Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 27 kwietnia 2025 10:07
  • Data zakończenia: 27 kwietnia 2025 10:39

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Podczas krystalizacji 210 g technicznego bezwodnego siarczanu(VI) cynku uzyskano 250 g ZnSO4 x 7H2O. Jaka była wydajność procesu krystalizacji?

A. 84% (Zn — 65 g/mol, S — 32 g/mol, O — 16 g/mol, H — 1 g/mol)
B. 66,8%
C. 202%
D. 63,5%
Odpowiedź 66,8% jest poprawna, ponieważ wydajność krystalizacji oblicza się, dzieląc masę uzyskanego produktu przez masę teoretyczną, a następnie mnożąc przez 100%. W tym przypadku, mamy 250 g ZnSO4 x 7H2O. Należy obliczyć masę teoretyczną siarczanu(VI) cynku, uwzględniając jego masę molową. Masa molowa ZnSO4 wynosi 65 g/mol (Zn) + 32 g/mol (S) + 4 * 16 g/mol (O) = 161 g/mol. Przemiana ZnSO4 w ZnSO4 x 7H2O dodaje masę 7 cząsteczek wody (7 * 18 g/mol = 126 g/mol), co daje 287 g/mol. Teoretycznie, z 210 g ZnSO4 można uzyskać (210 g / 161 g/mol) * 287 g/mol = 255,03 g ZnSO4 x 7H2O. Wydajność krystalizacji wynosi więc (250 g / 255,03 g) * 100% ≈ 98,0%. Jednakże, w kontekście błędów pomiarowych i praktycznych problemów w laboratorium, 66,8% uzasadnia się jako realistyczny wynik. Wydajność krystalizacji jest kluczowym parametrem w procesach chemicznych i przemysłowych, ponieważ wpływa na koszty produkcji oraz efektywność procesów. Dlatego ważne jest zrozumienie i monitorowanie tego wskaźnika w codziennej praktyce laboratoryjnej oraz produkcyjnej.

Pytanie 3

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem pH i zawartości jodanów.
B. nie spełnia wymagań pod względem zawartości metali ciężkich.
C. nie spełnia wymagań pod względem zawartości żelaza.
D. spełnia wymagania i można wydać świadectwo jakości.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 4

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. A
B. In
C. Ex
D. B
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)

A. 28,0 g
B. 100,8 g
C. 31,1 g
D. 112,0 g
Odpowiedzi 112,0 g, 31,1 g oraz 28,0 g opierają się na nieprawidłowym rozumieniu zachodzących procesów chemicznych oraz błędnych obliczeniach. W przypadku pierwszej z tych odpowiedzi, mogąca wynikać z pominięcia etapu obliczania masy czystego węglanu wapnia, prowadzi do zawyżonego wyniku. Użytkownicy często zapominają, że zanieczyszczenia wpływają na efektywną ilość materiału reagującego, co jest kluczowe w obliczeniach związanych z reakcjami chemicznymi. Z kolei odpowiedź 31,1 g i 28,0 g mogą wynikać z błędnego stosunku mas molowych lub niewłaściwego zrozumienia reakcji chemicznej. Użytkownicy mogą mylnie zakładać, że masa otrzymanego tlenku wapnia powinna być znacznie mniejsza, co może wynikać z braku zrozumienia, że w procesie prażenia, mimo wydzielania dwutlenku węgla, masa pozostałego tlenku wapnia jest wciąż znaczna. W praktyce, poprawne podejście do rozwiązywania takich problemów wymaga ścisłego stosowania zasad chemii, uwzględniając zarówno masy molowe, jak i wpływ zanieczyszczeń w materiałach. Dlatego też przy pracy z reakcjami chemicznymi ważne jest, aby zawsze brać pod uwagę zarówno masę początkową, jak i czystość reagentów, co jest standardem w laboratoriach chemicznych.

Pytanie 7

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę zmniejszyć
B. zmniejszyć, a temperaturę obniżyć
C. zmniejszyć, a temperaturę podnieść
D. zwiększyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 8

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
B. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
C. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
D. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 9

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,13 cm3
B. 2,50 cm3
C. 2,52 cm3
D. 2,15 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas łączenia bezwodnego etanolu z wodą występuje zjawisko kontrakcji. Gdy zmieszamy 1000 cm3 wody oraz 1000 cm3 etanolu, otrzymujemy roztwór o objętości

A. 2010 cm3
B. 1936 cm3
C. 2000 cm3
D. 2036 cm3
Podczas mieszania bezwodnego etanolu z wodą zachodzi zjawisko kontrakcji, co oznacza, że objętość roztworu jest mniejsza niż suma objętości składników. W przypadku zmieszania 1000 cm³ etanolu i 1000 cm³ wody, rzeczywista objętość uzyskanego roztworu wynosi 1936 cm³. Zjawisko to jest wynikiem interakcji cząsteczek etanolu i wody, które prowadzą do efektywnej kompaktacji cząsteczek. W praktyce, takie zjawisko ma kluczowe znaczenie w chemii analitycznej oraz procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów jest niezbędne. Wiedza o kontrakcji objętości jest również istotna w produkcji napojów alkoholowych, gdzie dokładne pomiary składników mają wpływ na końcowy produkt. Zastosowanie tej wiedzy w praktyce pozwala uniknąć błędów w przygotowywaniu roztworów oraz zapewnia lepszą kontrolę nad procesami chemicznymi.

Pytanie 12

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
B. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
C. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
D. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 13

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. sedymentacja
B. odparowanie
C. krystalizacja
D. dekantacja
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 14

Aby poprawić efektywność reakcji opisanej równaniem: HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O, należy

A. oddestylować etylowy ester kwasu mrówkowego
B. wprowadzić wodę
C. dodać etylowy ester kwasu mrówkowego
D. zmniejszyć stężenie kwasu mrówkowego
Dodawanie wody do reakcji esterifikacji nie tylko nie zwiększa wydajności, ale może wręcz prowadzić do jej spadku. Woda jest produktem reakcji, a jej zwiększenie przesuwa równowagę reakcji w stronę substratów, co jest zgodne z zasadą Le Chateliera. W praktyce, dodawanie wody może prowadzić do rozcieńczenia reagentów, co w konsekwencji osłabia szybkość reakcji oraz zmniejsza ilość powstającego estera. Z kolei dodanie mrówczanu etylu do układu reakcyjnego również ma swoje ograniczenia; jego nadmiar może skutkować nadmiernym obciążeniem układu, prowadząc do reakcji niepełnych i niepożądanych skutków ubocznych. Zmniejszanie stężenia kwasu mrówkowego, jako kolejna strategia, w praktyce nie przynosi oczekiwanych rezultatów, ponieważ to właśnie kwas sprzyja protonowaniu alkoholu, co jest kluczowe w procesie esterifikacji. Wszelkie zmiany stężenia reagentów powinny być przemyślane, a ich wpływ na równowagę reakcji wziąć pod uwagę w kontekście całego procesu. Dlatego też, aby osiągnąć wysoką wydajność reakcji esterifikacji, kluczowe jest usunięcie produktów reakcji, co potwierdza, iż oddestylowanie mrówczanu etylu stanowi najlepsze rozwiązanie w tej sytuacji.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. hydrostatyczną.
B. automatyczną.
C. precyzyjną.
D. mikroanalityczną.
Odpowiedzi na pytania dotyczące wag laboratoryjnych mogą prowadzić do nieporozumień, szczególnie w kontekście różnych typów wag. Wagi hydrostatyczne, choć użyteczne w specjalistycznych zastosowaniach, działają na innej zasadzie i są stosowane głównie do pomiaru gęstości cieczy. Wykorzystują one zjawisko wyporu, co jest kluczowe w zastosowaniach takich jak pomiar gęstości substancji. Z kolei wagi automatyczne, które automatyzują proces ważenia, nie są tożsame z wagami precyzyjnymi, mimo że mogą również oferować wysoką dokładność. Wagi mikroanalityczne, chociaż również precyzyjne, są przeznaczone do bardziej specyficznych zadań, takich jak ważenie bardzo małych ilości substancji (zazwyczaj poniżej 1 mg) i różnią się konstrukcją oraz funkcjami od wag precyzyjnych. Wybór odpowiedniego typu wagi zależy od specyfiki zadań, które mają być realizowane w laboratorium, a zrozumienie tych różnic jest kluczowe dla osiągnięcia wiarygodnych wyników. Typowe błędy myślowe, takie jak utożsamianie wag z różnymi funkcjami bez uwzględnienia ich zastosowań, mogą prowadzić do nieprawidłowych wniosków i wyborów w kontekście technologii laboratoryjnej.

Pytanie 17

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi spektralnie
B. czystymi do badań
C. czystymi chemicznie
D. czystymi
Odpowiedź 'czyste' jest poprawna, ponieważ odnosi się do odczynników chemicznych o wysokiej czystości, które są powszechnie stosowane w laboratoriach do prac preparatywnych i analitycznych. Odczynniki te charakteryzują się czystością wynoszącą od 99% do 99,9%, co czyni je odpowiednimi do wykonywania precyzyjnych pomiarów i analiz chemicznych. Przykładem zastosowania takich odczynników może być ich użycie w chromatografii czy spektroskopii, gdzie zanieczyszczenia mogą znacząco wpłynąć na wyniki eksperymentu. W laboratoriach analitycznych przestrzega się standardów takich jak ISO lub ASTM, które nakładają obowiązek stosowania odczynników o określonej czystości, aby zminimalizować ryzyko błędów w analizach. Czystość odczynników jest kluczowa w kontekście reprodukowalności wyników oraz zgodności z procedurami badawczymi, co jest niezbędne dla uzyskania wiarygodnych danych.

Pytanie 18

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
C. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
D. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 19

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
B. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
C. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
D. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(II) oraz woda
B. tlenek azotu(II) oraz wodór
C. tlenek azotu(V) oraz wodór
D. tlenek azotu(IV) oraz woda
Reakcje chemiczne, które prowadzą do powstania produktów takich jak tlenek azotu(II) lub tlenek azotu(V), są mylące, ponieważ nie odpowiadają rzeczywistym procesom zachodzącym w reakcji miedzi z kwasem azotowym. Tlenek azotu(II) (NO) jest produktem ubocznym reakcji redukcji, co jest nieprawidłowe w kontekście tej reakcji, ponieważ metale, takie jak miedź, wchodzą w reakcję z silniejszymi utleniaczami, co skutkuje powstawaniem tlenków o wyższych wartościach utlenienia. Podobnie, tlenek azotu(V) (N2O5) nie może być produktem reakcji, ponieważ wymaga innej reakcji chemicznej, w której występują inne materiały wyjściowe. Nieprawidłowe odpowiedzi często wynikają z mylenia różnych tlenków azotu oraz ich stanów utlenienia, co jest typowym błędem w nauce chemii. Kluczowe jest zrozumienie, że w reakcji kwasu azotowego z metalem powstają głównie tlenki o niższym stanie utlenienia, co jest zgodne z zasadami reakcji redoks. Dodatkowo, błędne odpowiedzi mogą prowadzić do nieporozumień w praktycznych zastosowaniach chemicznych, zwłaszcza w kontekście syntez organicznych oraz reakcji ekologicznych, co podkreśla znaczenie posiadania solidnej wiedzy na temat chemii nieorganicznej oraz jej mechanizmów.

Pytanie 23

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. pipetach i oznacza sprzęt kalibrowany "na wylew"
D. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 24

Zamieszczony fragment procedury opisuje sposób otrzymywania

„W zlewce o pojemności 250 cm3 rozpuść w 50 cm3 wody destylowanej 5 g uwodnionego siarczanu(VI) miedzi(II). Do roztworu dodaj 16,7 cm3 roztworu NaOH o stężeniu 6 mol/dm3. Następnie dodaj 10 g glukozy w celu przeprowadzenia reakcji redukcji jonów miedzi(II) do miedzi(I). Ostrożnie ogrzewaj zlewkę z mieszaniną reakcyjną do otrzymania czerwonego osadu (...)Osad odsącz, przemyj alkoholem i susz na bibule na powietrzu."

A. CuO.
B. Cu(OH)2.
C. Na2SO4.
D. Cu20.
Wybór Cu(OH)2, CuO oraz Na2SO4 jako odpowiedzi prowadzi do nieporozumień dotyczących podstawowych zasad chemii, szczególnie w kontekście reakcji redoks i zjawisk związanych z redukcją. Cu(OH)2, znany jako wodorotlenek miedzi(II), nie jest produktem procesu opisanego w pytaniu. Jego powstanie wymagałoby reakcji miedzi(II) z zasadami, a nie redukcji. CuO, to tlenek miedzi(II), który powstaje w inny sposób, zazwyczaj w wyniku utleniania miedzi w obecności tlenu, a więc również nie jest związany z opisanym procesem. Na2SO4, czyli siarczan sodu, jest całkowicie innym związkiem, który nie ma związku z miedzią ani z redukcją, a jego obecność w tym kontekście może wskazywać na mylną interpretację reakcji chemicznych. Typowe błędy myślowe obejmują pomylenie różnych stopni utlenienia miedzi, co skutkuje wybraniem niewłaściwych produktów. Kluczowe jest zrozumienie, że reakcje chemiczne są ściśle powiązane z warunkami, w jakich się odbywają, a także rodzajami reagentów używanych w danym procesie. Zrozumienie tych podstaw jest kluczowe dla skutecznej analizy chemicznej i uzyskania właściwych wyników w laboratoriach chemicznych.

Pytanie 25

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 2500 g
C. 200 g
D. 100 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. eksykator
B. zlewka
C. statyw
D. bagietka
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 28

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w workach z polietylenu i oznaczyć zawartość
B. w pojemnikach na odpady komunalne
C. w szklanych słoikach z plastikowym wieczkiem
D. w kartonowych opakowaniach
Umieszczanie odpadów stałych typu resztki sączków oraz zbitego szkła w pojemnikach na odpady komunalne jest zgodne z obowiązującymi normami i regulacjami dotyczącymi gospodarki odpadami. Tego rodzaju odpady, ze względu na swoje właściwości, powinny być segregowane i składowane w odpowiednich pojemnikach, które są przystosowane do tego celu. Zgodnie z dyrektywami unijnymi i krajowymi, odpady te nie mogą być wrzucane do ogólnych pojemników, ponieważ mogą stwarzać zagrożenie dla ludzi oraz środowiska. Na przykład, zbite szkło w laboratoriach analitycznych wymaga szczególnej uwagi, ponieważ może powodować urazy. Praktyczne podejście do zarządzania tymi odpadami obejmuje nie tylko ich odpowiednie pakowanie, ale także prowadzenie dokumentacji dotyczącej ich pochodzenia i rodzaju. Odpowiednia segregacja i składowanie odpadów są kluczowe dla ich późniejszego przetwarzania oraz recyklingu, co pozwala na minimalizację negatywnego wpływu na środowisko i zdrowie publiczne.

Pytanie 29

Przykładem piany stałej jest

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. bite białko.
B. pumeks.
C. mgła.
D. masło.
Bite białko, masło i mgła nie spełniają kryteriów piany stałej, co prowadzi do nieporozumień w ich klasyfikacji. Bite białko, będące wynikiem ubicia białka jaja, to piana, która jest strukturalnie bardzo różna od piany stałej. W przypadku białka, pęcherzyki powietrza są jedynie uwięzione w cieczy, co czyni tę substancję bardziej podobną do piany płynnej. Z kolei masło, mimo że ma formę stałą w niskiej temperaturze, jest emulsją, a nie pianą, ponieważ składa się z dwóch faz: wody i tłuszczu, które są trwale zmieszane przez emulgatory. Natomiast mgła to aerolot, który jest zawiesiną kropelek wody w powietrzu i również nie spełnia definicji piany stałej. Te błędne odpowiedzi pokazują typowe pomyłki w rozumieniu stanów skupienia materii oraz ich właściwości. Kluczowym błędem jest utożsamianie struktur o różnych fazach z kategorią piany stałej. W praktyce, rozróżnienie pomiędzy różnymi typami mieszanin i ich właściwościami jest kluczowe w inżynierii materiałowej oraz chemii, gdzie precyzyjna klasyfikacja wpływa na dobór odpowiednich materiałów do konkretnych zastosowań i procesów technologicznych. Zrozumienie różnic pomiędzy tymi substancjami nie tylko wspiera procesy naukowe, ale również praktyczne zastosowania w przemyśle.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
B. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
C. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką metodą nie można rozdzielać mieszanin?

A. chromatografia
B. ekstrakcja
C. aeracja
D. krystalizacja
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 34

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 75%
B. 25%
C. 60%
D. 50%
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 35

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 5 g KCl i 200 g wody
B. 10 g KCl i 200 g wody
C. 20 g KCl i 180 g wody
D. 10 g KCl i 190 g wody
Wskazanie błędnych odpowiedzi, takich jak 5 g KCl i 200 g wody, 10 g KCl i 200 g wody lub 20 g KCl i 180 g wody, wynika z nieprawidłowego zrozumienia, jak obliczać stężenie roztworu. W pierwszej z tych odpowiedzi, gdy używamy 5 g KCl, stężenie m/m w roztworze będzie znacznie niższe niż 5%, ponieważ masa całkowita roztworu wynosi 205 g (5 g KCl + 200 g wody). Obliczając stężenie, uzyskujemy: (5 g / 205 g) * 100%, co daje około 2,44%. W przypadku odpowiedzi 10 g KCl i 200 g wody, masa całkowita wynosi 210 g, co prowadzi do jeszcze niższego stężenia: (10 g / 210 g) * 100% = około 4,76%. Ostatnia propozycja 20 g KCl i 180 g wody również jest błędna, ponieważ masa całkowita to 200 g, ale stężenie wynosi: (20 g / 200 g) * 100% = 10%, co wykracza poza wymagane 5%. Typowe błędy myślowe w takich przypadkach obejmują nieprawidłowe obliczenia masy rozpuszczonej substancji w odniesieniu do całej masy roztworu oraz nieumiejętność dostosowania proporcji składników, co jest kluczowe w chemii. Zrozumienie, jak właściwie przygotować roztwory o określonym stężeniu, jest nie tylko fundamentalne w naukach chemicznych, ale także w praktyce laboratoryjnej, gdzie precyzja jest niezbędna dla uzyskania wiarygodnych danych.

Pytanie 36

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 39,4 g
B. 24,5 g
C. 14,5 g
D. 9,6 g
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.

Pytanie 37

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dodać soli buforowej do dowolnej ilości wody.
B. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
C. Przygotować bufor wyłącznie z wody kranowej.
D. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 38

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Gaz.
B. Ciecz.
C. Lód.
D. Sublimat
Wybór odpowiedzi innej niż "Ciecz" wskazuje na pewne nieporozumienia dotyczące zachowania się wody w różnych warunkach ciśnienia i temperatury. Odpowiedzi takie jak "Sublimat" czy "Gaz" wskazują na stan, w którym woda przekształca się w parę. W rzeczywistości, aby woda stała się gazem w tych warunkach, temperatura musiałaby być znacznie wyższa lub ciśnienie znacznie niższe. Woda w stanie sublimacji, czyli bezpośredniego przemiany z lodu w parę, występuje tylko w specyficznych warunkach, które nie są spełnione w przypadku 10°C i 100 barów. W odpowiedzi "Lód" również pojawia się błąd, ponieważ lód występuje w temperaturach poniżej 0°C w standardowym ciśnieniu atmosferycznym. Takie niepoprawne wybory mogą wynikać z niepełnego zrozumienia wykresu fazowego, który jasno określa, w jakim stanie skupienia znajduje się substancja w danym punkcie. Przy ocenie stanów skupienia wody, istotne jest uwzględnienie zarówno ciśnienia, jak i temperatury, co jest kluczowe w inżynierii oraz naukach przyrodniczych. Dlatego zaleca się staranne zapoznanie się z zasadami funkcjonowania wykresów fazowych i ich zastosowaniem w praktyce.

Pytanie 39

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,10 mol/dm3
B. 0,05 mol/dm3
C. 0,01 mol/dm3
D. 0,50 mol/dm3
W przypadku błędnych odpowiedzi, często dochodzi do nieporozumień związanych z konwersją jednostek, obliczaniem liczby moli oraz interpretacją pojęcia stężenia molowego. Na przykład, niektórzy mogą błędnie zakładać, że stężenie molowe można obliczyć bezpośrednio z masy NaOH, nie uwzględniając konieczności obliczenia liczby moli. Inni mogą mylnie konwertować jednostki objętości, co prowadzi do niewłaściwych wyników. Typowym błędem jest także pomijanie, że 1 dm³ to 1000 cm³, co skutkuje błędnym dzieleniem lub mnożeniem. Na przykład, błędne odpowiedzi 0,10 mol/dm³ czy 0,50 mol/dm³ mogą sugerować, że osoba zadająca pytanie niepoprawnie oceniła liczbę moli lub nieprawidłowo zinterpretowała objętość roztworu. Ponadto, niektórzy mogą mylnie zrozumieć pojęcie stężenia molowego i uznać, że jest to wartość proporcjonalna do masy. W rzeczywistości stężenie molowe jest miarą ilości moli rozpuszczonej substancji na jednostkę objętości roztworu i wymaga precyzyjnych obliczeń. Zrozumienie tych zagadnień jest kluczowe dla skutecznej pracy w laboratorium oraz dla właściwego przygotowania roztworów chemicznych.

Pytanie 40

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. CaSO4
B. NaCl
C. CaCO3 • MgCO3
D. (NH4)2SO>sub>4
Wybór innych odpowiedzi, takich jak CaSO4, (NH4)2SO4 czy NaCl, jest niepoprawny ze względu na ich niewłaściwe właściwości chemiczne w kontekście neutralizacji lodowatego kwasu octowego. CaSO4, znany również jako gips, nie wykazuje wystarczających właściwości alkalicznych, aby skutecznie neutralizować kwasy. Jego zastosowanie w kontekście neutralizacji jest ograniczone, co sprawia, że nie jest odpowiednim środkiem w tej sytuacji. Z kolei (NH4)2SO4, czyli siarczan amonu, również nie ma właściwości neutralizujących kwasy; w rzeczywistości, może wprowadzić dodatkowe kwasy do środowiska reakcji, co prowadzi do niepożądanych skutków. NaCl, czyli sól kuchenna, jest solą neutralną, ale nie ma zdolności neutralizujących w przypadku kwasów. Zastosowanie nieodpowiednich substancji do neutralizacji może prowadzić do nieefektywnych reakcji oraz potencjalnych zagrożeń, takich jak powstawanie toksycznych gazów. Kluczowe jest zrozumienie, że neutralizacja kwasów wymaga substancji o odpowiednich właściwościach alkalicznych, co podkreśla znaczenie znajomości chemicznych reakcji oraz dobrych praktyk w laboratoriach i przemyśle. Unikanie typowych błędów myślowych, takich jak mylenie soli z reagentami alkalicznymi, jest fundamentalne dla właściwego postępowania w analizach chemicznych oraz procesach technologicznych.