Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2025 09:19
  • Data zakończenia: 21 lutego 2025 09:55

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. osuszyć z nadmiaru wody
B. odprowadzić bezpośrednio do ścieków
C. przefiltrować przy użyciu węgla aktywnego
D. oczyścić z resztek oleju
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (255)10
B. (254)10
C. (230)10
D. (231)10
Podczas rozwiązywania tego typu zadań kluczowe jest zrozumienie, jak działa konwersja między systemami liczbowymi. Odpowiedzi, które nie prowadzą do wyniku (231)10, mogą wynikać z błędów w obliczeniach lub mylnych założeń. Na przykład, zinterpretowanie wartości binarnej jako reprezentacji w innym systemie liczbowym, takim jak dziesiętny, bez odpowiedniego przeliczenia, prowadzi do niepoprawnych wyników. Zwracając uwagę na odpowiedzi (230)10, (255)10 oraz (254)10, widzimy, że każdy z tych wyników różni się od prawidłowego w istotny sposób. Może to być skutkiem pomyłki w dodawaniu wartości poszczególnych bitów lub pominięcia niektórych z nich. Na przykład, w przypadku odpowiedzi na (255)10, można zauważyć, że osoba rozwiązująca pytanie mogła nie uwzględnić, że wszystkie bity są w rzeczywistości aktywne i interpretuje samą ilość bitów 1 jako maksymalną wartość 8-bitowego systemu binarnego, co daje 255. Wartości te są krytyczne w kontekście projektowania systemów cyfrowych, gdzie precyzyjna konwersja wartości jest niezbędna do prawidłowego działania urządzeń. Dlatego tak ważne jest, aby szczegółowo zrozumieć proces konwersji i zastosować go w praktyce, aby unikać tych powszechnych pułapek myślowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Manometr, reduktor, smarownica, filtr powietrza
B. Smarownica, manometr, reduktor, filtr powietrza
C. Reduktor, manometr, filtr powietrza, smarownica
D. Filtr powietrza, manometr, reduktor, smarownica
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Dynamometrycznego
C. Płaskiego
D. Imbusowego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. montażu
B. obróbki
C. oględzin
D. pomiarów
W ocenie stanu technicznego podzespołów mechanicznych kluczowe jest zrozumienie, że każdy etap procesu diagnostycznego ma swoje miejsce i znaczenie. Rozpoczęcie od obróbki, pomiarów czy montażu jest niepoprawne, ponieważ te działania zakładają wcześniejsze zweryfikowanie ogólnego stanu urządzenia. Obróbka podzespołów, na przykład, odbywa się zazwyczaj po stwierdzeniu, że są one w odpowiednim stanie do dalszych działań. Pomiar, z kolei, bez uprzednich oględzin, może prowadzić do niepoprawnych wniosków, gdyż istotne niedoskonałości mogą zniekształcać wyniki. Montaż zestawów mechanicznych bez wcześniejszej analizy stanu podzespołów może skutkować niewłaściwym działaniem finalnego produktu, co jest niezwykle kosztowne i czasochłonne w naprawie. W praktyce inżynierskiej istotne jest stosowanie metodologii, które zaczynają się od detekcji widocznych problemów, co wpływa na efektywność całego procesu oceny i konserwacji. Prawidłowe podejście do diagnostyki jest kluczowe dla zapewnienia długotrwałej żywotności i niezawodności podzespołów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W rezystancyjnych termometrach (oporowych) wykorzystuje się zjawisko związane ze zmianą

A. wielkości elementu aktywnego pod wpływem temperatury
B. rezystywności metali oraz półprzewodników w odpowiedzi na ciśnienie
C. rezystancji metali albo półprzewodników przy zmianach temperatury
D. napięcia na końcówkach termoelementu podczas zmian temperatury
W termometrach rezystancyjnych wykorzystuje się zjawisko zmiany rezystancji materiałów, takich jak metale czy półprzewodniki, w odpowiedzi na zmiany temperatury. Zjawisko to jest oparte na właściwościach elektrycznych zastosowanych materiałów, które determinują ich rezystywność. Przykładowo, w przypadku platyny, która jest najczęściej stosowanym materiałem w termometrach rezystancyjnych, rezystancja rośnie proporcjonalnie do temperatury. Tego typu termometry są szeroko stosowane w laboratoriach oraz przemyśle, ponieważ zapewniają wysoką dokładność i stabilność pomiarów. W praktyce wykorzystuje się je w różnych zastosowaniach, od monitorowania procesów chemicznych po kontrolę temperatury w systemach HVAC. Normy i standardy, takie jak IEC 60751, określają klasyfikacje i wymagania dla termometrów rezystancyjnych, co zapewnia ich niezawodność i spójność w pomiarach. Zrozumienie zjawiska rezystancji jako funkcji temperatury jest kluczowe dla efektywnego wykorzystania tych urządzeń w różnych aplikacjach.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie jest zastosowanie transoptora?

A. galwanicznej izolacji obwodów
B. zamiany impulsów elektrycznych na promieniowanie świetlne
C. galwanicznego połączenia obwodów
D. sygnalizacji transmisji
Wybór odpowiedzi dotyczącej sygnalizacji transmisji, galwanicznego połączenia obwodów lub zamiany impulsów elektrycznych na promieniowanie świetlne odzwierciedla zrozumienie, które pomija fundamentalne zasady działania transoptorów. Transoptory, jako urządzenia przeznaczone do izolacji galwanicznej, nie mają zastosowania w sygnalizacji transmisji, co sugeruje, że mogą one pośredniczyć w przesyłaniu sygnałów bez izolacji, co jest błędne. Galwaniczne połączenie obwodów jest sprzeczne z główną funkcją transoptora, ponieważ jego celem jest stworzenie izolacji, a nie bezpośredniego połączenia, co może prowadzić do uszkodzeń sprzętu. Ponadto, transoptory nie zamieniają impulsów elektrycznych na promieniowanie świetlne w kontekście ich funkcji; zamiast tego przekształcają sygnały elektryczne w sygnały optyczne, ale nie pełnią roli w generowaniu promieniowania świetlnego. Takie nieporozumienia mogą wynikać z niewłaściwego zrozumienia podstawowych funkcji tych komponentów. Kluczowe jest zrozumienie, że transoptory są projektowane z myślą o ochronie obwodów przed niepożądanymi wpływami zewnętrznymi, co czyni je niezastąpionymi w nowoczesnych aplikacjach elektronicznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Podłączyć prądnicę na krótko do pracy silnikowej
B. Odwrócić kierunek prędkości obrotowej na przeciwny
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Zwiększyć opór w obwodzie wzbudzenia
Zmiana kierunku prędkości obrotowej na przeciwny nie wprowadzi żadnych korzyści w kontekście wzbudzenia prądnicy. W rzeczywistości, aby prądnica mogła wytwarzać prąd, wirnik musi obracać się w określonym kierunku, który jest zgodny z kierunkiem, w którym została zaprojektowana. Obrót w przeciwnym kierunku może prowadzić do dalszych problemów z generowaniem magnetyzmu i nie spowoduje automatycznego wzbudzenia urządzenia. Zwiększenie rezystancji w obwodzie wzbudzenia również jest niewłaściwym rozwiązaniem, ponieważ wysoka rezystancja zmniejsza przepływ prądu, co uniemożliwia skuteczne wzbudzenie maszyny. W obwodzie wzbudzenia powinno się dążyć do minimalizowania oporów, aby zapewnić odpowiednią ilość prądu wzbudzenia. Zmiana podłączenia w obwodzie wzbudzenia, choć teoretycznie mogłaby pomóc w niektórych konfiguracjach, w praktyce nie rozwiązuje problemu utraty magnetyzmu. Niewłaściwe podłączenie może wręcz pogorszyć sytuację, prowadząc do braku wzbudzenia. Typowe błędy myślowe w tym kontekście obejmują nieporozumienie dotyczące zasad działania prądnic oraz niewłaściwe podejście do analizy ich stanu technicznego. Kluczowym aspektem w sytuacji utraty magnetyzmu jest zastosowanie metody, która pozwoli na chwilowe uruchomienie prądnicy z zewnętrznym źródłem mocy, co skutecznie przywróci jej zdolność do wzbudzania się.

Pytanie 28

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. piezoelektryczne
B. magnotorezystancji (Gaussa)
C. magnetooptyczne (Faradaya)
D. zwane efektem Dopplera
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 29

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy poniżej rany
B. założyć poszkodowanemu opatrunek uciskowy na ranę
C. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Pomiar napięcia sygnału przesyłanego
B. Weryfikacja sumy kontrolnej
C. Cykliczna redundancja
D. Sprawdzanie parzystości
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Rurka Bourdona stanowi część

A. reduktora ciśnienia
B. manometru
C. filtru powietrza
D. smarownicy
Wybór elementów takich jak smarowniczki, filtry powietrza czy reduktory ciśnienia, wskazuje na pewne nieporozumienia dotyczące funkcji i budowy tych urządzeń. Smarowniczki są używane do dostarczania smaru do różnych mechanizmów, co jest całkowicie odmienną funkcją niż pomiar ciśnienia, który realizuje manometr. Filtry powietrza mają na celu oczyszczanie powietrza z zanieczyszczeń, co również nie ma związku z pomiarem ciśnienia. Z kolei reduktory ciśnienia służą do obniżania ciśnienia gazu do pożądanego poziomu, a ich działanie opiera się na innych zasadach niż te stosowane w manometrach. Typowym błędem myślowym przy wyborze nieprawidłowej odpowiedzi jest mylenie funkcji pomiarowych i regulacyjnych. Warto zauważyć, że każda z tych urządzeń ma swoje specyficzne zastosowanie, ale nie pełni funkcji pomiaru ciśnienia, co jest kluczowe dla zrozumienia roli rurki Bourdona w manometrach. Ostatecznie, zrozumienie różnic pomiędzy tymi elementami jest niezbędne dla właściwego doboru urządzeń w procesach technologicznych i industrialnych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. TTT - trzy osie prostoliniowe
B. RRR - trzy osie obrotowe
C. RTT - jedną oś obrotową i dwie osie prostoliniowe
D. RRT - dwie osie obrotowe i jedną oś prostoliniową
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość obrotową
B. prędkość liniową
C. naprężenia mechaniczne
D. napięcie elektryczne
Pomiar naprężeń mechanicznych, napięcia elektrycznego oraz prędkości liniowej nie są właściwymi zastosowaniami dla prądnicy tachometrycznej, co może prowadzić do nieporozumień w zrozumieniu jej funkcji. Naprężenia mechaniczne zwykle mierzy się za pomocą tensometrów, które są zaprojektowane do bezpośredniego pomiaru deformacji ciała stałego pod wpływem sił zewnętrznych. Z kolei napięcie elektryczne można mierzyć za pomocą woltomierzy, które oferują różne metody pomiaru, w tym pomiar kontaktowy oraz bezkontaktowy w zależności od zastosowania. Prędkość liniowa natomiast, odnosząca się do ruchu prostoliniowego, wymaga zastosowania innych typów czujników, takich jak enkodery liniowe czy tachometry liniowe, które są zaprojektowane do pomiaru ruchu w jednym kierunku z zachowaniem precyzji. Typowe błędy w podejściu do zrozumienia działania prądnic tachometrycznych wynikają z mylenia pojęć związanych z różnymi typami pomiarów. Użytkownicy mogą sądzić, że prądnica tachometryczna jest wszechstronnym narzędziem pomiarowym, jednak jej funkcja ogranicza się wyłącznie do pomiaru prędkości obrotowej. Dlatego kluczowe jest zrozumienie specyfiki urządzenia oraz jego rzeczywistych zastosowań w kontekście pomiarów inżynieryjnych.