Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 maja 2025 08:37
  • Data zakończenia: 12 maja 2025 08:39

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z adresów IPv4 jest odpowiedni do ustawienia interfejsu serwera DNS zarejestrowanego w lokalnych domenach?

A. 172.16.7.126
B. 192.168.15.165
C. 240.100.255.254
D. 111.16.10.1
Adresy IPv4, takie jak 192.168.15.165, 240.100.255.254 oraz 172.16.7.126, nie nadają się do konfiguracji publicznego serwera DNS, co wynika z ich specyficznych właściwości. Adres 192.168.15.165 jest adresem prywatnym, co oznacza, że jest przeznaczony do użytku w zamkniętych sieciach, takich jak sieci lokalne w domach czy biurach. Nie jest on routowalny w Internecie, dlatego serwery DNS skonfigurowane z takim adresem nie będą mogły odbierać zapytań spoza lokalnej sieci. Adres 172.16.7.126 również należy do zakresu adresów prywatnych, co ogranicza jego użycie tylko do lokalnych aplikacji. Z kolei adres 240.100.255.254, chociaż jest w zakresie adresów publicznych, jest częścią zarezerwowanej przestrzeni adresowej i nie jest dostępny do użycia w Internecie. W praktyce, aby serwer DNS mógł skutecznie odpowiadać na zapytania z sieci globalnej, musi być skonfigurowany z poprawnym, publicznie routowalnym adresem IP. Często pojawiające się nieporozumienia dotyczące wyboru adresów IP do serwerów DNS wynikają z braku zrozumienia różnicy między adresami publicznymi a prywatnymi oraz z mylnego założenia, że każdy adres publiczny może być użyty. Warto pamiętać, że konfiguracja serwera DNS wymaga również uwzględnienia dobrych praktyk w zakresie zabezpieczeń oraz zarządzania ruchem sieciowym, co dodatkowo podkreśla znaczenie wyboru odpowiedniego adresu IP.

Pytanie 2

Wpis przedstawiony na ilustracji w dzienniku zdarzeń klasyfikowany jest jako zdarzenie typu

Ilustracja do pytania
A. Ostrzeżenia
B. Informacje
C. Inspekcja niepowodzeń
D. Błędy
Analizując kategorie zdarzeń w dziennikach systemowych należy zrozumieć różnice między błędami ostrzeżeniami inspekcjami niepowodzeń a informacjami. Błędy w dzienniku sygnalizują problemy które wymagają natychmiastowej interwencji jak np. awarie aplikacji brakujące pliki czy problemy z siecią. Często wynikają z nieoczekiwanych sytuacji i mogą prowadzić do przestojów lub utraty danych. Ostrzeżenia choć mniej krytyczne niż błędy wskazują na potencjalne problemy które mogą wymagać uwagi w przyszłości. Przykładem może być niskie miejsce na dysku co jeszcze nie powoduje awarii ale wymaga zaplanowania działań zapobiegawczych. Inspekcje niepowodzeń dotyczą prób dostępu i autoryzacji a ich wpisy pomagają w identyfikacji prób nieautoryzowanego dostępu co jest kluczowe dla bezpieczeństwa systemów. Często wynikają z nieprawidłowych loginów lub błędnych konfiguracji. Zrozumienie tych różnic pozwala na skuteczne zarządzanie systemem i proaktywne działanie w celu zapobiegania problemom. Wiedza o klasyfikacji zdarzeń pozwala administratorom systemów na szybkie podejmowanie odpowiednich działań i optymalizację zarządzania infrastrukturą IT co jest istotne w kontekście utrzymania ciągłości działania i bezpieczeństwa systemów.

Pytanie 3

Odmianą pamięci, która jest tylko do odczytu i można ją usunąć za pomocą promieniowania ultrafioletowego, jest pamięć

A. ROM
B. EEPROM
C. EPROM
D. PROM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która jest odmienna od standardowego ROM, ponieważ można ją programować i kasować. Kluczową cechą EPROM jest możliwość kasowania danych przy użyciu światła ultrafioletowego, co umożliwia wielokrotne programowanie tej samej kości. Dzięki temu EPROM znajduje zastosowanie w obszarach, gdzie wymagane jest częste aktualizowanie oprogramowania, jak na przykład w systemach wbudowanych czy elektronice użytkowej. W praktyce, EPROM jest wykorzystywana do przechowywania stałych danych, które mogą wymagać aktualizacji, co czyni ją bardziej elastyczną niż standardowy ROM. Dobre praktyki w branży zakładają, że EPROM powinna być wykorzystywana w projektach, gdzie istotne są zarówno koszty produkcji, jak i elastyczność aktualizacji oprogramowania. Zastosowania EPROM obejmują również prototypowanie, gdzie inżynierowie mogą testować różne wersje oprogramowania przed wprowadzeniem ich na rynek.

Pytanie 4

Kable łączące poziome punkty dystrybucyjne z centralnym punktem dystrybucyjnym określa się jako

A. okablowanie pionowe
B. połączenia systemowe
C. okablowanie poziome
D. połączenia telekomunikacyjne
Wybór niewłaściwego typu okablowania może prowadzić do wielu problemów w systemie telekomunikacyjnym. Okablowanie poziome odnosi się do kabli, które łączą urządzenia w obrębie jednego piętra, a nie między kondygnacjami. Takie połączenia są kluczowe na poziomie lokalnym, jednak nie zastępują potrzeby okablowania pionowego, które ma za zadanie transportowanie sygnałów między różnymi piętrami budynku. Połączenia systemowe to termin, który odnosi się bardziej do integrowania różnych systemów telekomunikacyjnych, a nie specyficznie do okablowania. Z kolei połączenia telekomunikacyjne mogą być ogólnym określeniem dla wszelkich kabli przesyłających dane, ale nie definiują one konkretnej struktury okablowania. W konsekwencji, pomylenie tych terminów może prowadzić do nieefektywnego planowania i wykonania sieci, co w rezultacie obniża jej wydajność oraz wiarygodność. Istotne jest, aby podczas projektowania systemu telekomunikacyjnego zwracać uwagę na standardy, takie jak ANSI/TIA-568, które precyzują, w jaki sposób powinno być zainstalowane okablowanie pionowe i poziome, aby zapewnić optymalne funkcjonowanie sieci.

Pytanie 5

W technologii Ethernet 100Base-TX do przesyłania danych używane są żyły kabla UTP podłączone do pinów:

A. 1,2,3,6
B. 1,2,5,6
C. 1,2,3,4
D. 4,5,6,7
Odpowiedź 1,2,3,6 jest poprawna, ponieważ w standardzie Ethernet 100Base-TX do transmisji danych wykorzystywane są cztery żyły kabla UTP, które są przypisane do odpowiednich pinów w złączu RJ45. W przypadku 100Base-TX, zdefiniowane są następujące pary żył: para A (żyła 1 i 2) oraz para B (żyła 3 i 6). Użycie pary 1-2 do transmisji oraz pary 3-6 do odbioru umożliwia pełnodupleksową transmisję, co oznacza, że dane mogą być przesyłane i odbierane jednocześnie. Standard ten jest zgodny z normą IEEE 802.3u, która definiuje specyfikacje dla różnych prędkości Ethernet, w tym 100 Mbps. W praktyce, zastosowanie 100Base-TX jest szerokie, obejmując sieci lokalne (LAN) w biurach, szkołach oraz innych instytucjach, gdzie wymagana jest stabilna i szybka komunikacja. Przykładem może być podłączenie komputerów do switchów, gdzie każde urządzenie korzysta z odpowiednich pinów w złączach RJ45, co zapewnia optymalną wydajność sieci.

Pytanie 6

Komputer zarejestrowany w domenie Active Directory nie ma możliwości połączenia się z kontrolerem domeny, na którym znajduje się profil użytkownika. Jaki rodzaj profilu użytkownika zostanie utworzony na tym urządzeniu?

A. tymczasowy
B. obowiązkowy
C. mobilny
D. lokalny
Wybór odpowiedzi, że profil lokalny zostanie utworzony, jest błędny, ponieważ lokalny profil użytkownika jest tworzony tylko wtedy, gdy użytkownik loguje się po raz pierwszy na danym komputerze, a dane te są zachowywane na tym samym urządzeniu. W kontekście problemów z połączeniem z kontrolerem domeny, profil lokalny nie jest alternatywą, gdyż nie pozwala na synchronizację z danymi przechowywanymi na serwerze. Z kolei mobilny profil użytkownika wymaga działania w sieci i synchronizacji z kontrolerem domeny, co w przypadku braku połączenia nie może mieć miejsca. Mobilne profile są zaprojektowane tak, aby były dostępne na różnych komputerach w sieci, jednak również opierają się na dostępności serwera. Profile obowiązkowe to z kolei zdefiniowane szablony, które użytkownik nie może modyfikować, co nie odpowiada sytuacji, w której użytkownik loguje się do systemu po raz pierwszy, nie mając aktywnego połączenia z serwerem. Podejście do tworzenia i zarządzania profilami użytkowników w Active Directory powinno opierać się na zrozumieniu, jak te różne typy profilów działają oraz jak wpływają na dostęp do danych i aplikacji, co jest kluczowe dla administracji systemami oraz zarządzania zasobami IT.

Pytanie 7

Który z poniższych programów nie jest wykorzystywany do zdalnego administrowania komputerami w sieci?

A. UltraVNC
B. Team Viewer
C. Virtualbox
D. Rdesktop
Rdesktop, UltraVNC i TeamViewer to programy, które w istotny sposób różnią się od VirtualBox, ponieważ są one przeznaczone do zdalnego zarządzania komputerami. Rdesktop to klient RDP (Remote Desktop Protocol) dla systemu Linux, który umożliwia zdalny dostęp do systemów Windows. Pozwala na interakcję z komputerem zdalnie, co jest szczególnie przydatne w środowiskach korporacyjnych, gdzie pracownicy mogą potrzebować dostępu do swoich stacji roboczych z różnych lokalizacji. UltraVNC to rozwiązanie do zdalnego zarządzania, które wykorzystuje protokół VNC (Virtual Network Computing) do umożliwienia zdalnego dostępu i zarządzania komputerami przez interfejs graficzny. Użytkownicy mogą kontrolować komputer zdalny tak, jakby siedzieli przed nim, co sprawia, że jest to narzędzie idealne do wsparcia technicznego. TeamViewer z kolei to popularna aplikacja do zdalnego dostępu, która oferuje wiele funkcji, takich jak przesyłanie plików, współpraca w czasie rzeczywistym czy zdalne wsparcie techniczne. Typowym błędem jest mylenie zdalnego dostępu z wirtualizacją – podczas gdy pierwsze dotyczy kontroli nad zdalnym systemem, drugie odnosi się do uruchamiania wielowarstwowych systemów operacyjnych na jednym komputerze. Zrozumienie tej różnicy jest kluczowe dla skutecznego wykorzystania narzędzi IT w praktyce.

Pytanie 8

Która z licencji pozwala każdemu użytkownikowi na wykorzystywanie programu bez ograniczeń związanych z prawami autorskimi?

A. Public domain
B. MOLP
C. Shareware
D. Volume
Licencja Public Domain, znana również jako domena publiczna, jest to status, który pozwala każdemu użytkownikowi na korzystanie z oprogramowania bez żadnych ograniczeń wynikających z autorskich praw majątkowych. Oznacza to, że użytkownicy mogą swobodnie pobierać, modyfikować, dystrybuować oraz wykorzystywać dane oprogramowanie w dowolny sposób. Przykładem zastosowania oprogramowania w domenie publicznej mogą być różne biblioteki, narzędzia programistyczne oraz zasoby edukacyjne, takie jak projekty stworzone przez społeczność open source. Dobrą praktyką jest korzystanie z oprogramowania w domenie publicznej, ponieważ umożliwia to innowację oraz rozwój w różnych dziedzinach, bez obaw o łamanie przepisów prawnych. Warto zaznaczyć, że chociaż oprogramowanie w domenie publicznej jest dostępne dla wszystkich, jego twórcy mogą zachować prawa do ich pomysłów, co stanowi doskonały przykład zrównoważonego podejścia do innowacji i ochrony prawnej.

Pytanie 9

Rysunek ilustruje rezultaty sprawdzania działania sieci komputerowej przy użyciu polecenia

Ilustracja do pytania
A. ipconfig
B. tracert
C. ping
D. netstat
Polecenie ipconfig jest używane do wyświetlania konfiguracji sieciowej interfejsów w systemach Windows. Wyświetla informacje takie jak adres IP, maska podsieci oraz brama domyślna, ale nie testuje połączenia z innymi hostami. Dlatego nie może być używane do testowania sieci poprzez wysyłanie pakietów ICMP. Tracert to inne polecenie, które śledzi trasę, jaką pokonuje pakiet do docelowego hosta, identyfikując wszystkie pośrednie routery i czasy przejść. Choć przydatne dla zrozumienia ścieżek routingu, nie spełnia funkcji pingu, który mierzy bezpośrednią responsywność hosta. Netstat z kolei służy do wyświetlania aktywnych połączeń sieciowych, tabel routingu i statystyk interfejsów, ale nie ma mechanizmu oceny opóźnień czy dostępności konkretnego hosta w sposób, w jaki czyni to ping. Typowym błędem myślowym jest mylenie tych poleceń z powszechnie stosowanym pingiem, który jest specyficznie zaprojektowany do testowania bezpośrednich połączeń sieciowych i mierzenia czasu odpowiedzi. Zrozumienie różnic w funkcjonalności tych poleceń jest kluczowe dla efektywnego diagnozowania problemów sieciowych i poprawnego stosowania narzędzi w ramach zarządzania infrastrukturą IT. Każde z tych poleceń ma swoje unikalne zastosowania i wybór właściwego zależy od konkretnego przypadku użycia w praktycznych scenariuszach administracji sieciowej. Dlatego ważne jest, by dokładnie wiedzieć, które narzędzie kiedy wykorzystać, co jest fundamentem dobrych praktyk w zarządzaniu sieciami komputerowymi.

Pytanie 10

Zestaw narzędzi do instalacji okablowania miedzianego typu "skrętka" w sieci komputerowej powinien obejmować:

A. zaciskarkę złączy modularnych, ściągacz izolacji, narzędzie uderzeniowe, tester okablowania
B. ściągacz izolacji, zaciskarkę złączy modularnych, nóż monterski, miernik uniwersalny
C. komplet wkrętaków, narzędzie uderzeniowe, tester okablowania, lutownicę
D. narzędzie uderzeniowe, nóż monterski, spawarkę światłowodową, tester okablowania
Niepoprawne odpowiedzi zawierają elementy, które nie są kluczowe ani praktyczne w kontekście montażu okablowania miedzianego typu "skrętka". Wiele z tych odpowiedzi wprowadza narzędzia, które są nieadekwatne do tego typu instalacji. Na przykład, spawarka światłowodowa jest narzędziem specyficznym dla technologii światłowodowej i nie ma zastosowania w kontekście okablowania miedzianego. Kolejnym błędnym podejściem jest dodawanie lutownicy do zestawu, która jest używana w zupełnie innym procesie, związanym głównie z elektroniką i nie jest zalecana w instalacjach okablowania miedzianego, gdzie wprowadza ryzyko uszkodzenia materiałów oraz niewłaściwego połączenia. Również miernik uniwersalny, mimo że jest przydatny w wielu aspektach pracy z elektrycznością, nie jest narzędziem kluczowym do bezpośredniego montażu okablowania, a jego zastosowanie w tym kontekście jest ograniczone. Prawidłowe podejście do montażu okablowania polega na zrozumieniu, jakie narzędzia są rzeczywiście potrzebne do danej technologii, a nie na stosowaniu nieodpowiednich narzędzi, które mogą prowadzić do błędów w instalacji i późniejszych problemów z siecią.

Pytanie 11

Jak skonfigurować dziennik w systemie Windows Server, aby rejestrować zarówno udane, jak i nieudane próby logowania użytkowników oraz działania na zasobach dyskowych?

A. zabezpieczeń.
B. aplikacji i usług.
C. ustawień.
D. systemu.
Odpowiedzi "systemu", "ustawień" oraz "aplikacji i usług" są nieprawidłowe, ponieważ nie odpowiadają wymaganiom dotyczącym rejestrowania prób logowania i operacji na zasobach dyskowych. Dziennik systemu rejestruje zdarzenia związane z samym systemem operacyjnym, takie jak błędy systemowe czy problemy z urządzeniami, ale nie zawiera szczegółowych informacji dotyczących zabezpieczeń lub aktywności użytkowników. Dziennik ustawień natomiast nie istnieje jako osobna kategoria w Windows Server i nie jest używany do monitorowania zdarzeń związanych z bezpieczeństwem. Dziennik aplikacji i usług rejestruje zdarzenia specyficzne dla aplikacji i usług, które mogą być pomocne, ale nie dostarcza informacji na temat prób logowania, które są kluczowe dla bezpieczeństwa systemu. Typowym błędem myślowym jest mylenie różnych typów dzienników i ich funkcji, co prowadzi do niepoprawnych wniosków o odpowiednich narzędziach do monitorowania bezpieczeństwa. W kontekście bezpieczeństwa informacji, kluczowe jest zrozumienie, które logi są odpowiednie do analizy zdarzeń związanych z dostępem i jak wykorzystać te informacje do ochrony zasobów organizacji.

Pytanie 12

Jakie polecenie w systemie Linux pozwala na dodanie istniejącego użytkownika nowak do grupy technikum?

A. usergroup -g technikum nowak
B. grups -g technikum nowak
C. usermod -g technikum nowak
D. useradd -g technikum nowak
Polecenie "usermod -g technikum nowak" jest poprawne, ponieważ "usermod" jest narzędziem używanym do modyfikacji kont użytkowników w systemie Linux. Opcja "-g" pozwala na przypisanie użytkownika do określonej grupy, w tym przypadku do grupy "technikum". Przykład użycia tego polecenia może wyglądać tak: jeżeli administrator chce dodać użytkownika 'nowak' do grupy 'technikum' w celu nadania mu odpowiednich uprawnień dostępu, wykonuje to polecenie. Warto również zauważyć, że przypisanie do grupy jest istotne w kontekście zarządzania dostępem do zasobów systemowych. Na przykład, użytkownik należący do grupy "technikum" może mieć dostęp do specjalnych plików lub katalogów, które są wymagane w jego pracy. Dla zachowania standardów i dobrych praktyk, zaleca się regularne przeglądanie przynależności użytkowników do grup oraz dostosowywanie ich w miarę zmieniających się potrzeb organizacji.

Pytanie 13

Rozmiar pliku wynosi 2 KiB. Co to oznacza?

A. 16384 bitów
B. 2048 bitów
C. 2000 bitów
D. 16000 bitów
Odpowiedzi, które wskazują na 16000 bitów, 2048 bitów i 2000 bitów, są oparte na błędnych założeniach dotyczących przeliczania jednostek danych. W przypadku pierwszej z tych odpowiedzi, 16000 bitów nie ma podstaw w standardowych jednostkach miary danych. Obliczenia, które prowadzą do tej wartości, mogą wynikać z niepoprawnego przeliczenia bajtów lub nieporozumienia co do definicji KiB. Dla porównania, 2048 bitów wynikałoby z założenia, że 1 KiB to 256 bajtów, co jest błędne, gdyż 1 KiB to 1024 bajty. Zastosowanie tej nieprawidłowej definicji prowadzi do znacznego zaniżenia rzeczywistej wartości. Ostatecznie, 2000 bitów jest wynikiem dalszego błędnego przeliczenia, być może opartego na ogólnych jednostkach, zamiast na standardach, które powinny być stosowane w informatyce. Typowe błędy myślowe, które prowadzą do takich niepoprawnych konkluzji, obejmują ignorowanie faktu, że jednostki binarne (kibibyte, mebibyte) różnią się od jednostek dziesiętnych (kilobyte, megabyte). W praktyce, ważne jest, aby dobrze rozumieć różnice między tymi jednostkami, ponieważ ich pomylenie może prowadzić do krytycznych błędów w obliczeniach dotyczących przechowywania danych czy wydajności systemu.

Pytanie 14

Jakie korzyści płyną z zastosowania systemu plików NTFS?

A. opcja formatowania nośnika o niewielkiej pojemności (od 1,44 MB)
B. funkcja szyfrowania folderów oraz plików
C. przechowywanie jedynie jednej kopii tabeli plików
D. możliwość zapisywania plików z nazwami dłuższymi niż 255 znaków
Zgłoszona odpowiedź na temat szyfrowania folderów i plików w NTFS jest całkiem trafna. NTFS, czyli New Technology File System, naprawdę ma kilka super fajnych funkcji zabezpieczeń, w tym szyfrowanie danych przez EFS (Encrypting File System). Dzięki temu można szyfrować pojedyncze pliki albo nawet całe foldery, co znacznie podnosi bezpieczeństwo danych, zwłaszcza w sytuacjach, gdzie informacje są narażone na nieautoryzowany dostęp. Na przykład w firmach, które przetwarzają wrażliwe dane, szyfrowanie staje się wręcz koniecznością, aby spełniać regulacje, jak RODO. Poza tym NTFS ma też inne ciekawe funkcje, jak zarządzanie uprawnieniami, więc można precyzyjnie kontrolować kto ma dostęp do różnych zasobów. W praktyce szyfrowanie w NTFS to coś, co może bardzo pomóc w ochronie danych, a to jest zgodne z najlepszymi praktykami bezpieczeństwa informacji.

Pytanie 15

Aby uzyskać więcej wolnego miejsca na dysku bez tracenia danych, co należy zrobić?

A. oczyszczanie dysku
B. weryfikację dysku
C. kopię zapasową dysku
D. defragmentację dysku
Wykonywanie backupu dysku ma na celu zabezpieczenie danych przed ich utratą, jednak nie wolno mylić tego procesu z zwalnianiem miejsca na dysku. Backup polega na tworzeniu kopii zapasowej plików i folderów, co jest kluczowe w kontekście ochrony danych, ale nie redukuje fizycznego zużycia przestrzeni na dysku. Sprawdzanie dysku to proces diagnostyczny, który identyfikuje błędy i uszkodzenia na nośniku, natomiast defragmentacja jest operacją mającą na celu reorganizację danych na dysku w celu poprawy wydajności. Choć wszystkie te działania są istotne dla zarządzania danymi, nie prowadzą one do zwolnienia miejsca na dysku. Często użytkownicy mogą sądzić, że wystarczy skopiować dane na inny nośnik lub sprawdzić stan dysku, aby rozwiązać problem z jego pojemnością. To mylące podejście może prowadzić do nieefektywnego zarządzania zasobami, gdzie użytkownicy próbują poprawić wydajność systemu poprzez działania, które nie mają wpływu na ilość dostępnego miejsca. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego zarządzania danymi oraz optymalizacji pracy systemu.

Pytanie 16

Który z podanych adresów IP v.4 należy do klasy C?

A. 191.11.0.10
B. 223.0.10.1
C. 126.110.10.0
D. 10.0.2.0
Wszystkie pozostałe adresy IP wymienione w pytaniu nie są adresami klasy C. Adres 10.0.2.0 zalicza się do klasy A, której pierwsza okteta znajduje się w zakresie od 1 do 126. Klasa A jest wykorzystywana do dużych sieci, gdzie liczba hostów może być znaczna, co czyni ją odpowiednią dla dużych organizacji lub dostawców usług internetowych. Adres 126.110.10.0 również nie pasuje do klasy C, ponieważ pierwsza okteta (126) przypisuje go do klasy B, gdzie zakres oktetów to od 128 do 191. Klasa B jest idealna dla średniej wielkości sieci, umożliwiając adresowanie do 65 tysięcy hostów. Natomiast adres 191.11.0.10 to adres klasy B, ponieważ jego pierwsza okteta (191) również znajduje się w przedziale 128 do 191. Typowe błędy w rozpoznawaniu klas adresów IP często wynikają z niezrozumienia zakresów przypisanych poszczególnym klasom oraz ich zastosowań. Kluczowe jest, aby podczas analizy adresów IP pamiętać o ich zastosowaniu oraz o tym, że klasy adresowe są skonstruowane w celu efektywnego zarządzania adresowaniem w zależności od potrzeb organizacji. Niezrozumienie tych klasyfikacji może doprowadzić do nieoptymalnego wykorzystania zasobów sieciowych i kłopotów z ich zarządzaniem.

Pytanie 17

Obniżenie ilości jedynek w masce pozwala na zaadresowanie

A. mniejszej liczby sieci i większej liczby urządzeń
B. większej liczby sieci i mniejszej liczby urządzeń
C. większej liczby sieci i większej liczby urządzeń
D. mniejszej liczby sieci i mniejszej liczby urządzeń
Rozumienie, jak modyfikacja maski podsieci wpływa na liczbę dostępnych adresów IP, jest bardzo istotne. Kiedy zwiększamy liczbę jedynek w masce, to w rzeczywistości ograniczamy liczbę dostępnych adresów w sieci, co sprawia, że możemy obsłużyć tylko kilka urządzeń. Niektórzy mogą myśleć, że więcej jedynek=więcej sieci, ale tak nie jest. Mniejsza liczba jedynek w masce to większa liczba adresów dla konkretnej podsieci, ale nie zwiększa liczby sieci. Na przykład w masce /24 mamy 256 adresów, ale już w masce /25 (255.255.255.128), która ma więcej jedynek, liczba dostępnych adresów dla urządzeń spada, co może być frustracją w dużych sieciach. Doświadczeni administratorzy dobrze znają te zasady i stosują subnetting zgodnie z potrzebami swojej sieci, bo nieprzemyślane zmiany mogą narobić niezłych kłopotów.

Pytanie 18

Rozmiar plamki na ekranie monitora LCD wynosi

A. rozmiar jednego piksela wyświetlanego na ekranie
B. rozmiar obszaru, w którym możliwe jest wyświetlenie wszystkich kolorów obsługiwanych przez monitor
C. odległość pomiędzy początkiem jednego a początkiem kolejnego piksela
D. rozmiar obszaru, na którym wyświetla się 1024 piksele
Można się pogubić w tych wszystkich pojęciach związanych z plamką monitora LCD, co czasami prowadzi do błędnych odpowiedzi. Na przykład, twierdzenie, że plamka to rozmiar piksela na ekranie, jest trochę mylące, bo plamka to odległość między pikselami, a nie ich wielkość. Mówienie o wyświetlaniu 1024 pikseli też nie ma sensu w kontekście plamki, bo to nie to samo co ich rozmieszczenie. Definicja obszaru wyświetlania wszystkich kolorów dostępnych dla monitora wprowadza w błąd, bo plamka nie ma nic wspólnego z kolorami, ale z fizycznym rozkładem pikseli. W dzisiejszych czasach rozdzielczość i gęstość pikseli są najważniejsze, nie ich grupowanie. Dlatego warto zrozumieć te różnice, żeby lepiej ocenić jakość i możliwości monitorów, zwłaszcza w takich dziedzinach jak grafika czy multimedia.

Pytanie 19

Przesyłanie danych przez router, które wiąże się ze zmianą adresów IP źródłowych lub docelowych, określa się skrótem

A. NAT
B. IANA
C. IIS
D. FTP
FTP, IANA i IIS to różne terminy związane z internetem, ale żaden z nich nie dotyczy przesyłania ruchu sieciowego przez zmianę adresów IP, tak jak robi to NAT. FTP to po prostu protokół do przesyłania plików, a nie ma nic wspólnego z adresami IP. IANA zajmuje się zarządzaniem przestrzenią adresową IP i innymi zasobami, ale nie jest to związane z NAT. A IIS to serwer aplikacji, który hostuje strony internetowe i aplikacje, także nie ma to związku z translacją adresów. W tym przypadku można się pomylić, łącząc zarządzanie danymi z adresowaniem sieciowym, co prowadzi do błędnych wniosków, że te technologie robią to samo co NAT. Ważne jest, żeby zrozumieć, że NAT ma swoje specyficzne zadania w adresowaniu w sieciach i różni się od innych terminów.

Pytanie 20

Jakiej klasy adresów IPv4 dotyczą adresy, które mają dwa najbardziej znaczące bity ustawione na 10?

A. Klasy C
B. Klasy A
C. Klasy B
D. Klasy D
Adresy IPv4, których najbardziej znaczące dwa bity mają wartość 10, należą do klasy B. Klasa B obejmuje adresy, które zaczynają się od bitów 10 w pierwszym bajcie, co odpowiada zakresowi adresów od 128.0.0.0 do 191.255.255.255. Adresy tej klasy są wykorzystywane przede wszystkim w średnich i dużych sieciach, gdzie konieczne jest przydzielenie większej liczby hostów. W praktyce, klasa B pozwala na zaadresowanie do 65,534 hostów w jednej sieci, co czyni ją idealnym rozwiązaniem dla organizacji o większych potrzebach. W przypadku planowania sieci, administratorzy często korzystają z klasy B, aby zapewnić odpowiednią ilość adresów IP dla urządzeń w danej lokalizacji. Zrozumienie klas adresów IP jest kluczowe dla efektywnego zarządzania i przydzielania zasobów sieciowych oraz dla unikania kolizji adresowych. Warto również zauważyć, że klasy adresów IPv4 są coraz mniej stosowane w erze IPv6, jednak ich znajomość jest nadal istotna dla historycznego kontekstu i niektórych systemów.

Pytanie 21

Element oznaczony cyfrą 1 na diagramie blokowym karty graficznej?

Ilustracja do pytania
A. generuje sygnał RGB na wyjściu karty graficznej
B. zawiera matrycę znaków w trybie tekstowym
C. konwertuje sygnał cyfrowy na analogowy
D. przechowuje dane wyświetlane w trybie graficznym
W niepoprawnych odpowiedziach znajdują się pewne nieporozumienia dotyczące funkcjonowania elementów karty graficznej. Generowanie sygnału RGB na wyjście karty graficznej jest odpowiedzialnością generatora sygnałów który przetwarza dane wideo na sygnał odpowiedni dla monitorów. Jest to kluczowy proces w trybie graficznym gdzie informacje o kolorze i jasności każdego piksela muszą być dokładnie przetworzone aby uzyskać poprawny obraz. Przechowywanie danych wyświetlanych w trybie graficznym odnosi się do pamięci wideo gdzie wszystkie informacje o obrazie są przechowywane zanim zostaną przekazane do przetworzenia przez GPU. Pamięć wideo jest kluczowym komponentem w zarządzaniu dużymi ilościami danych graficznych szczególnie w aplikacjach wymagających wysokiej rozdzielczości. Zamiana sygnału cyfrowego na sygnał analogowy dotyczy przetworników DAC (Digital-to-Analog Converter) które są używane w starszych systemach z analogowymi wyjściami wideo. Nowoczesne systemy używają głównie cyfrowych interfejsów takich jak HDMI czy DisplayPort eliminując potrzebę konwersji na sygnał analogowy. Rozumienie ról poszczególnych elementów jest kluczowe dla projektowania i diagnozowania systemów graficznych w nowoczesnym sprzęcie komputerowym.

Pytanie 22

Zidentyfikowanie głównego rekordu rozruchowego, który uruchamia system z aktywnej partycji, jest możliwe dzięki

A. CDDL
B. GUID Partition Table
C. POST
D. BootstrapLoader
Odpowiedzi takie jak POST, CDDL i GUID Partition Table nie mają bezpośredniego związku z funkcją bootloadera, co prowadzi do nieporozumień na temat procesów uruchamiania systemu. POST, czyli Power-On Self Test, to procedura diagnostyczna, która ma miejsce tuż po włączeniu komputera, mająca na celu sprawdzenie podstawowych komponentów sprzętowych, takich jak pamięć RAM, procesor czy karty rozszerzeń. Choć POST jest istotny w fazie rozruchu, jego zadaniem nie jest wczytywanie systemu operacyjnego, ale raczej przygotowanie sprzętu do dalszego działania. CDDL (Common Development and Distribution License) to licencja open source, która reguluje zasady korzystania z oprogramowania, ale nie jest w ogóle związana z procesem uruchamiania systemu. Z kolei GUID Partition Table (GPT) jest nowoczesnym schematem partycjonowania dysków, który pozwala na tworzenie wielu partycji oraz obsługuje dyski o pojemności większej niż 2 TB. GPT jest używane w kontekście zarządzania danymi na dysku, ale nie jest odpowiedzialne za sam proces rozruchu systemu. Błędne zrozumienie ról tych komponentów może prowadzić do niewłaściwych wniosków o tym, jak działa proces uruchamiania komputera. Kluczowe jest zrozumienie, że to bootloader jest odpowiedzialny za załadowanie systemu operacyjnego z aktywnej partycji, a nie elementy takie jak POST, CDDL czy GPT.

Pytanie 23

Jakiego narzędzia należy użyć do montażu końcówek kabla UTP w gnieździe keystone z zaciskami typu 110?

A. Narzędzia uderzeniowego
B. Śrubokręta płaskiego
C. Śrubokręta krzyżakowego
D. Zaciskarki do wtyków RJ45
Użycie wkrętaka płaskiego lub krzyżakowego jest niewłaściwe w kontekście tworzenia końcówek kabli UTP w modułach keystone z stykami typu 110. Wkrętaki te są przeznaczone do pracy z śrubami i innymi elementami mocującymi, ale nie mają zastosowania w kontekście połączeń elektrycznych w systemach okablowania strukturalnego. Typowym błędem jest myślenie, że wkrętaki mogą być używane do zakładania kabli, co prowadzi do uszkodzeń zarówno kabla, jak i modułu. Istotne jest zrozumienie, że końcówki kabli UTP wymagają precyzyjnego kontaktu z pinami w module, co można osiągnąć jedynie przy użyciu narzędzia uderzeniowego, które zapewnia odpowiednią siłę i kąt wprowadzenia żył. Zaciskarka do wtyków RJ45 również nie jest właściwym narzędziem w tym przypadku, ponieważ jest zaprojektowana do pracy z wtyczkami RJ45, a nie z modułami keystone. Właściwa metodologia zakończenia kabli jest kluczowa dla zapewnienia jakości sygnału oraz trwałości instalacji. Użycie niewłaściwego narzędzia może prowadzić do dużych strat w wydajności sieci, a także zwiększać ryzyko awarii, co w kontekście profesjonalnej instalacji jest absolutnie nieakceptowalne. Właściwe narzędzie oraz technika są zatem fundamentem efektywnej i niezawodnej infrastruktury sieciowej.

Pytanie 24

Jakie urządzenie w sieci lokalnej NIE ROZDZIELA obszaru sieci komputerowej na domeny kolizyjne?

A. Przełącznik
B. Koncentrator
C. Router
D. Most
Router, most i przełącznik to urządzenia, które mają na celu efektywniejsze zarządzanie ruchem w sieci lokalnej. Router działa na warstwie trzeciej modelu OSI, co pozwala mu na trasowanie pakietów między różnymi sieciami i segmentami. W przeciwieństwie do koncentratora, router nie tylko przekazuje dane, ale również dokonuje analizy adresów IP, co skutkuje podziałem sieci na różne domeny kolizyjne. Mosty, działające na warstwie drugiej, również segmentują ruch, filtrując dane w oparciu o adresy MAC, co zmniejsza liczbę kolizji w sieci. Z kolei przełączniki, mające również warstwę drugą, operują na zasadzie przekazywania danych tylko do określonego portu, co znacznie minimalizuje ryzyko kolizji. Wiele osób może mylić te urządzenia z koncentratorami, myśląc, że wszystkie działają w ten sam sposób. Kluczowym błędem jest przekonanie, że każde urządzenie w sieci lokalnej funkcjonuje na tym samym poziomie i nie wprowadza różnic w zarządzaniu ruchem. Zrozumienie różnic pomiędzy tymi urządzeniami jest istotne, aby projektować i zarządzać efektywnymi sieciami komputerowymi, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 25

Na 16 bitach możemy przechować

A. 32767 wartości
B. 32768 wartości
C. 65535 wartości
D. 65536 wartości
Wybór 65535 wartości jako poprawnej odpowiedzi opiera się na błędnym założeniu, że liczba wartości możliwych do zapisania w systemie binarnym jest redukowana o jeden. Często wynika to z mylnego postrzegania, że zakres wartości liczbowych powinien być obliczany jako 'maksymalna wartość minus jeden'. To podejście jest stosowane w przypadku, gdy mówimy o liczbach całkowitych bez znaku, gdzie maksymalna wartość 16-bitowa wynosi 65535. Jednakże ważne jest, aby zrozumieć, że w kontekście liczby reprezentacji bitów, 16-bitowy system binarny w rzeczywistości może reprezentować 65536 wartości, obejmując zakres od 0 do 65535. Podobnie, odpowiedzi 32767 i 32768 opierają się na błędnym rozumieniu zarówno liczb całkowitych z znakiem, jak i bez znaku. W przypadku liczb całkowitych z znakiem, zakres 16-bitowy wynosi od -32768 do 32767, co może wprowadzać w błąd. Użytkownicy często mylą interpretacje zakresów dla różnych typów danych, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że gdy pytanie dotyczy liczby możliwych kombinacji bitów, kluczowe jest odniesienie do potęg liczby 2, co jest praktyką standardową w teorii informacji i informatyce. Systemy komputerowe i programowanie wymagają precyzyjnego zrozumienia takich koncepcji, aby skutecznie zarządzać danymi i uniknąć typowych błędów w logice programowania.

Pytanie 26

Na rysunku przedstawiono schemat ethernetowego połączenia niekrosowanych, ośmiopinowych złączy 8P8C. Jaką nazwę nosi ten schemat?

Ilustracja do pytania
A. T568D
B. T568C
C. T568B
D. T568A
Warianty inne niż T568B oraz T568A są mniej znane lub nieistniejące w powszechnym użyciu, co może prowadzić do błędnych założeń. Błędna koncepcja, że T568C lub T568D mogłyby istnieć jako oficjalne standardy, wynika z nieporozumienia. T568A i T568B to jedyne dwa uznane standardy definiowane przez przepisy EIA/TIA-568. T568A, choć podobny w strukturze do T568B, różni się kolejnością przewodów, co może prowadzić do problemów z kompatybilnością, jeśli różne standardy są używane po obu stronach kabla. Często początkujący technicy przyjmują, że istnieją dodatkowe standardy odpowiadające innym literom alfabetu, co nie ma miejsca w oficjalnych dokumentacjach. Zrozumienie i stosowanie właściwego standardu, szczególnie w kontekście dopasowywania do istniejącej infrastruktury, jest kluczowe dla uniknięcia problemów z przesyłem danych i zapewnienia wysokiej jakości sygnału. Praktyki te są niezbędne w tworzeniu niezawodnych sieci lokalnych i szerokopasmowych, gdzie błędne okablowanie może skutkować znacznie obniżoną wydajnością sieci lub całkowitą utratą połączenia. Technicy powinni być dobrze zaznajomieni z istniejącymi standardami, aby odpowiednio projektować i diagnozować sieci komputerowe, zapewniając ich optymalne funkcjonowanie.

Pytanie 27

Na diagramie blokowym karty dźwiękowej komponent odpowiedzialny za konwersję sygnału analogowego na cyfrowy jest oznaczony numerem

Ilustracja do pytania
A. 5
B. 3
C. 2
D. 4
Na schemacie blokowym karty dźwiękowej, każda z cyfr oznacza różne elementy, które pełnią specyficzne funkcje. Cyfra 2 odnosi się do procesora sygnałowego DSP, który zajmuje się obróbką sygnałów audio. DSP jest stosowany do wykonywania operacji takich jak filtracja, korekcja dźwięku czy zastosowanie efektów dźwiękowych. Mimo że DSP jest sercem wielu operacji na sygnale, kluczowym elementem konwersji sygnału z analogu na cyfrowy jest przetwornik A/C, oznaczony cyfrą 4. Cyfra 5 oznacza przetwornik cyfrowo-analogowy C/A, który realizuje odwrotny proces do A/C, konwertując sygnały cyfrowe na analogowe, co jest niezbędne do odtwarzania dźwięku przez głośniki. Cyfra 3 oznacza syntezator FM, który generuje dźwięki za pomocą modulacji częstotliwości, co było częstym rozwiązaniem w starszych kartach dźwiękowych do generowania dźwięków muzycznych. Typowe błędy w interpretacji schematów wynikają z braku zrozumienia roli poszczególnych komponentów i ich symboli. W kontekście przetwarzania sygnałów audio, kluczowe jest rozpoznawanie komponentów odpowiedzialnych za określone etapy przetwarzania sygnału, co pozwala na właściwe diagnozowanie i rozwiązywanie problemów w systemach dźwiękowych.

Pytanie 28

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. karty sieciowej
B. dysku twardego
C. pamięci operacyjnej
D. układu graficznego
Analizując inne opcje odpowiedzi, można zauważyć, że każda z nich odnosi się do różnych komponentów sprzętowych, które nie mają związku z przedstawionym wynikiem diagnostycznym. Karta graficzna jest odpowiedzialna za rendering grafiki i nie jest bezpośrednio związana z operacjami odczytu danych z dysku twardego. Jej wydajność mierzy się zazwyczaj w klatkach na sekundę (FPS) w kontekście gier lub w operacjach związanych z przetwarzaniem obrazu. Z kolei karta sieciowa zajmuje się transmisją danych w sieci komputerowej, co również nie ma związku z wydajnością odczytu danych z dysku. W kontekście tego pytania, karta sieciowa mierzy wydajność w Mbps lub Gbps, co również nie odnosi się do przedstawionego wyniku. Pamięć RAM z kolei odpowiada za przechowywanie danych operacyjnych dla procesora, a nie za odczyt danych z dysku. Jej działanie można diagnozować przy pomocy innych narzędzi i metryk, takich jak czas dostępu, przepustowość lub wykorzystanie pamięci, ale nie jest to związane z operacjami odczytu z dysku twardego. Typowym błędem myślowym jest mylenie funkcji tych komponentów oraz ich wpływu na wydajność całego systemu. Zrozumienie, że każdy z tych elementów ma swoją specyfikę i odpowiada za różne aspekty działania komputera, jest kluczowe dla analizy wyników diagnostycznych.

Pytanie 29

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. dwójkowym
B. szesnastkowym
C. ósemkowym
D. dziesiętnym
Wybór innych systemów liczbowych jako reprezentacji adresu IP 172.16.0.1 może prowadzić do nieporozumień dotyczących interpretacji danych. System ósemkowy, oparty na liczbach od 0 do 7, nie jest używany do przedstawiania adresów IP, ponieważ jego zakres ogranicza możliwość bezpośredniego odwzorowania wartości oktetów, które mieszczą się w zakresie 0-255. Takie podejście może prowadzić do błędów w konfiguracji i identyfikacji urządzeń w sieci. Z kolei system szesnastkowy, w którym liczby są przedstawiane za pomocą cyfr 0-9 oraz liter A-F, jest stosowany głównie w kontekście reprezentacji danych binarnych w bardziej skondensowanej formie, ale nie jest standardem w adresowaniu IPv4. Użytkownicy mogą pomylić ten system z adresowaniem w protokołach, które używają notacji szesnastkowej do reprezentowania adresów MAC. System dwójkowy, z kolei, chociaż fundamentalny w kontekście działania komputerów, nie jest używany w codziennej pracy związanej z adresowaniem IP, gdyż jego zapis byłby zbyt skomplikowany i mało czytelny. Powszechnym błędem jest mylenie różnych systemów liczbowych, co wynika z braku zrozumienia ich zastosowania. W praktyce, znajomość i umiejętność poprawnej interpretacji adresów IP w systemie dziesiętnym jest kluczowa dla skutecznego zarządzania sieciami komputerowymi.

Pytanie 30

Program WinRaR zaprezentował okno informacyjne widoczne na ilustracji. Jakiego rodzaju licencji na program używał do tej pory użytkownik?

Ilustracja do pytania
A. Program typu Shareware
B. Program typu Freeware
C. Program typu Adware
D. Program typu Public Domain
Program WinRAR jest przykładem oprogramowania typu Shareware co oznacza że można go używać przez określony czas za darmo po czym użytkownik jest zobowiązany do wykupienia licencji lub zaprzestania korzystania z programu. Shareware to metoda dystrybucji oprogramowania gdzie użytkownicy mogą testować program przed podjęciem decyzji o zakupie pełnej wersji. W praktyce oznacza to że użytkownik ma możliwość oceny funkcjonalności i użyteczności programu co jest korzystne z punktu widzenia decyzji zakupowej. WinRAR daje 40-dniowy okres próbny co jest typowe dla tego typu licencji. Po upływie tego czasu program przypomina o konieczności zakupu licencji co można zobaczyć w wyświetlonym oknie dialogowym. Shareware jest popularny wśród twórców oprogramowania ponieważ pozwala na szeroką dystrybucję i promocję produktów przy jednoczesnym zabezpieczeniu finansowym dla autorów poprzez późniejsze opłaty licencyjne. Standardy branżowe zalecają informowanie użytkowników o końcu okresu próbnego oraz zapewnienie łatwego procesu zakupu co WinRAR spełnia poprzez przyciski w oknie informacyjnym.

Pytanie 31

Jaką maksymalną liczbę hostów można przypisać w lokalnej sieci, dysponując jedną klasą C adresów IPv4?

A. 255
B. 512
C. 254
D. 510
Maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem adresów klasy C, często bywa niewłaściwie interpretowana. Odpowiedzi 512, 510, oraz 255 sugerują, że liczby te mogą być uznawane za poprawne w kontekście bloków adresów IP. Warto jednak zrozumieć, że adres klas C z maską 255.255.255.0 pozwala na 256 adresów IP. Wiele osób myli liczbę adresów dostępnych dla hostów z ogólną liczbą adresów IP w danym bloku. Adres sieci i adres rozgłoszeniowy są zarezerwowane i nie mogą być przypisane urządzeniom, co znacząco wpływa na dostępność adresów. Odpowiedzi, które sugerują liczbę 255, pomijają fakt, że adres rozgłoszeniowy również musi być uwzględniony jako niewykorzystany. Propozycja 510 odnosi się do nieprawidłowego zrozumienia adresacji IP, gdzie ktoś mógłby pomyśleć, że dwa adresy można by jakoś 'przywrócić' lub zarządzać nimi w sposób, który narusza zasady przydzielania adresów IP. Natomiast 512 jest absolutnie niepoprawne, gdyż liczba ta przekracza całkowitą liczbę adresów IP dostępnych w bloku klasy C. Kwestia właściwego zrozumienia struktury adresowania IPv4 jest kluczowa dla projektowania i zarządzania sieciami, a stosowanie się do standardów i dobrych praktyk jest niezbędne dla zapewnienia prawidłowego funkcjonowania infrastruktury sieciowej.

Pytanie 32

Zestaw komputerowy, który został przedstawiony, jest niepełny. Który z elementów nie został wymieniony w tabeli, a jest kluczowy dla prawidłowego funkcjonowania zestawu?

Lp.Nazwa podzespołu
1.Zalman Obudowa R1 Midi Tower bez PSU, USB 3.0
2.Gigabyte GA-H110M-S2H, Realtek ALC887, DualDDR4-2133, SATA3, HDMI, DVI, D-Sub, LGA1151, mATX
3.Intel Core i5-6400, Quad Core, 2.70GHz, 6MB, LGA1151, 14nm, 65W, Intel HD Graphics, VGA, BOX
4.Patriot Signature DDR4 2x4GB 2133MHz
5.Seagate BarraCuda, 3.5", 1TB, SATA/600, 7200RPM, 64MB cache
6.LG SuperMulti SATA DVD+/-R24x,DVD+RW6x,DVD+R DL 8x, bare bulk (czarny)
7.Gembird Bezprzewodowy Zestaw Klawiatura i Mysz
8.Monitor Iiyama E2083HSD-B1 19.5inch, TN, HD+, DVI, głośniki
9.Microsoft OEM Win Home 10 64Bit Polish 1pk DVD

A. Wentylator procesora
B. Pamięć RAM
C. Karta graficzna
D. Zasilacz
Zestaw komputerowy wymaga do swojego działania kilku kluczowych komponentów, ale nie wszystkie elementy są równie niezbędne w podstawowej konfiguracji. Pamięć RAM, choć istotna dla wydajności systemu, nie jest elementem, który można pominąć w kontekście podstawowego uruchomienia komputera. Podobnie, karta graficzna jest wymagana tylko w sytuacjach, gdy komputer jest używany do zaawansowanych aplikacji graficznych lub gier, ale większość nowoczesnych procesorów posiada zintegrowane układy graficzne, które pozwalają na podstawowe użycie komputera. Wentylator procesora, choć zalecany, szczególnie dla utrzymania optymalnej temperatury procesora i zapewnienia jego długowieczności, nie jest absolutnie niezbędny do samego uruchomienia systemu komputerowego, pod warunkiem, że procesor nie osiągnie krytycznych temperatur. Typowy błąd myślowy polega na nieświadomym ignorowaniu roli zasilacza, ponieważ jest on mniej widoczny na poziomie użytkownika niż na przykład karta graficzna czy układ chłodzenia. Zasilacz jest jednak nieodzowny, ponieważ bez niego żaden inny komponent nie będzie mógł działać. To on zasila komputer, dostarczając niezbędną energię do funkcjonowania wszystkich komponentów, a jego brak uniemożliwia jakiekolwiek operacje, nawet te najbardziej podstawowe, jak uruchomienie systemu operacyjnego.

Pytanie 33

W systemach Windows XP Pro/ Windows Vista Bizness/Windows 7 Pro/Windows 8 Pro, rozwiązaniem zapewniającym poufność danych dla użytkowników korzystających z jednego komputera, których informacje mogą być wykorzystywane wyłącznie przez nich, jest

A. ręczne przypisywanie plikom atrybutu: zaszyfrowany
B. korzystanie z prywatnych kont z ograniczeniami
C. ręczne przypisywanie plikom atrybutu: ukryty
D. korzystanie z prywatnych kont z uprawnieniami administratora
Wybór opcji związanej z korzystaniem z własnych kont z ograniczeniami, przypisywaniem plikom atrybutu "ukryty" czy "zaszyfrowany", czy też korzystanie z kont z uprawnieniami administratora, nie zapewnia odpowiedniego poziomu poufności danych w kontekście opisanym w pytaniu. Konta z ograniczeniami mogą ograniczać dostęp do niektórych funkcji systemowych, ale nie zabezpieczają danych przed innymi użytkownikami, którzy mogą mieć dostęp do systemu. Przypisanie plikom atrybutu "ukryty" jedynie sprawia, że pliki nie są widoczne w standardowych ustawieniach eksploratora, co nie chroni ich przed dostępem, a jedynie przed przypadkowym usunięciem czy modyfikacją. W kontekście bezpieczeństwa danych, to podejście jest niewystarczające, ponieważ każdy użytkownik z odpowiednią wiedzą może łatwo zmienić ustawienia, aby zobaczyć ukryte pliki. Natomiast przypisanie atrybutu "zaszyfrowany" jest kluczowe, ale może być mylone z innymi atrybutami, które nie oferują rzeczywistej ochrony. Użytkowanie kont z uprawnieniami administratora stwarza dodatkowe ryzyko, ponieważ administratorzy mają pełny dostęp do wszystkich plików, co może prowadzić do niezamierzonych naruszeń prywatności. W praktyce, najlepsze metody zarządzania poufnością danych obejmują stosowanie silnych mechanizmów szyfrowania oraz polityk dotyczących dostępu, co nie jest zapewnione przez te inne metody.

Pytanie 34

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od lokalnego punktu dystrybucyjnego do gniazda abonenckiego wynosi 10m. Jaki będzie przybliżony koszt zakupu kabla UTP kategorii 5e do utworzenia sieci lokalnej, jeśli cena brutto za 1m kabla UTP kategorii 5e wynosi 1,60 zł?

A. 80,00 zł
B. 320,00 zł
C. 160,00 zł
D. 800,00 zł
Wybór niepoprawnej odpowiedzi może wynikać z kilku błędów logicznych w obliczeniach lub niepełnego zrozumienia zadania. Na przykład, jeśli ktoś odpowiedział 80,00 zł, mógł założyć, że potrzeba mniej kabla, co może być efektem pominięcia właściwego przeliczenia liczby gniazd abonenckich na długość kabla. W rzeczywistości, nie wystarczy pomnożyć jedynie liczby gniazd przez odległość, ponieważ każde gniazdo wymaga połączenia z centralnym punktem dystrybucyjnym, co wymusza na nas uwzględnienie pełnej długości kabla dla każdego gniazda. Inna niepoprawna odpowiedź, jak 320,00 zł, również może sugerować błędne założenia dotyczące liczby żył wymaganych do połączenia gniazd. Kabel UTP kategorii 5e, znany ze swojej wszechstronności i wydajności, ma swoje limity w kontekście długości połączeń, które mogą wpłynąć na jakość sygnału. Ponadto, podstawowe błędy w obliczeniach mogą prowadzić do nieodpowiedniego zaplanowania instalacji, co może skutkować dodatkowymi kosztami związanymi z zakupem materiałów oraz ich instalacją. Dlatego kluczowe jest staranne podejście do wszelkich zagadnień związanych z infrastrukturą sieciową oraz przemyślane obliczenia, które opierają się na rzeczywistych potrzebach i dobrych praktykach branżowych w zakresie projektowania sieci.

Pytanie 35

Która z poniższych topologii sieciowych charakteryzuje się centralnym węzłem, do którego podłączone są wszystkie inne urządzenia?

A. Gwiazda
B. Drzewo
C. Siatka
D. Pierścień
Topologia gwiazdy to jedna z najczęściej stosowanych struktur w sieciach komputerowych. W tej topologii wszystkie urządzenia są podłączone do jednego centralnego węzła, którym może być na przykład switch lub hub. Dzięki temu każde urządzenie komunikuje się bezpośrednio z centralnym punktem, co upraszcza zarządzanie siecią i diagnozowanie problemów. Główną zaletą takiej topologii jest to, że awaria jednego z urządzeń nie wpływa na działanie pozostałych, a uszkodzenie jednego kabla nie powoduje odłączania całej sieci. Jest to również elastyczne rozwiązanie, które pozwala na łatwe dodawanie nowych urządzeń bez zakłócania pracy sieci. Dodatkowo, centralizacja zarządzania przepływem danych umożliwia efektywne monitorowanie ruchu sieciowego i implementację polityk bezpieczeństwa. Praktyczne zastosowanie topologii gwiazdy można znaleźć w wielu nowoczesnych biurach i domach, gdzie centralny router lub switch łączy wszystkie urządzenia sieciowe, zapewniając im dostęp do internetu i umożliwiając łatwą komunikację między nimi. To wszystko razem sprawia, że topologia gwiazdy jest bardzo popularna i powszechnie stosowana w praktyce.

Pytanie 36

Aby wymusić na użytkownikach lokalnych systemów z rodziny Windows Server regularną zmianę haseł oraz stosowanie haseł o odpowiedniej długości, które spełniają kryteria złożoności, należy ustawić

A. konta użytkowników w Ustawieniach
B. zasady blokady konta w zasadach grupowych
C. zasady haseł w lokalnych zasadach zabezpieczeń
D. parametry konta użytkownika w narzędziu zarządzania komputerem
Odpowiedź "zasady haseł w zasadach zabezpieczeń lokalnych" jest poprawna, ponieważ to w tym miejscu można skonfigurować wymogi dotyczące złożoności haseł oraz okresowej zmiany haseł dla kont użytkowników w systemach Windows Server. Umożliwia to administratorom kontrolowanie polityki haseł, co jest kluczowym elementem zabezpieczeń w środowiskach IT. Przykładowo, można ustalić minimalną długość hasła, wymusić użycie znaków specjalnych, cyfr oraz wielkich liter, co znacząco zwiększa odporność na ataki brute-force. W dobrych praktykach bezpieczeństwa IT, takich jak standardy NIST, podkreśla się znaczenie silnych haseł oraz regularnej ich zmiany. Dzięki odpowiednim ustawieniom w zasadach zabezpieczeń lokalnych można również wprowadzić blokady konta po kilku nieudanych próbach logowania, co dodatkowo zwiększa bezpieczeństwo. To podejście jest zgodne z politykami bezpieczeństwa wielu organizacji, które mają na celu minimalizację ryzyka naruszeń danych.

Pytanie 37

Jakie polecenie w systemie Linux pozwala na wyświetlenie informacji o bieżącej godzinie, czasie pracy systemu oraz liczbie użytkowników zalogowanych do systemu?

A. history
B. chmod
C. uptime
D. echo
Polecenie 'chmod' jest używane do zmiany uprawnień plików i katalogów w systemie Linux. Jego funkcjonalność jest kluczowa w kontekście bezpieczeństwa systemu, ponieważ pozwala administratorom na precyzyjne zarządzanie, kto może odczytać, zapisać lub wykonywać dany plik. Jednakże, nie ma to nic wspólnego z wyświetlaniem informacji o czasie działania systemu czy liczbie zalogowanych użytkowników. Zrozumienie roli 'chmod' jest istotne, ale w kontekście tego pytania, nie jest odpowiednie. Z kolei polecenie 'history' służy do wyświetlania historii wcześniej wykonanych poleceń w terminalu. Chociaż to narzędzie jest przydatne do śledzenia działań użytkownika, nie dostarcza informacji o czasie działania systemu czy liczbie zalogowanych osób. Warto zauważyć, że błędne wskazanie 'history' może wynikać z nieporozumienia co do funkcji, jakie pełnią różne polecenia w Linuxie. Ostatnią z wymienionych opcji jest 'echo', które po prostu wyświetla tekst w terminalu, ale również nie ma związku z monitorowaniem czasu czy użytkowników systemu. Rozumienie tych narzędzi i ich właściwych zastosowań jest kluczowe dla efektywnego zarządzania systemami Linux, a ich mieszanie prowadzi do błędnych wniosków i może powodować problemy w codziennym użytkowaniu.

Pytanie 38

Skrypt o nazwie wykonaj w systemie Linux zawiera: echo -n "To jest pewien parametr " echo $? Wykonanie poleceń znajdujących się w pliku spowoduje wyświetlenie podanego tekstu oraz

A. listy wszystkich parametrów
B. stanu ostatniego wykonanego polecenia
C. numeru procesu aktualnie działającej powłoki
D. numeru procesu, który był ostatnio uruchomiony w tle
Wybór odpowiedzi, która odnosi się do numeru procesu ostatnio wykonywanego w tle, jest niepoprawny, ponieważ '$?' nie zwraca tej informacji. W systemie Linux, aby uzyskać identyfikator procesu (PID) ostatnio wykonywanego polecenia w tle, należałoby użyć '$!', które zwraca PID ostatniego procesu uruchomionego w tle. Podobnie, odpowiedź wskazująca na numer procesu aktualnie wykonywanej powłoki jest myląca, ponieważ powłoka nie zwraca swojego własnego PID przez '$?'. Również pojęcie listy wszystkich parametrów jest dalekie od rzeczywistości, gdyż '$?' nie ma związku z parametrami przekazywanymi do skryptu czy funkcji. Zrozumienie tych podstawowych różnic jest kluczowe, gdyż błędne użycie zmiennych powłokowych może prowadzić do nieefektywnych skryptów i trudności w ich debugowaniu. W kontekście pisania skryptów, ważne jest, aby precyzyjnie rozumieć, co dany symbol oznacza i jakie informacje można z jego użyciem uzyskać. Często programiści początkujący mylą te zmienne, co prowadzi do nieporozumień i błędów w logicznej konstrukcji skryptów. Warto również zapoznać się z dokumentacją, aby lepiej zrozumieć, jak działają polecenia w powłoce bash i jakie mają zastosowanie w praktyce.

Pytanie 39

Która norma odnosi się do okablowania strukturalnego?

A. EIA/TIA 568A
B. TDC-061-0506-S
C. ZN-96/TP
D. BN-76/8984-09
Wybór innych norm, takich jak ZN-96/TP, BN-76/8984-09 czy TDC-061-0506-S, może wydawać się sensowny, jednak każda z tych norm nie odnosi się bezpośrednio do kwestii okablowania strukturalnego w kontekście sieci telekomunikacyjnych. ZN-96/TP to norma dotycząca telekomunikacji, jednak nie specyfikuje ona szczegółowych wymagań dotyczących okablowania strukturalnego, co jest kluczowe dla prawidłowego działania systemów komunikacyjnych. BN-76/8984-09 jest normą, która odnosi się bardziej do aspektów technicznych związanych z instalacjami elektrycznymi, a nie bezpośrednio do standardów okablowania sieciowego. TDC-061-0506-S, z kolei, jest normą związaną z telekomunikacją, ale nie dostarcza jasnych wytycznych dotyczących strukturalnego okablowania, które zapewnia integralność i wydajność sieci. Typowym błędem w takim przypadku jest mylenie ogólnych norm telekomunikacyjnych z tymi, które precyzyjnie definiują zasady układania kabli oraz ich zastosowania w kontekście okablowania strukturalnego. Zrozumienie różnicy między tymi normami jest kluczowe dla prawidłowego projektowania i wdrażania systemów telekomunikacyjnych, które muszą spełniać najwyższe standardy jakościowe.

Pytanie 40

Jak nazywa się kod kontrolny, który służy do wykrywania błędów oraz potwierdzania poprawności danych odbieranych przez stację końcową?

A. CNC
B. CRC
C. IRC
D. CAT
Kod CRC, czyli Cyclic Redundancy Check, to naprawdę ważny element w komunikacji i przechowywaniu danych. Działa jak strażnik, który sprawdza, czy wszystko jest na swoim miejscu. Kiedy przesyłasz dane, CRC robi obliczenia, żeby upewnić się, że to, co wysłałeś, jest tym samym, co dotarło na miejsce. Jeśli coś jest nie tak, to znaczy, że wystąpił jakiś błąd podczas przesyłania. Jest to niezbędne w różnych aplikacjach, jak np. Ethernet czy USB, gdzie błędy mogą być naprawdę niebezpieczne. Co ciekawe, standardy takie jak IEEE 802.3 mówią, jak dokładnie powinno to działać. W praktyce CRC robi świetną robotę w wykrywaniu błędów, co ma kluczowe znaczenie w systemach, które wymagają niezawodnych danych.