka regulowana jest urządzeniem, które zmienia swoją indukcyjność, ale nie jest tym samym co trymer. Cewki regulowane wykorzystywane są w obwodach, gdzie zmiana indukcyjności jest kluczowa, jednak nie pełnią one funkcji dostrajania pojemności obwodu, co jest istotne w kontekście dostrajania częstotliwości. Potencjometr to element, który służy do regulacji napięcia, a nie częstotliwości. Jest szeroko stosowany w aplikacjach audio do regulacji głośności, ale nie ma zastosowania w dostrajaniu obwodów rezonansowych. Filtry z regulowaną indukcyjnością również zmieniają charakterystykę obwodu, jednak podobnie jak cewki, nie pełnią funkcji kondensatorów dostrojczych. W praktyce, często myli się te pojęcia przez brak zrozumienia ich funkcji w obwodach elektronicznych. Kluczowym błędem jest nieodróżnianie pojemności od indukcyjności, gdzie kondensator dostrojczy działa na zasadzie zmiany pojemności, a nie indukcyjności. Zrozumienie tych różnic jest niezbędne dla skutecznego projektowania i diagnozowania układów elektronicznych.

Pytanie 33

Ile żył powinien mieć kabel łączący komputer z modemem, zakończony na obu końcach wtykami RJ-45?

A. 8
B. 9
C. 2
D. 4
Jeśli łączysz komputer z modemem, to pamiętaj, że przewód powinien mieć 8 żyłek i końcówkę RJ-45. To zgodne ze standardem Ethernet, który teraz wszędzie króluje w sieciach komputerowych. Te wtyczki są zaprojektowane tak, żeby działały z kablami kategorii 5 i wyższymi, a to oznacza, że wykorzystujemy wszystkie 8 żyłek, co daje nam pełną funckjonalność. W praktyce, standardy 10BASE-T i 100BASE-TX korzystają z czterech par przewodów, co jest super ważne do przesyłania danych. Gdy używasz wszystkich 8 żył, masz szansę na szybszą transmisję, bo w dzisiejszych czasach przepustowość to kluczowa sprawa. Jak włożysz przewody z mniejszą ilością żył, to może być kiepsko z wydajnością. Warto też znać zasady cabling standards, jak TIA/EIA-568, bo one mówią, jak poprawnie prowadzić i kończyć kable, żeby sieć działała jak należy.

Pytanie 34

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
B. Analogowy na zakresie I = 10 A i RWE = 50 Ω
C. Analogowy na zakresie I = 1 A i RWE = 50 Ω
D. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
Jeśli wybierzesz złe amperomierze, możesz się mocno rozczarować co do dokładności. Na przykład, analogowy amperomierz na 10 A z RWE 50 Ω, chociaż może działać, nie jest najlepszy w tej sytuacji. Z takim dużym zakresem, pomiar 0,5 A to praktycznie nic, a to może wprowadzać spore błędy. Do tego ten wysoki RWE wprowadza dodatkowy opór, a to znowu zmniejsza dokładność pomiarów, zwłaszcza przy czujniku 100 Ω. A co do cyfrowego amperomierza na 10 A z RWE 5 Ω – też nie jest to najlepszy wybór, bo przy dużym zakresie wiadomo, że pomiary małych prądów będą mniej dokładne. Przy czujniku o rezystancji 100 Ω ten dodatkowy opór zmienia charakterystykę obwodu, co prowadzi do niepewnych wyników. Często ludzie myślą, że większy zakres to lepsza dokładność, ale to nie zawsze prawda, szczególnie przy pomiarach blisko dolnej granicy zakresu. Więc fajnie jest wybierać narzędzia pomiarowe blisko mierzonych wartości, bo to naprawdę zwiększa dokładność.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
C. Zasilacz symetryczny oraz cyfrowy multimetr
D. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
Aby wyznaczyć charakterystykę przenoszenia wzmacniacza selektywnego LC, konieczne jest zastosowanie zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu. Zasilacz symetryczny zapewnia stabilne napięcie zasilające wzmacniacz, co jest kluczowe dla uzyskania dokładnych pomiarów. Generator funkcyjny umożliwia generowanie sygnałów o różnych częstotliwościach oraz amplitudach, co pozwala na badanie odpowiedzi wzmacniacza na różne częstotliwości. Oscyloskop jest niezbędny do wizualizacji sygnału wyjściowego wzmacniacza, co umożliwia analizę jego charakterystyki przenoszenia. Przykładowo, podczas testowania wzmacniacza selektywnego LC, można wykorzystać generator do przesyłania sygnału sinusoidalnego o zmiennej częstotliwości, a oscyloskop do obserwacji, jak zmienia się amplituda sygnału wyjściowego, co pozwala na określenie pasma przenoszenia oraz zysku wzmacniacza. Stosowanie tych przyrządów jest zgodne z najlepszymi praktykami w dziedzinie elektroniki, co zapewnia wiarygodność i rzetelność uzyskanych wyników pomiarów.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 55 dBµV, MER 24 dB
B. Poziom 25 dBµV, MER 29 dB
C. Poziom 65 dBµV, MER 12 dB
D. Poziom 29 dBµV, MER 14 dB
Poziom 55 dBµV oraz MER 24 dB to wartości mieszczące się w standardowych wymaganiach dla sygnałów telewizyjnych nadawanych drogą naziemną. Poziom sygnału 55 dBµV jest uznawany za minimalnie akceptowalny do odbioru sygnału DVB-T w warunkach domowych, co zapewnia stabilność odbioru. MER, czyli Modulation Error Ratio, wynoszący 24 dB oznacza, że jakość sygnału jest na poziomie wystarczającym do zapewnienia wysokiej jakości obrazu bez zakłóceń. W praktyce, odbiorniki telewizyjne powinny operować z MER na poziomie co najmniej 20 dB, aby uniknąć problemów z odbiorem. Wartości te są zgodne z normami ITU oraz ETSI, które określają minimalne wymagania dla odbioru sygnałów DVB-T. Odpowiedni poziom sygnału i MER są kluczowe w kontekście zakłóceń, które mogą wpływać na jakość obrazu oraz stabilność połączenia. W przypadku słabszych parametrów, mogą wystąpić problemy, takie jak zacinanie się obrazu czy całkowity brak sygnału. Przykładem zastosowania tych wartości może być analiza warunków otoczenia przy instalacji anteny, gdzie kluczowe jest zapewnienie odpowiedniego poziomu sygnału dla stabilnego odbioru.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie złącza powinny być użyte dla kabli koncentrycznych w systemie monitoringu wizyjnego?

A. SCART
B. DIN
C. HDMI
D. BNC
Kable koncentryczne są wykorzystywane w telekomunikacji, w tym w systemach telewizji dozorowej, a ich odpowiednie złącza są kluczowe dla zapewnienia wysokiej jakości przesyłanego sygnału. Odpowiedzi takie jak SCART, DIN i HDMI są błędne w kontekście tego pytania. Złącze SCART, chociaż popularne w zastosowaniach audio-wideo, nie jest przeznaczone do kabli koncentrycznych. Zostało zaprojektowane głównie do łączenia urządzeń audio-wideo, takich jak telewizory i odtwarzacze DVD, przez co nie spełnia technicznych wymagań stawianych przez systemy CCTV. Z kolei złącze DIN, które jest stosowane w różnych aplikacjach audio i MIDI, również nie jest odpowiednie do kabli koncentrycznych, ponieważ nie zapewnia odpowiedniej impedancji ani właściwego połączenia, które są krytyczne w przypadku sygnałów wideo. HDMI jest nowoczesnym złączem cyfrowym, które jest szeroko stosowane w telewizji i sprzęcie audiowizualnym, ale nie ma zastosowania w systemach, które korzystają z kabli koncentrycznych. Jego konstrukcja i przeznaczenie są zupełnie różne, co sprawia, że nie można go stosować w kontekście telewizji dozorowej wymagającej analogowego przesyłania sygnału. W przypadku błędnych wyborów, kluczowe jest zrozumienie, że dobór złączy powinien być zgodny z rodzajem przewodnictwa i standardami sygnałów, co pozwoli uniknąć problemów z jakością obrazu i stabilnością połączeń.