Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.05 - Użytkowanie obrabiarek skrawających
  • Data rozpoczęcia: 3 czerwca 2025 22:20
  • Data zakończenia: 3 czerwca 2025 22:29

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wiór wstęgowy zazwyczaj powstaje w procesie skrawania

A. miękkich, plastycznych metali
B. żeliwa
C. stali o wysokiej zawartości węgla
D. twardych stopów miedzi
Wiór wstęgowy jest charakterystycznym rodzajem wióra, który powstaje głównie podczas skrawania materiałów o niskiej twardości i dużej ciągliwości, takich jak miękkie metale, na przykład aluminium czy miedź. Te materiały mają tendencję do deformacji w trakcie procesu skrawania, co sprzyja powstawaniu długich, spiralnych wiórów. Tego rodzaju wióry są korzystne, ponieważ pozwalają na lepsze odprowadzenie ciepła oraz zmniejszają ryzyko zatykania narzędzi. W przemyśle obróbczym, szczególnie w produkcji komponentów wrażliwych na zmiany temperatury, stosowanie miękkich, ciągliwych metali jest powszechne, co potwierdzają standardy takie jak ISO 8688 dotyczące obróbki skrawaniem. Przykładem aplikacji, w których wykorzystuje się wióry wstęgowe, są procesy frezowania i toczenia, gdzie jakość wiórów wpływa na efektywność produkcji oraz jakość wykończenia powierzchni obrabianych elementów.

Pytanie 2

Który fragment programu zawiera funkcję maszynową?

A. N100 G1 Z-5 F200 M8
B. N95 G1 X40
C. N105 G2 X40 Y0 I0 J20 F500
D. N90 G90
Odpowiedź N100 G1 Z-5 F200 M8 jest poprawna, ponieważ zawiera funkcję maszynową w postaci komendy M8, która w kontekście programowania CNC oznacza włączenie chłodziwa. Funkcje maszynowe są kluczowe w procesie obróbczo-technicznym, gdyż umożliwiają sterowanie dodatkowymi urządzeniami peryferyjnymi, które wspierają główny proces obróbczy. Przykładem zastosowania tej komendy jest sytuacja, w której podczas frezowania lub toczenia materiału ważne staje się chłodzenie narzędzia, co pozwala na zwiększenie jego żywotności oraz uzyskanie lepszej jakości obrabianych detali. Zgodnie z dobrą praktyką w programowaniu CNC, ważne jest, aby zawsze zrozumieć i stosować odpowiednie funkcje maszynowe, aby zapewnić prawidłowe działanie maszyny oraz jakość produkcji. Ponadto, znajomość funkcji maszynowych przyczynia się do optymalizacji procesów obróbczych, a tym samym do zwiększenia efektywności produkcji.

Pytanie 3

Zabierak chomątkowy jest wykorzystywany do przekazywania momentu obrotowego na

A. przeciągarce
B. tokarce
C. frezarce
D. dłutownicy
Zabierak chomątkowy, znany również jako zabierak do tokarzy, jest kluczowym elementem w obrabiarkach typu tokarce. Jego główną funkcją jest przenoszenie momentu obrotowego z wrzeciona na obrabiany materiał. W tokarce, zabierak umożliwia precyzyjne obrabianie materiałów poprzez wywieranie odpowiedniego nacisku i przyspieszenia. Przykładowo, podczas obróbki metalu w procesie toczenia, zabierak chomątkowy zapewnia stabilność oraz dokładność cięcia, co przekłada się na wysoką jakość wyprodukowanych elementów. W kontekście standardów branżowych, zastosowanie zabieraka chomątkowego jest zgodne z normami ISO dotyczącymi obrabiarek, które podkreślają znaczenie precyzyjnego przenoszenia momentu obrotowego. Dodatkowo, przy odpowiednim doborze i konserwacji zabieraka, można znacząco zwiększyć żywotność narzędzi i efektywność procesu obróbczo.

Pytanie 4

Najlepszą efektywność w obróbce rowków w otworach osiąga

A. dłutownica
B. przeciągarka
C. frezarka
D. wytaczarka
Przeciągarka to narzędzie, które jest szczególnie skuteczne w obróbce rowków wpustowych w otworach, ponieważ łączy w sobie wysoką precyzję oraz zdolność do obróbki materiałów o różnych twardościach. W procesie przeciągania narzędzie przesuwa się wzdłuż materiału, co pozwala na uzyskanie gładkich oraz dokładnych kształtów. Dzięki zastosowaniu przeciągarki można efektywnie tworzyć rowki wpustowe o precyzyjnych wymiarach, co jest kluczowe w zastosowaniach takich jak produkcja komponentów maszyn, gdzie tolerancje wymiarowe są niezwykle istotne. W praktyce, przeciągarka znajduje zastosowanie w wytwarzaniu wałów, osi, czy elementów zamków, gdzie rowki wpustowe są niezbędne do prawidłowego funkcjonowania mechanizmów. Dodatkowo, wielką zaletą przeciągarki jest możliwość obróbki na dużą skalę, co znacząco zwiększa wydajność procesu produkcyjnego. W kontekście standardów branżowych, stosowanie przeciągarek zgodnie z normami ISO pozwala na zachowanie wysokiej jakości oraz jednolitości produkcji.

Pytanie 5

Ile wartości kompensacyjnych posiadają wiertła używane w obrabiarkach numerycznych?

A. Cztery.
B. Trzy.
C. Dwie.
D. Jedną.
Wiertła stosowane w obrabiarkach numerycznych (CNC) charakteryzują się jedną wartością korekcyjną, co oznacza, że system sterowania obrabiarki może stosować tylko jedną korekcję długości narzędzia dla danego wiertła. W praktyce oznacza to, że operator musi precyzyjnie ustawić długość narzędzia przed rozpoczęciem obróbki, aby zapewnić dokładność wymiarową. Wartość korekcyjna jest kluczowym aspektem w procesach CNC, ponieważ pozwala na eliminację błędów związanych z różnymi długościami narzędzi, co z kolei wpływa na jakość wykonania detali. W standardach ISO, które regulują kwestie obróbcze, zaleca się stosowanie jednej wartości korekcyjnej dla narzędzi, aby uprościć zarządzanie procesem obróbczy. Przykładem zastosowania tego podejścia jest programowanie obróbki detali w materiale stalowym, gdzie precyzyjne ustawienie długości wiertła ma bezpośredni wpływ na tolerancje wymiarowe.

Pytanie 6

Przesunięcie poprzeczne osi konika wykorzystuje się przy toczeniu

A. stożków krótkich o dużej zbieżności
B. stożków długich o małej zbieżności
C. gwintów walcowych zewnętrznych
D. gwintów walcowych wewnętrznych
Odpowiedź dotycząca przesunięcia poprzecznego osi konika przy toczeniu stożków długich o małej zbieżności jest jak najbardziej na miejscu. Ta technika naprawdę pomaga uzyskać lepsze wymiary i jakość obrabianej powierzchni. Kiedy toczenie stożków jest w grze, to przesunięcie poprzeczne daje możliwość precyzyjnego ustawienia kątów i średnic, co jest kluczowe, gdy produkujemy elementy, które muszą spełniać określone normy, jak chociażby złącza cylindryczne. Z moich doświadczeń wynika, że stosując to przesunięcie, operator może lepiej dostosować kąt toczenia do tego, czego wymaga projekt. Dzięki temu cała obróbka jest bardziej efektywna i ryzyko popełnienia jakichś błędów spada. To podejście jest zgodne z nowoczesnymi metodami obróbki skrawaniem, gdzie dopasowanie i jakość detali są mega ważne, szczególnie w takich branżach jak motoryzacja czy lotnictwo, gdzie tolerancje są naprawdę wąskie. Warto też zaznaczyć, że umiejętność odpowiedniego ustawienia osi konika to coś, co każdy operator tokarek powinien mieć w swoim toolboxie, żeby działać zgodnie z najlepszymi praktykami.

Pytanie 7

Jakiego rodzaju obrabiarki są najczęściej wykorzystywane w masowej produkcji gwintów zewnętrznych na prętach?

A. Przeciągarki
B. Tokarki uniwersalnej
C. Frezarki obwiedniowej
D. Walcarki
Walcarki są najczęściej stosowanymi maszynami do produkcji gwintów zewnętrznych na prętach, ponieważ ich konstrukcja umożliwia efektywne i precyzyjne formowanie materiału. W procesie walcowania, materiał jest poddawany działaniu sił ściskających, co pozwala uzyskać żądany kształt gwintu bez usuwania materiału, co jest korzystne z punktu widzenia wydajności oraz minimalizacji odpadów. Walcarki pozwalają na produkcję gwintów o wysokiej dokładności i jakości powierzchni, co jest szczególnie ważne w przypadku elementów, które muszą pasować do siebie, jak np. śruby i nakrętki. W zastosowaniach przemysłowych, takich jak produkcja samochodów czy urządzeń elektronicznych, walcowane gwinty są standardem. Dodatkowo, walczenie gwintów jest procesem znacznie szybszym niż tradycyjne skrawanie, co przyczynia się do zmniejszenia kosztów produkcji oraz zwiększenia efektywności linii produkcyjnej.

Pytanie 8

Pomiar wielkości przyporu zębów koła zębatego należy przeprowadzić

A. przymiarem kreskowym
B. średnicówką mikrometryczną
C. liniałem krawędziowym
D. mikrometrem talerzykowym
Mikrometr talerzykowy jest narzędziem precyzyjnym, które idealnie nadaje się do pomiarów podziałki przyporu zębów koła zębatego, ponieważ pozwala na uzyskanie wyjątkowo dokładnych wyników. Pomiar ten jest kluczowy dla oceny jakości wykonania zębów oraz ich dopasowania w mechanizmach przekładniowych. Mikrometry talerzykowe działają na zasadzie pomiaru odległości między dwoma powierzchniami, co umożliwia dokładne określenie wymiarów zewnętrznych i wewnętrznych. W kontekście przemysłu mechanicznego, zastosowanie mikrometru talerzykowego pozwala na weryfikację zgodności z normami wymiarowymi, co jest niezbędne w produkcji części maszyn. Przykładem może być pomiar zębów w kołach zębatych, który jest kluczowym etapem w procesie ich wytwarzania, mającym na celu zapewnienie długotrwałej i niezawodnej pracy całego układu napędowego. Dobre praktyki w zakresie pomiarów mechanicznych wymagają użycia odpowiednich narzędzi, aby uniknąć błędów i zapewnić wysoką jakość wytwarzania.

Pytanie 9

Jakiego narzędzia można użyć do pomiaru z precyzją 0,01 mm?

A. średnicówki mikrometrycznej
B. przymiaru kreskowego
C. suwmiarki uniwersalnej
D. głębokościomierza suwmiarkowego
Średnicówka mikrometryczna to narzędzie pomiarowe, które umożliwia dokładny pomiar średnicy z precyzją do 0,01 mm. Jest szczególnie przydatna w zadaniach wymagających wysokiej precyzji, takich jak pomiary w obróbce mechanicznej czy w kontroli jakości w przemyśle. Działa na zasadzie przyłożenia dwóch końcówek do mierzonych obiektów i odczytu wartości na skali mikrometrycznej. Dzięki temu można uzyskać nie tylko precyzyjne wyniki, ale także zminimalizować błąd pomiaru, co jest kluczowe w zastosowaniach inżynieryjnych, gdzie tolerancje mają duże znaczenie. Warto również zaznaczyć, że średnicówki mikrometryczne są zgodne z normami ISO, co zapewnia ich wiarygodność i jakość. Dodatkowo, w praktyce, stosowanie tego narzędzia ułatwia kontrolę wymiarów w produkcji, co przekłada się na lepszą jakość finalnych produktów."

Pytanie 10

Aby zweryfikować prostoliniowość prowadnic obrabiarki, należy zastosować

A. transametru
B. liniału sinusowego
C. czujnika zegarowego
D. suwmiarki uniwersalnej
Wybór innych narzędzi pomiarowych, takich jak transametr, liniał sinusowy, czy suwmiarka uniwersalna, do sprawdzania prostoliniowości prowadnic obrabiarki, nie jest optymalnym rozwiązaniem. Transametr, choć użyteczny w pomiarach długości, zazwyczaj nie oferuje wystarczającej precyzji, aby wiarygodnie określić prostoliniowość na poziomie wymaganym w obróbce precyzyjnej. Liniał sinusowy, z drugiej strony, służy do sprawdzania kątów i może być stosowany do pomiarów poziomych, lecz nie jest dedykowany do pomiarów prostoliniowości w kontekście obrabiarki. Suwmiarka uniwersalna, choć wszechstronna, nie jest narzędziem przeznaczonym do pomiarów precyzyjnych, jak prostoliniowość. Pomiar z użyciem suwmiarki może być obarczony dużym błędem ludzkim, co jest nieakceptowalne w procesach produkcyjnych, gdzie wymagana jest wysoka jakość i dokładność. Kluczowym błędem myślowym w tym przypadku jest przekonanie, że różne przyrządy pomiarowe można stosować zamiennie bez uwzględnienia ich specyfiki i przeznaczenia. Rekomendowane jest, aby do takich zastosowań zawsze wybierać narzędzia, które są standardowo uznawane za odpowiednie do danej specyfikacji i typu pomiaru, co w przypadku prostoliniowości prowadnic obrabiarki jednoznacznie wskazuje na czujnik zegarowy.

Pytanie 11

Używając wzoru (ft = f∙n∙i mm/min), wyznacz posuw minutowy dla wiertła krętego, przyjmując: f = 0,2 mm/obr, obroty n = 600 obr/min, a liczba ostrzy skrawających i = 2.

A. ft = 300 mm/min
B. ft = 120 mm/min
C. ft = 240 mm/min
D. ft = 1200 mm/min
Aby obliczyć posuw minutowy (ft), zastosowaliśmy wzór ft = f∙n∙i, gdzie f to posuw na obrót, n to liczba obrotów na minutę, a i to liczba ostrzy skrawających. W naszym przypadku mamy f = 0,2 mm/obr, n = 600 obr/min, i = 2. Podstawiając wartości do wzoru: ft = 0,2 mm/obr ∙ 600 obr/min ∙ 2 = 240 mm/min. Poprawne obliczenia są kluczowe w procesach obróbczych, ponieważ wpływają na efektywność i jakość wykonywanych prac. W praktyce, właściwy dobór posuwu minutowego pozwala na optymalne wykorzystanie narzędzi skrawających, co przekłada się na dłuższą żywotność narzędzi oraz mniejsze zużycie energii. W branży obróbczej stosuje się różne standardy, takie jak ISO, które precyzują parametry obróbcze dla różnych materiałów. Przykładowo, przy obróbce stali narzędziowej stosuje się inne wartości posuwu niż przy aluminium, co należy uwzględnić w procesie planowania produkcji.

Pytanie 12

Co nie jest przyrządem do pomiaru?

A. mikrometr kabłąkowy zewnętrzny
B. pasametr z czujnikiem zegarowym
C. suwmiarka uniwersalna
D. średnicówka mikrometryczna
Odpowiedź 'pasametr z czujnikiem zegarowym' jest prawidłowa, ponieważ nie jest to przyrząd pomiarowy w sensie tradycyjnym, lecz narzędzie, które wspomaga pomiar w warunkach specyficznych. Pasametr służy do pomiaru długości, ale w zestawieniu z czujnikiem zegarowym traktowany jest bardziej jako narzędzie wspierające proces pomiarowy, a nie samodzielny przyrząd pomiarowy. Mikrometry, takie jak mikrometr kabłąkowy zewnętrzny, średnicówka mikrometryczna oraz suwmiarka uniwersalna, są klasycznymi narzędziami stosowanymi w precyzyjnym pomiarze wymiarów, co znajduje zastosowanie w inżynierii, metalurgii i wielu innych dziedzinach. Na przykład, mikrometr kabłąkowy jest wykorzystywany do dokładnych pomiarów średnic zewnętrznych, co jest kluczowe w produkcji części mechanicznych. Standardy takie jak ISO 3611 definiują wymagania dotyczące takich narzędzi, co podkreśla ich znaczenie w zapewnieniu precyzyjnych i powtarzalnych pomiarów.

Pytanie 13

Ustawienie trybu JOG w sterowniku CNC oznacza

A. działanie krok po kroku
B. pracę w trybie referencyjnym
C. sterowanie w trybie automatycznym
D. manualne sterowanie urządzeniem
Tryb JOG w sterowniku obrabiarki CNC oznacza ręczne sterowanie maszyną, co pozwala operatorowi na precyzyjne poruszanie narzędziem w różnych kierunkach bez uruchamiania pełnego cyklu obróbczej. W trybie tym operator ma pełną kontrolę nad prędkością i kierunkiem ruchu os. Przykładowo, podczas ustawiania detalu w maszynie lub w celu sprawdzenia geometrii narzędzia, operator może używać joysticka lub przycisków do manualnego przesuwania narzędzia w pożądane miejsce. Tryb JOG jest niezastąpiony w sytuacjach, gdy wymagana jest precyzyjna lokalizacja narzędzia, co jest kluczowe w procesach takich jak przycinanie, wiercenie czy frezowanie. W standardach branżowych, takich jak ISO 230 dotyczących testowania maszyn, dokładne pozycjonowanie narzędzia ma istotne znaczenie dla uzyskania wysokiej jakości obróbki. Dobrą praktyką jest również korzystanie z trybu JOG w celu inspekcji i konserwacji maszyny, co przyczynia się do dłuższej żywotności sprzętu i bezpieczeństwa operacji.

Pytanie 14

Podczas obróbki zewnętrznej powierzchni wałka, jednym z symptomów zużycia ostrza narzędzia jest wzrost

A. średnicy wałka
B. dokładności realizacji
C. gładkości powierzchni po obróbce
D. wydajności obróbczej
Zwiększenie średnicy wałka podczas toczenia powierzchni zewnętrznej jest bezpośrednim objawem zużycia ostrza noża. Kiedy narzędzie tnące zaczyna się zużywać, jego zdolność do efektywnego usuwania materiału maleje. W rezultacie, aby osiągnąć tę samą wydajność obróbcza, może być konieczne, aby zwiększyć średnicę wałka. Przykładowo, w praktyce inżynieryjnej, jeśli operator zauważa, że wymagane jest zwiększenie posuwu lub prędkości obrotowej maszyny, to może to sugerować, że ostrze noża ma już znaczne zużycie. W takich sytuacjach, kluczowe jest regularne monitorowanie i wymiana narzędzi, aby uniknąć pogorszenia jakości obróbki, co może prowadzić do zwiększonej ilości odpadów oraz niewłaściwych wymiarów produktu końcowego. Standardy ISO dotyczące obróbki skrawaniem podkreślają, jak ważne jest utrzymanie narzędzi w dobrym stanie, aby zapewnić wysoką jakość produkcji i zgodność z wymaganiami technicznymi.

Pytanie 15

Aby uzyskać na obrabianej powierzchni chropowatość Ra równą 0,16 µm, obróbkę należy wykonać przy użyciu

A. dłutownicy
B. szlifierki
C. strugarki
D. frezarki
Szlifierki są narzędziami przeznaczonymi do obróbki powierzchniowej, które pozwalają na uzyskanie bardzo wysokiej chropowatości powierzchni, co czyni je idealnym wyborem w przypadku wymagania uzyskania parametrów Ra na poziomie 0,16 µm. Proces szlifowania polega na usuwaniu materiału z obrabianego elementu za pomocą narzędzi ściernych, które zapewniają precyzyjne i gładkie wykończenie. W praktyce szlifierki stosowane są w wielu branżach, w tym w przemyśle motoryzacyjnym, lotniczym oraz przy produkcji precyzyjnych komponentów. Standard ISO 1302 określa metody klasyfikacji chropowatości powierzchni, co potwierdza znaczenie właściwego doboru technologii obróbczej, aby spełniać określone normy. Wykorzystanie szlifierki pozwala na efektywne uzyskanie wymaganej chropowatości, co jest niezbędne przy produkcji elementów, które muszą charakteryzować się wysoką precyzją i jakością wykończenia.

Pytanie 16

Oblicz prędkość skrawania, gdy prędkość obrotowa wrzeciona tokarki wynosi 800 obr/min, a średnica obrabianego elementu wynosi 100 mm?

A. 251,2 m/min
B. 12,5 m/min
C. 190 m/min
D. 8 m/min
Obliczanie prędkości skrawania (Vc) w obróbce to całkiem fajna sprawa, bo to właściwie nie jest takie trudne, jak się wydaje. Można to zrozumieć dzięki wzorowi: Vc = π * D * n. Tu D to średnica elementu, a n to prędkość obrotowa wrzeciona w obr/min. W Twoim przypadku średnica wynosi 100 mm, co po przeliczeniu daje 0,1 m, a prędkość obrotowa to 800 obr/min. Jak podstawisz te liczby do wzoru, to wyjdzie Ci, że Vc ≈ 251,2 m/min. To dosyć istotna wartość, bo wpływa na jakość obrabianej powierzchni, trwałość narzędzi i na efektywność całego procesu. Na przykład, dla stali zazwyczaj stosuje się prędkości skrawania w granicach 150-250 m/min, a dla aluminium to już mogą być nawet 600 m/min. Rozumienie tych zasad to naprawdę podstawa w obróbce mechanicznej, więc warto to dobrze ogarnąć.

Pytanie 17

Na jakiej obrabiarce można spotkać śrubę toczną?

A. Przecinarce taśmowej
B. Frezarce z kontrolą numeryczną
C. Wiertarce stołowej
D. Strugarce wzdłużnej z dwoma stojakami
Wybór odpowiedzi dotyczących strugarek wzdłużnych dwustojakowych, wiertarek stołowych i przecinarek taśmowych może prowadzić do wielu nieporozumień związanych z funkcjonalnością tych narzędzi. Strugarka wzdłużna, skonstruowana w celu usuwania nadmiaru materiału z powierzchni detalu, najczęściej korzysta z tradycyjnych mechanizmów przesuwających, takich jak wałki czy systemy zębate, które nie zapewniają takiej precyzji jak śruby toczne. Wiertarki stołowe, które służą głównie do wiercenia otworów, opierają się na silnikach elektrycznych i mechanicznym przesuwie wiertła, co również nie wymaga zastosowania śruby tocznej. Przecinarki taśmowe, używane do cięcia materiałów, również nie korzystają z tej technologii, skupiając się na ruchu taśmy tnącej. Użytkownicy często mylą te maszyny ze względu na ich różne funkcje obróbcze, co może prowadzić do błędnej interpretacji ich konstrukcji. Właściwe zrozumienie, w jaki sposób różne mechanizmy wpływają na produktywność i jakość obróbki, jest kluczowe w nauce obróbki skrawaniem. W związku z tym, ważne jest, aby dokładnie poznawać właściwości poszczególnych narzędzi i ich zastosowanie, aby uniknąć nieporozumień w przyszłości.

Pytanie 18

Do działań związanych z obsługą oraz konserwacją systemu hydraulicznego obrabiarki CNC nie zalicza się

A. czyszczenie filtra
B. uzupełnienie płynu hydraulicznego
C. sprawdzanie wydajności pompy hydraulicznej obrabiarki
D. sprawdzenie wymaganego ciśnienia
Wybór odpowiedzi "sprawdzanie wydajności pompy hydraulicznej obrabiarki" jest trafny. Tego typu czynności to nie jest coś, co robimy na co dzień, kiedy zajmujemy się konserwacją układu hydraulicznego w obrabiarce CNC. Na co dzień mamy inne, rutynowe zadania, jak czyszczenie filtrów, uzupełnianie płynu hydraulicznego czy sprawdzanie ciśnienia. To wszystko jest niezwykle ważne, bo dobrze funkcjonująca hydraulika to podstawa, jeśli chcemy, żeby maszyna działała sprawnie i precyzyjnie. Na przykład, czyszczenie filtra pozwala zapobiec zanieczyszczeniu płynu, a to z kolei chroni różne elementy robocze przed uszkodzeniem. Uzupełnianie płynu to kwestia zachowania prawidłowego poziomu, bo jego brak może powodować problemy z ciśnieniem. A sprawdzanie ciśnienia to klucz do szybkiego wykrywania ewentualnych usterek, co jest istotne, żeby uniknąć poważnych awarii. Generalnie, pilnowanie stanu hydrauliki to ważna część dbania o obrobarki CNC, bo co za tym idzie, zwiększamy ciągłość produkcji i minimalizujemy przestoje.

Pytanie 19

Jakiego typu obróbki skrawaniem dotyczy proces dłutowania?

A. Honowania
B. Wytaczania
C. Toczenia
D. Strugania
Dłutowanie jest procesem obróbczej obróbki skrawaniem, który należy do strugania. Ta technika skrawania polega na usuwaniu materiału z powierzchni obrabianego przedmiotu za pomocą narzędzi zwanych dłutami. Dłuta mogą mieć różne kształty i zastosowania, dzięki czemu można uzyskiwać różnorodne profile oraz wykończenia powierzchni. W praktyce dłutowanie jest szczególnie przydatne w produkcji rowków, gniazd czy innych kształtów, które wymagają precyzyjnej obróbki. Dłutowanie wykorzystywane jest w takich dziedzinach jak mechanika precyzyjna, przemysł motoryzacyjny czy produkcja maszyn, gdzie dokładność oraz jakość powierzchni są kluczowe. Na przykład, w obróbce detali metalowych, dłutowanie może być stosowane do wykańczania wałków czy osi, co zapewnia odpowiednią pasowność elementów. Dłutowanie, jako metoda skrawania, jest także zgodne z normami i dobrymi praktykami branżowymi, w tym z zasadami stosowania narzędzi skrawających i obróbczych, co pozwala na efektywne zarządzanie procesami produkcyjnymi i optymalizację kosztów.

Pytanie 20

Lista wszystkich działań koniecznych do realizacji elementu klasy tuleja można znaleźć w

A. DTR obrabiarki
B. karcie uzbrojenia obrabiarki
C. instrukcji obsługi
D. karcie technologicznej
Karta technologiczna jest dokumentem zawierającym szczegółowe informacje o procesie wytwarzania danej części, w tym operacje technologiczne, parametry obróbcze oraz wymagania dotyczące narzędzi i maszyn. W przypadku tulei, karta technologiczna dostarcza niezbędnych danych, które umożliwiają prawidłowe zaplanowanie i wykonanie operacji obróbczych. Na przykład, jeśli produkowana jest tuleja o określonych wymiarach, karta technologiczna będzie zawierała informacje o technologii obróbczej, takich jak tokarka czy frezarka, oraz szczegółowe instrukcje dotyczące posuwów, prędkości skrawania i kolejności obróbczej. Dobrze sporządzona karta technologiczna zwiększa efektywność produkcji i pozwala na minimalizację błędów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania procesami produkcyjnymi i standardami jakości ISO 9001. Tylko na podstawie precyzyjnych danych zawartych w karcie technologicznej można dostarczyć produkt o wysokiej jakości, spełniający wymagania klienta.

Pytanie 21

Jakie oprzyrządowanie jest stosowane do toczenia wałów o dużej długości?

A. uchwyt specjalny
B. uchwyt i kieł
C. długie łoże tokarki
D. podtrzymka
Odpowiedzią na pytanie jest podtrzymka, która jest kluczowym oprzyrządowaniem stosowanym w toczeniu wałów o znacznej długości. Podtrzymka mechanicznie wspiera wał w trakcie obróbki, co jest szczególnie istotne w przypadku długich elementów, które mogą ulegać odkształceniom lub drganiom. Dzięki zastosowaniu podtrzymki, można znacząco zwiększyć precyzję toczenia oraz uzyskać wyższą jakość powierzchni obrabianego elementu. W praktyce, podtrzymki mogą być regulowane, co pozwala na dostosowanie ich do różnych średnic wałów. W branży produkcyjnej oraz w warsztatach rzemieślniczych, stosowanie podtrzymek jest powszechną praktyką, która zapewnia stabilność procesu obróbczo-wytwórczego. Dobre praktyki wskazują, że ich użycie nie tylko zwiększa efektywność pracy, ale także przyczynia się do wydłużenia żywotności narzędzi skrawających przez minimalizację drgań i poprawę parametrów skrawania.

Pytanie 22

Aby wykonać ślimak walcowy w warunkach produkcji jednostkowej, najlepiej użyć

A. strugarki
B. przeciągarki
C. dłutownicy
D. tokarki
Strugarka, mimo że jest również narzędziem obróbczym, nie jest odpowiednia do produkcji ślimaków walcowych. Jej głównym przeznaczeniem jest skrawanie płaskich powierzchni i nadawanie kształtów prostokątnym elementom, co sprawia, że wykorzystanie jej do formowania elementów cylindrycznych, takich jak ślimaki, jest nieefektywne. Strugarka jest idealna w przypadku elementów wymagających precyzyjnego szlifowania, jednak jej możliwości są ograniczone do prostych zadań obróbczych. Przeciągarka to maszyna przeznaczona do wydłużania i formowania drutów oraz cienkowarstwowych materiałów, co również nie ma zastosowania w przypadku produkcji ślimaków walcowych. Dłutownica, choć może być używana do tworzenia otworów czy rowków, nie oferuje możliwości precyzyjnego obróbki cylindrycznej, co jest kluczowe dla uzyskania odpowiednich parametrów ślimaka. Wybór niewłaściwego narzędzia do obróbki może prowadzić do niezgodności wymiarowych oraz problemów z jakością wykonania, co w rezultacie może skutkować nieefektywnością w dalszym użytkowaniu wyprodukowanych elementów. W przemyśle zaleca się stosowanie narzędzi odpowiednich do specyfiki produkcji, aby zachować wysoką jakość i wydajność procesów obróbczych.

Pytanie 23

Na wyświetlaczu kontrolera obrabiarki CNC pojawił się komunikat "Danger of collision", co może być jego przyczyną?

A. błąd w programie sterującym powodujący kolizję
B. przeciążenie urządzenia
C. nieprawidłowe ciśnienie w uchwycie pneumatycznym
D. usterka zasilania
Odpowiedź dotycząca błędu w programie sterującym powodującym kolizję jest prawidłowa, ponieważ komunikat 'Danger of collision' jest bezpośrednio związany z ryzykiem zderzenia narzędzia lub obrabianego przedmiotu z innymi elementami maszyny lub otoczeniem. W systemach CNC, programy sterujące muszą być precyzyjnie napisane, aby zdefiniować trajektorie ruchu narzędzi oraz ich interakcje z materiałem. W przypadku błędów w tych programach, takich jak niepoprawne współrzędne ruchu lub nieodpowiednie sekwencje operacji, może dojść do sytuacji, w której narzędzie zbliża się zbyt blisko do innych elementów, co skutkuje alarmem. Przykładem może być sytuacja, gdy program nie uwzględnia wymiarów materiału lub narzędzi, co prowadzi do niebezpiecznego zbliżenia. Warto również wspomnieć, że dobre praktyki w programowaniu CNC obejmują dokładne sprawdzenie i symulację trajektorii przed rozpoczęciem rzeczywistej obróbki, co znacznie zmniejsza ryzyko kolizji oraz związanych z tym uszkodzeń. Zrozumienie i eliminacja potencjalnych błędów w kodzie jest zatem kluczowe dla bezpieczeństwa i efektywności pracy na obrabiarkach CNC.

Pytanie 24

Oblicz obroty wrzeciona (n) w tokarskiej maszynie podczas obróbki wałka o średnicy d = 100 mm, jeżeli prędkość skrawania wynosi vc = 157 m/min. Posłuż się wzorem: vc = π · d · n1000

A. 250 obr/min
B. 1500 obr/min
C. 500 obr/min
D. 50 obr/min
Obliczając obroty wrzeciona tokarki, musisz skorzystać z odpowiedniej formuły. W tej sytuacji mamy prędkość skrawania wynoszącą 157 m/min i średnicę 100 mm, co daje nam możliwość wyliczenia obrotów. Z mojej praktyki, fajnie jest przekształcić wzór do formy n = (vc * 1000) / (π * d). Po podstawieniu danych wychodzi 500 obr/min. To całkiem istotne, bo dobrze dobrane obroty wrzeciona mają duże znaczenie dla jakości obróbki. Jeśli ustawisz za niskie obroty, może to źle wpłynąć na wynik, a zbyt wysokie z kolei mogą prowadzić do szybszego zużycia narzędzi. Ogólnie rzecz biorąc, znając te zasady, można zagwarantować, że proces skrawania będzie bardziej efektywny.

Pytanie 25

Gdzie mocuje się noże strugarskie?

A. w imadle
B. w oprawce
C. w imaku
D. w uchwycie
Noże strugarskie mocowane w imaku to naprawdę kluczowa sprawa, jeśli chodzi o obrabianie drewna. Imak trzyma narzędzie stabilnie, co jest mega ważne, bo dzięki temu struganie jest precyzyjne i skuteczne. Jak używasz imaka, masz kontrolę nad tym, jak głęboko i pod jakim kątem strugasz, a to przydaje się w różnych projektach. W szczególności, gdy pracujesz z dużymi kawałkami drewna, to precyzja jest na wagę złota. Moim zdaniem, w produkcji mebli, gdzie detale się liczą, imak naprawdę pozwala osiągnąć idealne wymiary i krawędzie. Fajnie jest też zwrócić uwagę na regularne sprawdzanie stanu imaka i noży, bo to wpływa na ich dłuższą żywotność i lepszą efektywność pracy.

Pytanie 26

Położenie punktu zerowego formy obrabianej określa się przy użyciu funkcji

A. G33
B. G54
C. G04
D. G63
G54 to standardowa funkcja w programowaniu CNC (Computer Numerical Control), która definiuje położenie punktu zerowego przedmiotu obrabianego. W praktyce oznacza to, że operator maszyny może ustawić i zapamiętać lokalizację punktu odniesienia w stosunku do narzędzia lub obrabianego przedmiotu, co jest kluczowe dla precyzyjnego wykonania operacji obróbczych. Użycie G54 pozwala na efektywne zarządzanie wieloma programami w obrabiarkach, umożliwiając stosowanie różnych punktów zerowych dla różnych przedmiotów bez konieczności ich każdorazowego programowania od nowa. W branży stosuje się różne systemy odniesienia, takie jak G55, G56, itp., co pozwala na przechowywanie wielu punktów zerowych w pamięci maszyny. Dobrą praktyką jest regularne sprawdzanie punktów zerowych przed rozpoczęciem obróbki, aby uniknąć błędów i zapewnić wysoką jakość wykonania detali.

Pytanie 27

Tuleja redukcyjna z gniazdem stożkowym o zbieżności 7:24 jest wykorzystywana do mocowania narzędzi na

A. tokarce
B. wiertarce
C. frezarce
D. szlifierce
Tuleja redukcyjna z gniazdem stożkowym o zbieżności 7:24 jest kluczowym elementem stosowanym w frezarkach, ponieważ umożliwia precyzyjne mocowanie narzędzi skrawających. Zbieżność 7:24 oznacza, że kąt stożka jest odpowiednio dopasowany do narzędzi, co zapewnia ich stabilność i minimalizuje drgania podczas pracy. Dzięki temu narzędzia mogą pracować z większą wydajnością i dokładnością, co jest istotne w procesach obróbczych wymagających wysokiej precyzji, jak frezowanie form i detali. W praktyce, używając tulei redukcyjnej w frezarce, operatorzy mogą szybko zmieniać narzędzia, co przyspiesza proces produkcji. Warto również zaznaczyć, że stosowanie tulei redukcyjnych w frezarkach jest zgodne z normami ISO oraz innymi standardami branżowymi, co potwierdza ich powszechne zastosowanie w przemyśle obróbczy.

Pytanie 28

Która komenda odpowiada za przesunięcie punktu odniesienia przedmiotu obrabianego?

A. G33
B. G17
C. G95
D. G57
Odpowiedź G57 jest jak najbardziej trafna, bo ta funkcja w obrabiarkach CNC służy do przesunięcia punktu zerowego naszego przedmiotu. Używając G57, możemy dokładnie określić, gdzie jest ten punkt zerowy w danym układzie współrzędnych. To się mega przydaje, zwłaszcza gdy pracujemy z różnymi detalami, bo dzięki temu każdy z nich można ustawić w swoim miejscu. W branży obróbczej to kluczowe, żeby punkt zerowy był dobrze określony, bo jak go pomylimy, to możemy stracić materiał. Wprowadzając G57, operatorzy łatwiej zarządzają detalami na stole roboczym, co jest zgodne z tym, co robi się najlepiej w obróbce CNC. Dzięki temu możemy mieć większą dokładność i powtarzalność w produkcji.

Pytanie 29

W której instrukcji programu zawarta jest informacja o pracy noża podczas nacinania gwintu o stałym skoku?

A. G04 X7
B. G88 X20 Z65 I2
C. G33 Z2 K1
D. G11 X18 F0.15
Odpowiedź G33 Z2 K1 jest poprawna, ponieważ kod G33 jest używany w programowaniu CNC do nacinania gwintów o stałym skoku, co jest kluczowym procesem w obróbce skrawaniem. Parametr Z2 określa głębokość nacięcia, a K1 definiuje skok gwintu, czyli odległość, jaką nóż przesuwa się wzdłuż osi Z na każdy obrót narzędzia. W praktyce, użycie G33 sygnalizuje maszynie, że ma wykonywać ruch w sposób ciągły i automatyczny, co zwiększa efektywność produkcji. W kontekście standardów branżowych, odpowiednie stosowanie kodów G, takich jak G33, jest niezbędne do zapewnienia precyzyjnego wykonania operacji skrawania, co jest kluczowe w procesach produkcyjnych, gdzie dokładność i powtarzalność są wymagane. W praktyce, umiejętność poprawnego programowania nacinania gwintów przy użyciu G33 jest istotna dla operatorów maszyn CNC oraz inżynierów zajmujących się procesem obróbki, gdyż wpływa to na jakość produkowanych elementów oraz czas cyklu obróbczej.

Pytanie 30

Która z poniższych metod nie wchodzi w skład bezpośredniej oceny stanu ostrza?

A. Akustyczna
B. Elektrooporowa
C. Dotykowa
D. Optyczna
Metoda akustyczna nie należy do bezpośredniej oceny stanu ostrza, ponieważ opiera się na analizie dźwięków generowanych przez materiał w trakcie jego obróbki. Jest to podejście pośrednie, które wykorzystuje mikrofony i analizatory dźwięku do monitorowania zmian w dźwięku, co może wskazywać na zużycie narzędzia lub obróbkę materiałów. Z kolei metody optyczne, dotykowe i elektrooporowe są bezpośrednimi metodami oceny, polegającymi na fizycznym pomiarze stanu powierzchni narzędzi. Na przykład, metoda optyczna wykorzystuje technologie takie jak skanowanie laserowe do analizy geometrii ostrza, co pozwala na identyfikację uszkodzeń i zużycia. Dotykowa ocena polega na manualnym sprawdzeniu powierzchni narzędzia, co może ujawnić mikrouszkodzenia. Zastosowanie metod bezpośrednich jest kluczowe w praktyce inżynieryjnej, aby zapewnić właściwą jakość obróbki i długotrwałą wydajność narzędzi. W kontekście standardów przemysłowych, bezpośrednia ocena stanu narzędzi jest zgodna z normami ISO dotyczącymi jakości i efektywności produkcji.

Pytanie 31

Aby wiercić otwory w aluminium, należy zastosować wiertło o kącie wierzchołkowym

A. 90°
B. 45°
C. 170°
D. 140°
Kiedy wiercimy otwory w aluminium, warto używać wiertła z kątem wierzchołkowym wynoszącym 140°. Taki kąt sprawia, że wiertło lepiej się prowadzi, co zmniejsza ryzyko przegrzewania materiału i pozwala uzyskać lepszą jakość otworów. Dzięki temu, że wiertło skuteczniej odprowadza wióry, unikamy zatykania narzędzi, co w przypadku aluminium bywa problematyczne. Co więcej, użycie wiertła o kącie 140° zmniejsza ryzyko odkształceń i pęknięć w obrabianym elemencie. To ma znaczenie, jeśli zależy nam na dokładności wymiarowej. W przemyśle, na przykład w produkcji elementów konstrukcyjnych czy przy precyzyjnej obróbce, stosowanie odpowiednich narzędzi jest super ważne dla efektywności i jakości końcowego produktu. Dlatego lepiej postawić na wiertło o odpowiednim kącie, to rzeczywiście najlepsza praktyka w obróbce.

Pytanie 32

Jaką ilość wartości korekcyjnych ma nóż oprawkowy z radiusem zaokrąglenia r = 0,4 mm?

A. Dwie.
B. Trzy.
C. Cztery.
D. Jedną.
Noż oprawkowy z promieniem zaokrąglenia 0,4 mm ma trzy wartości korekcyjne, co nie jest tak oczywiste na pierwszy rzut oka. Jak wiadomo, noże oprawkowe to narzędzia, które tną, więc dobrze jest wiedzieć, że te wartości są związane z geometrią i tym, jak właściwie ciąć. W praktyce mówimy o trzech podstawowych rzeczach: promień zaokrąglenia, kąt natarcia i grubość materiału. Właściwy dobór tych wartości jest naprawdę ważny, bo od tego zależy, jak dobrze w ogóle będzie cięcie i jak długo narzędzie pociągnie. Na przykład, jeśli używamy noża do materiałów kompozytowych, to dobrze dobrane korekcje mogą sprawić, że narzędzie się nie zużyje tak szybko, a jakość wykończenia będzie lepsza. W końcu, to wszystko wpisuje się w najlepsze praktyki w obróbce, więc warto to mieć na uwadze.

Pytanie 33

Na proces łamania wióra podczas obróbki przy użyciu płytki wieloostrzowej największy wpływ ma

A. promień narzędzia.
B. powierzchnia natarcia.
C. powierzchnia przyłożenia.
D. pomocnicza powierzchnia przyłożenia.
Powierzchnia natarcia to naprawdę ważny element, jeśli chodzi o obróbkę wiórową. To na niej narzędzie ma bezpośredni kontakt z materiałem, co ma spore znaczenie dla całego procesu skrawania. Kształt i geometria tej powierzchni wpływają na kąt natarcia, a to z kolei decyduje o tym, jakie siły działają na wiór podczas obróbki. Jak dobrze zaprojektujesz tę powierzchnię, to wióry będą się lepiej odprowadzać i mniej się łamać, co jest mega ważne, zwłaszcza przy twardych materiałach. Gdy dobierzesz odpowiednie parametry, jak prędkość skrawania i posuw, łatwiej osiągniesz lepszą wydajność i jakość detali. W inżynierii kluczowe jest, żeby wybierać narzędzia skrawające z odpowiednią geometrią i regularnie je ostrzyć. Wiedza o tym, jak powierzchnia natarcia wpływa na skrawanie, jest więc niezbędna dla każdego, kto pracuje z obróbką skrawaniem.

Pytanie 34

Włączenie obrabiarki w trybie DRY RUN umożliwia przeprowadzanie

A. z opcją edytowania programu
B. bez wykorzystywania cykli obróbczych
C. testów z przyspieszonym przesuwem
D. wyłącznie w trybach ręcznych
Uruchomienie obrabiarki w trybie DRY RUN, polegającym na symulacji ruchów narzędzia, umożliwia przeprowadzenie testów z przyspieszonym przesuwem. W tym trybie maszyna wykonuje ruchy, ale nie prowadzi obróbki materiału, co pozwala na weryfikację ścieżek narzędzia i programów bez ryzyka uszkodzenia materiału oraz narzędzi. Przykładowo, inżynierowie podczas programowania maszyny CNC mogą wykorzystać ten tryb do sprawdzenia złożonych trajektorii ruchu, co minimalizuje ryzyko wystąpienia błędów w rzeczywistej produkcji. Standardy branżowe zalecają stosowanie trybu DRY RUN przed rozpoczęciem właściwej obróbki, aby upewnić się, że program działa zgodnie z zamierzeniami oraz aby zidentyfikować potencjalne kolizje. Zastosowanie tego trybu zwiększa efektywność produkcji i bezpieczeństwo operacji.

Pytanie 35

Które z wymienionych zjawisk dotyczących oddziaływania ostrza narzędzia na warstwę wierzchnią oddziałuje w najmniejszym stopniu na wytrzymałość obrabianego przedmiotu?

A. Utwardzenie powierzchni w trakcie obróbki
B. Narost na ostrzu, który powstaje podczas obróbki
C. Zgniot powierzchni w trakcie obróbki
D. Naprężenia wewnętrzne powstające w trakcie obróbki
Narost na ostrzu narzędzia, który powstaje w wyniku obróbki, ma minimalny wpływ na wytrzymałość przedmiotu obrabianego w porównaniu z innymi zjawiskami. Narost ten jest efektem osadzania się materiału z obrabianego przedmiotu na krawędzi tnącej narzędzia, co może wpływać na jakość obróbki oraz trwałość narzędzia, ale nie modyfikuje w sposób istotny struktury materiału, który jest obrabiany. Przykładem może być zastosowanie narzędzi skrawających w produkcji elementów maszyn, gdzie najważniejsze są parametry takie jak kąty skrawania czy rodzaj materiału. W praktyce, aby zminimalizować negatywne skutki narostu, stosuje się narzędzia o odpowiednich powłokach oraz techniki chłodzenia, co pozwala na utrzymanie jakości obróbki. W kontekście standardów branżowych, ISO 9001 podkreśla znaczenie właściwego zarządzania jakością, co obejmuje również kontrolę narzędzi skrawających i ich wpływu na proces obróbczy.

Pytanie 36

Aby sprawdzić wykonanie wymiaru ϕ40H7, jakiego narzędzia należy użyć?

A. czujnika zegarowego
B. sprawdzianu szczękowego regulowanego
C. suwmiarki klasycznej
D. sprawdzianu tłoczkowego dwugranicznego
Sprawdzian tłoczkowy dwugraniczny jest narzędziem pomiarowym dedykowanym do sprawdzania wymiarów cylindrycznych, takich jak ϕ40H7. W przypadku tolerancji H7, kluczowe jest zapewnienie, że wymiar zewnętrzny obrabianego elementu mieści się w określonym zakresie. Sprawdzian tłoczkowy dwugraniczny składa się z dwóch tłoczków, które mają różne średnice, co umożliwia efektywne sprawdzenie zarówno górnej, jak i dolnej granicy wymiarowej. Przykładowo, jeśli chcemy zweryfikować otwór o średnicy 40 mm, to sprawdzian pozwoli określić, czy otwór nie jest ani za mały, ani za duży, co jest kluczowe dla prawidłowego funkcjonowania elementów mechanicznych. Użycie tego narzędzia jest zgodne z normą ISO 286, która definiuje tolerancje wymiarowe i pasowania. W praktyce, zastosowanie sprawdzianu tłoczkowego dwugranicznego zwiększa dokładność pomiarów i minimalizuje ryzyko pomyłek, co jest niezwykle istotne w precyzyjnej obróbce.

Pytanie 37

Który blok przedstawionego programu należy edytować, aby zmienić prędkość obrotową wrzeciona tokarkiCNC?

N005 G90 G54 X0 Z120
N010 T0202
N015 S680 M04
N020 G00 X60 Z0
N025 G01 X-2 F.1

A. N025
B. N005
C. N010
D. N015
Odpowiedź N015 jest poprawna, ponieważ w programowaniu maszyn CNC prędkość obrotowa wrzeciona jest definiowana za pomocą kodu S, który znajduje się w odpowiednim bloku programu. W przypadku bloku N015 zauważamy, że zawiera on kod S680, co oznacza prędkość obrotową wrzeciona ustawioną na 680 obrotów na minutę. Aby dostosować tę prędkość do wymagań konkretnego procesu obróbczy, wystarczy edytować wartość tego parametru. W praktyce, zmiana prędkości obrotowej wrzeciona ma kluczowe znaczenie dla efektywności procesu obróbki, ponieważ różne materiały oraz rodzaje narzędzi wymagają różnych prędkości obrotowych dla optymalnych wyników. Na przykład, obrabiając stal nierdzewną, często zaleca się wyższe prędkości obrotowe w porównaniu do obróbki aluminium, co pozwala na zminimalizowanie zużycia narzędzi i uzyskanie lepszej jakości powierzchni. Zrozumienie, jak edytować odpowiednie bloki w programie CNC, jest kluczowe dla każdego operatora, co podkreśla znaczenie umiejętności w zakresie programowania maszyn CNC i przepisów dotyczących obróbki skrawaniem.

Pytanie 38

Pryzmę wykorzystuje się najczęściej do identyfikacji obrabianych elementów w procesach realizowanych na

A. walcarkach
B. frezarkach
C. tokarkach
D. gwinciarkach
Frezarki są maszynami, które wykorzystują ruch obrotowy narzędzia skrawającego w celu usunięcia materiału z przedmiotu obrabianego. Pryzma, czyli mocowanie przedmiotów na frezarkach, jest kluczowym elementem w procesach obróbczych, ponieważ zapewnia stabilność i precyzję działania. Dzięki prawidłowemu zamocowaniu elementów, można uzyskać wysoką jakość powierzchni oraz dokładność wymiarową. W praktyce, zastosowanie pryzmy na frezarkach pozwala na skrawanie w wielu płaszczyznach, co jest szczególnie istotne w produkcji części mechanicznych o złożonych kształtach. Standardy takie jak ISO 2768 dotyczące tolerancji wymiarowej potwierdzają znaczenie precyzyjnego mocowania przedmiotów. Użycie pryzmy jest zatem zgodne z dobrymi praktykami w branży, a jej skuteczne zastosowanie może znacznie zwiększyć efektywność produkcji oraz zminimalizować odpady materiałowe.

Pytanie 39

Jakie są właściwe etapy obróbcze do wykonania otworu gwintowanego na tokarce uniwersalnej?

A. wiercenie, nawiercanie, gwintowanie
B. frezowanie krawędzi, nawiercanie, gwintowanie, wiercenie
C. frezowanie krawędzi, wiercenie, gwintowanie
D. nawiercanie, wiercenie, frezowanie krawędzi, gwintowanie
Odpowiedź, która wskazuje na kolejność: nawiercanie, wiercenie, fazowanie krawędzi, gwintowanie, jest poprawna ze względu na logiczny przebieg procesu obróbczo-technologicznego. Na początku należy nawiercić otwór, aby uzyskać odpowiednią średnicę, co przygotowuje materiał do następnej operacji. Wiercenie to kluczowy etap, który pozwala na uzyskanie dokładnego wymiaru otworu oraz jego głębokości. Faza krawędziowa jest istotna, gdyż zmniejsza ryzyko uszkodzenia gwintu oraz zapewnia lepszą jakość zakończenia otworu. Wynika to z faktu, że odpowiednie zfazowanie ułatwia wprowadzenie narzędzia do gwintowania, co wpływa na precyzję oraz trwałość gwintu. W odniesieniu do standardów przemysłowych, proces ten jest zgodny z praktykami stosowanymi w obróbce skrawaniem, które podkreślają znaczenie kolejności zabiegów dla uzyskania oczekiwanych rezultatów. Przykładem zastosowania tej sekwencji może być produkcja elementów maszyn, w których wysokie wymagania dotyczące dokładności wymiarowej i jakości gwintów mają kluczowe znaczenie dla ich funkcjonalności.

Pytanie 40

Która funkcja przygotowawcza umożliwia synchronizację ruchu noża z obrotami wrzeciona i jest odpowiednia do programowania toczenia gwintu?

A. G03
B. G90
C. G04
D. G33
Odpowiedź G33 jest prawidłowa, ponieważ ta funkcja przygotowawcza jest specjalnie zaprojektowana do toczenia gwintów, co polega na synchronizacji ruchu narzędzia (noża) z obrotami wrzeciona. Przytoczona funkcja G33 pozwala na precyzyjne kontrolowanie prędkości posuwu narzędzia w stosunku do prędkości obrotowej wrzeciona, co jest kluczowe dla uzyskania właściwego profilu gwintu. W praktyce, podczas toczenia gwintu, operator maszyny ustawia odpowiednią wartość prędkości obrotowej wrzeciona oraz wartość posuwu, tak aby każda obrót wrzeciona odpowiadał odpowiedniemu przesunięciu narzędzia. Dobrze zrealizowany proces toczenia gwintów, zgodnie z tą zasadą, zminimalizuje ryzyko powstawania błędów geometrycznych oraz uszkodzeń narzędzi. W branży obróbczej standardem jest stosowanie G33 do operacji związanych z gwintowaniem, co jest zgodne z normami ISO, co zapewnia powtarzalność i jakość produkcji. Warto również dodać, że umiejętność programowania toczenia gwintów z wykorzystaniem G33 jest istotna dla operatorów CNC, co wpływa na efektywność i precyzję procesów produkcyjnych.