Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 13:15
  • Data zakończenia: 7 kwietnia 2025 13:43

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YDY 3 x 1,5 mm2
B. YTDY 4 x 0,75 mm2
C. YDY 2 x 1,5 mm2
D. YTDY 2 x 0,75 mm2
Wybór innych przewodów, takich jak YTDY 2 x 0,75 mm2, YDY 2 x 1,5 mm2 lub YTDY 4 x 0,75 mm2, wiąże się z istotnymi problemami technicznymi. Przewód YTDY 2 x 0,75 mm2 jest zbyt cienki i niedostatecznie wydajny do obsługi transformatora, co może prowadzić do przeciążenia i przegrzania, a w konsekwencji do awarii. Przekrój 0,75 mm2 nie spełnia wymagań dotyczących bezpieczeństwa i wydajności w takich instalacjach. Z kolei YDY 2 x 1,5 mm2, mimo że posiada odpowiedni przekrój, ma tylko dwie żyły, co nie jest wystarczające do zasilania transformatora z odpowiednią stabilnością i bezpieczeństwem. Zastosowanie przewodu YTDY 4 x 0,75 mm2, mimo że ma cztery żyły, wciąż pozostaje niewłaściwe ze względu na zbyt mały przekrój żył, co może prowadzić do zbyt wysokiego oporu elektrycznego i strat energii. W przypadku systemów alarmowych, które muszą działać niezawodnie, kluczowe jest stosowanie przewodów, które nie tylko spełniają normy techniczne, ale także zapewniają odpowiednią ochronę i niezawodność w trudnych warunkach operacyjnych. Wszelkie niewłaściwe decyzje dotyczące doboru przewodów mogą prowadzić do awarii systemu, co może zagrażać bezpieczeństwu użytkowników. Dlatego zawsze należy kierować się zasadami dostosowania przekroju przewodu do obciążenia oraz wymaganiami normatywnymi.

Pytanie 2

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Skrócenie przewodu oraz obniżenie jego rezystancji
B. Skrócenie przewodu oraz podwyższenie jego rezystancji
C. Wydłużenie przewodu oraz obniżenie jego rezystancji
D. Wydłużenie przewodu oraz podwyższenie jego rezystancji
Jasne, wpływ temperatury na przewody miedziane to dość skomplikowany temat. Niektórzy mogą myśleć, że jak się temperatura podnosi, to przewody się skracają, ale to jest zupełnie nieprawda. Miedź się wydłuża, a nie kurczy, gdy się ją podgrzewa. Często też ludzie myślą, że rezystancja spada, gdy temperatura rośnie, ale to błąd. W rzeczywistości rezystancja miedzianych przewodników rośnie z ciepłem, co może być problematyczne przy doborze odpowiednich komponentów. Jeśli tego nie zrozumiesz, to możesz źle dobrać przewody i to może prowadzić do przegrzewania się instalacji czy nawet pożaru. Normy takie jak IEC 60364 mówią, jak powinno się projektować instalacje, więc warto mieć to na uwadze, żeby uniknąć kłopotów.

Pytanie 3

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
B. pamięć podręczna cache procesora jest uszkodzona.
C. wystąpił problem z sumą kontrolną BIOS-u.
D. pamięć CMOS nie została ustawiona.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 4

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. czujki PIR.
B. kamery CCTV.
C. dekodera DVB-T.
D. odbiornika telewizyjnego.
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 5

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. zaniku napięcia
B. wyładowań atmosferycznych
C. przeciążenia instalacji elektrycznej
D. przepięć w sieci energetycznej
Wybór odpowiedzi wskazujących na inne przyczyny, takie jak wyładowania atmosferyczne, zanik napięcia czy przepięcia w sieci energetycznej, nie uwzględnia specyfiki działania wyłącznika nadmiarowoprądowego. Wyładowania atmosferyczne są zjawiskiem naturalnym, które wpływa na sieć zasilającą, jednak główną rolą wyłącznika nadmiarowoprądowego jest ochrona przed nadmiernym prądem, a nie bezpośrednio przed skutkami wyładowań atmosferycznych. W takich przypadkach stosuje się inne urządzenia, jak np. odgromniki, które są zaprojektowane do ochrony instalacji przed przepięciami związanymi z burzami. Zanik napięcia to inny problem, który dotyczy przerwy w dostawie energii, ale wyłącznik nadmiarowoprądowy nie jest przeznaczony do monitorowania ani zarządzania tym zjawiskiem. Z kolei przepięcia w sieci energetycznej, wynikające z nagłych skoków napięcia, również wymagają zastosowania odmiennych rozwiązań, takich jak ograniczniki przepięć. W efekcie, wybór tych odpowiedzi może wynikać z niepełnego zrozumienia działania poszczególnych urządzeń zabezpieczających instalacje elektryczne. Aby zapewnić bezpieczeństwo i niezawodność działania systemu elektrycznego, konieczne jest stosowanie odpowiednich zabezpieczeń zgodnie z normami oraz zasadami inżynieryjnymi, w tym prawidłowe dobieranie urządzeń do specyficznych zagrożeń związanych z daną instalacją.

Pytanie 6

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
B. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
C. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
D. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze
Użycie sztucznego podgrzewania lub schładzania układów scalonych oraz obserwacja obrazu na ekranie nie jest efektywną ani standardową metodą diagnostyki uszkodzeń. Takie podejścia mogą prowadzić do błędnych wniosków, ponieważ zmiany temperatury mogą wprowadzać sztuczne efekty, które niekoniecznie odzwierciedlają rzeczywisty stan układu w warunkach operacyjnych. Na przykład, podgrzewanie komponentów może chwilowo poprawić ich działanie, co prowadzi do mylnego wrażenia, że układ jest sprawny, podczas gdy w rzeczywistości problemy wynikają z uszkodzenia połączeń lub wadliwej konstrukcji. Z kolei techniki oparte na porównywaniu wyników przy wyłączonym odbiorniku nie dostarczają informacji o dynamice sygnałów w czasie rzeczywistym, co jest kluczowe w diagnostyce elektronicznej. Właściwym podejściem jest zrozumienie, że układy scalone muszą być analizowane w warunkach, w których działają, co jest zgodne z dobrą praktyką branżową. Stosowanie nieodpowiednich metod diagnostycznych może prowadzić do kosztownych błędów, takich jak wymiana sprawnych komponentów lub ignorowanie ukrytych usterek. Właściwe metody diagnostyki uwzględniają pomiar napięć i oscylogramów w rzeczywistych warunkach pracy, co jest kluczowe dla skutecznej naprawy.

Pytanie 7

Jakie będzie całkowity koszt naprawy odbiornika telewizyjnego, jeżeli czas pracy wynosił 2 godziny, koszt materiałów to 100 zł, a stawka za godzinę pracy technika wynosi 80 zł?

A. 196 zł
B. 260 zł
C. 212 zł
D. 212 zł
Aby obliczyć całkowity koszt naprawy odbiornika telewizyjnego, należy zsumować koszt pracy serwisanta oraz koszt materiałów. W tym przypadku czas naprawy wynosił 2 godziny, a stawka godzinowa serwisanta to 80 zł. Zatem koszt pracy wynosi: 2 godziny * 80 zł/godz. = 160 zł. Koszt materiałów wynosi 100 zł. Całkowity koszt naprawy to: 160 zł (koszt pracy) + 100 zł (koszt materiałów) = 260 zł. Takie podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają szczegółowe rozliczenie kosztów robocizny oraz materiałów, aby klient miał pełną transparentność wydatków. W przypadku napraw sprzętu elektronicznego, istotne jest także uwzględnienie dodatkowych kosztów, takich jak dojazd serwisanta, jeśli jest to wymagane. Praktyka ta pomaga utrzymać zaufanie klientów oraz zapewnia rzetelność w rozliczeniach.

Pytanie 8

Wybierz z podanych parametrów sygnałów, które poziomy sygnałów analogowych są wykorzystywane w systemach automatyki przemysłowej do transmisji danych?

A. 4 mA ÷ 20 mA
B. 4 mV ÷ 20 mV
C. 4 A ÷ 20 A
D. 4 V ÷ 20 V
Poziomy sygnałów 4 mA ÷ 20 mA są standardem w systemach automatyki przemysłowej, znanym jako sygnał prądowy. Jest to powszechnie stosowany zakres dla czujników i urządzeń pomiarowych, które komunikują się z systemami sterującymi. Wykorzystanie tego standardu jest zgodne z normą IEC 60381-1, która definiuje zasady dotyczące sygnałów analogowych w automatyce. Prąd 4 mA reprezentuje minimalny poziom sygnału, podczas gdy 20 mA to maksymalny poziom. Taki zakres daje możliwość wykrycia awarii w obwodzie, ponieważ sygnał opada poniżej 4 mA, co sygnalizuje problem z urządzeniem. Przykładowo, w systemach monitorowania temperatury, czujnik może wysyłać sygnał prądowy w tym zakresie do kontrolera, umożliwiając precyzyjne zarządzanie procesem. W zastosowaniach przemysłowych, takich jak automatyka procesowa, wykorzystanie sygnałów 4 mA ÷ 20 mA pozwala na efektywne przesyłanie informacji przy minimalnych zakłóceniach i długich odległościach, co czyni tę metodę niezawodną i efektywną.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 6
B. 4
C. 2
D. 8
Wybór niewłaściwej liczby żył do podłączenia czujnika ruchu jest powszechnym problemem, który wynika z misunderstandingu dotyczącego funkcji poszczególnych żył. Wiele osób myśli, że czujnik ruchu może działać na dwóch lub czterech żyłach, co jest nieprawidłowe w kontekście urządzeń z wejściem antysabotażowym. Odpowiedzi sugerujące mniejszą liczbę żył nie uwzględniają kluczowych funkcji, takich jak zasilanie oraz monitorowanie sabotażu, które są niezbędne do zapewnienia pełnej funkcjonalności. Użycie tylko dwóch żył ogranicza możliwości czujnika do prostego zasilania, co uniemożliwia mu komunikację z systemem alarmowym oraz nie pozwala na wykrywanie prób jego usunięcia lub manipulacji. Natomiast wybór czterech żył nie pokrywa się z wymaganiami dla urządzeń z antysabotem, które wymagają dodatkowych obwodów zabezpieczających. Warto podkreślić, że standardy branżowe, takie jak EN 50131, wyraźnie wskazują na potrzebę stosowania odpowiedniej liczby żył, aby zapewnić niezawodność systemów zabezpieczeń. W związku z tym, wybierając niewłaściwą liczbę żył, można narażać system na poważne luki w bezpieczeństwie, co w praktyce może prowadzić do nieefektywnej ochrony obiektów.

Pytanie 15

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. porażenia prądem elektrycznym
B. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
C. wyładowania elektrostatycznego groźnego dla układów typu MOS
D. wpływu pola magnetycznego na organizm ludzki
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.

Pytanie 16

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji Rx=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,09 Ω
B. Rx = 10,06 Ω
C. Rx = 10,03 Ω
D. Rx = 10,00 Ω
Odpowiedź Rx = 10,00 Ω jest prawidłowa, ponieważ wartość ta znajduje się poza dopuszczalnym zakresem błędu pomiarowego określonego przez normę. Zgodnie z danymi, rezystancja Rx powinna wynosić 10,06 Ω z tolerancją ±0,03 Ω, co oznacza, że akceptowalne wartości rezystancji mieszczą się w przedziale od 10,03 Ω do 10,09 Ω. Wartość 10,00 Ω jest poniżej dolnej granicy normy, co czyni ją niezgodną z wymaganiami. W praktyce, takie pomiary są istotne w kontekście zapewnienia jakości produktów elektronicznych, gdzie każda jednostka musi spełniać określone specyfikacje. Normy takie jak IEC 60068-2-6 dostarczają wytycznych dotyczących testowania i określania tolerancji, co jest kluczowe w procesach produkcyjnych. Właściwe zrozumienie tolerancji w pomiarach rezystancji jest niezbędne do analizy i oceny właściwości materiałów oraz zapewnienia ich niezawodności w zastosowaniach inżynieryjnych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. RJ-45
B. BNC
C. DIN
D. JACK
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 19

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyrównać
B. zmniejszyć
C. wyzerować
D. zwiększyć
Odpowiedzi sugerujące wyrównanie, zmniejszenie lub wyzerowanie odstępu S/N wskazują na niezrozumienie tego, jak funkcjonuje proces przetwarzania obrazu w trudnych warunkach oświetleniowych. Wyrównanie odstępu S/N nie przynosi realnych korzyści, ponieważ nie poprawia on efektywności przetwarzania sygnału. W rzeczywistości, aby uzyskać lepsze rezultaty w warunkach niskiego oświetlenia, odstęp S/N musi być zwiększony, co oznacza, że sygnał musi być wyraźnie silniejszy od szumów. Zmniejszenie S/N prowadziłoby do jeszcze większych zakłóceń w obrazie, co skutkowałoby jego pogorszeniem. W przypadku wyzerowania S/N mówimy o całkowitym braku użytecznego sygnału, co jest całkowicie nieakceptowalne w kontekście tworzenia obrazów. Często pojawiające się błędne myślenie polega na założeniu, że można obejść niską jakość obrazu poprzez jakiekolwiek inne działania, co jest mylne. W rzeczywistości podstawową techniką w poprawie jakości obrazu jest optymalizacja sygnału, co jasno wskazuje, że wysokie wartości S/N są niezbędne do uzyskania jakości, która jest akceptowalna w zastosowaniach profesjonalnych.

Pytanie 20

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. SINGLE
B. X - Y
C. ADD
D. DUAL
Wybór trybu X - Y w oscyloskopie dwukanałowym jest kluczowy dla analizy sygnałów za pomocą krzywych Lissajous. W tym trybie sygnał z kanału CH-A jest przedstawiany na osi Y, a sygnał z kanału CH-B na osi X, co pozwala na bezpośrednie porównanie obu sygnałów. Krzywe Lissajous są wykorzystywane do wizualizacji relacji częstotliwości i fazy między dwoma sygnałami. Jeżeli częstotliwości obu sygnałów są zbliżone, na ekranie oscyloskopu pojawi się charakterystyczny kształt krzywej, którego geometria pozwala na określenie stosunku częstotliwości sygnałów. Na przykład, jeśli sygnał badany w CH-A ma częstotliwość 2 razy większą niż sygnał w CH-B, to na oscyloskopie zobaczymy kształt przypominający elipsę. To podejście jest powszechnie stosowane w praktyce inżynieryjnej, szczególnie w dziedzinach takich jak telekomunikacja i elektronika, gdzie precyzyjna analiza sygnałów jest niezbędna. Poprawna interpretacja krzywych Lissajous wymaga znajomości relacji między częstotliwościami oraz umiejętności ich analizy, co jest istotnym aspektem pracy z oscyloskopem.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
B. poziom sygnału przesyłanego przez stację czołową do abonentów
C. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
D. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
Wszystkie pozostałe odpowiedzi opierają się na niepoprawnych założeniach dotyczących monitorowania jakości sygnału. Poziom sygnału wysyłanego przez stację czołową do abonentów, mimo że istotny, nie odzwierciedla rzeczywistej jakości sygnału odbieranego przez użytkowników. Sygnał może być właściwie nadawany, ale różne czynniki, takie jak tłumienie sygnału w kablu czy zakłócenia, mogą wpływać na jego jakość w gniazdach abonenckich. Z kolei poziom sygnału wizyjnego w gniazdach abonenckich jest również ważny, ale nie dostarcza pełnego obrazu jakości sygnału, ponieważ nie uwzględnia szumów, które mogą występować w kanale zwrotnym. Współczynnik szumów w sygnale wysyłanym przez stację czołową do abonentów jest również niewłaściwym podejściem, ponieważ nie odzwierciedla lokalnych warunków odbioru sygnału, a jedynie jakość nadawanego sygnału. Istotne jest, aby operatorzy telewizyjni zwracali uwagę na konkretne warunki pracy kanałów, wiedząc, że kanał zwrotny dostarcza informacji o ewentualnych problemach, takich jak zakłócenia w sygnale czy problemy z urządzeniami końcowymi. W związku z tym, zrozumienie i monitorowanie współczynnika szumów w kanale zwrotnym jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Rejestruje działanie sieci
B. Kontroluje pracę siłownika
C. Wizualizuje procesy przemysłowe
D. Przekształca sygnał z czujnika
Wybór odpowiedzi, która zakłada, że przetwornik rejestruje pracę sieci, jest błędny, ponieważ nie jest to funkcja przypisana do przetworników. Rejestracja pracy sieci to zadanie dla innych urządzeń, takich jak rejestratory danych lub systemy SCADA, które mają za zadanie monitorować i archiwizować informacje o stanie sieci. Przetworniki natomiast koncentrują się na konwersji sygnałów, a nie na ich dokumentacji. Kolejne nieporozumienie dotyczy roli przetwornika jako urządzenia sterującego siłownikami. Stanowisko to jest zarezerwowane dla kontrolerów lub regulatorów, które podejmują decyzje o aktywacji siłowników na podstawie przetworzonych danych. Siłowniki mogą być aktywowane na podstawie sygnałów generowanych przez systemy automatyki, ale to nie przetwornik pełni tę funkcję. Wizualizacja procesów przemysłowych to zadanie dla interfejsów użytkownika i systemów HMI, które przekształcają dane z różnych źródeł, w tym z przetworników, w przystępną formę graficzną. Dlatego kluczowe jest zrozumienie, że każda z tych funkcji jest realizowana przez różne urządzenia w ekosystemie automatyki, a przetwornik jest tylko jednym z elementów, który przekształca i nie wykonuje zadań rejestracyjnych, sterujących ani wizualizacyjnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik tensometryczny
B. Czujnik hallotronowy
C. Czujnik magnetyczny
D. Czujnik pojemnościowy
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 31

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. światłowodach
B. matrycach LED RGB
C. matrycach LCD
D. ogniwach fotowoltaicznych
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 32

Jakie urządzenie służy do mierzenia ciśnienia?

A. luksomierz
B. tachometr
C. manometr
D. pirometr
Luksomierz, tachometr i pirometr to urządzenia pomiarowe, które mają inne zastosowania niż pomiar ciśnienia. Luksomierz jest używany do pomiaru natężenia oświetlenia, co jest istotne w kontekście projektowania oświetlenia oraz ergonomii pracy. Użycie luksomierza w niewłaściwym kontekście, takim jak pomiar ciśnienia, prowadzi do błędów w analizie warunków środowiskowych, co może wpłynąć na jakość produktów oraz bezpieczeństwo pracy. Tachometr mierzy prędkość obrotową obiektów, co jest kluczowe w monitorowaniu i kontrolowaniu maszyn w różnych zastosowaniach przemysłowych oraz motoryzacyjnych. Pomiar ciśnienia za pomocą tachometru byłby nieadekwatny, ponieważ nie odzwierciedla on rzeczywistych warunków ciśnieniowych w systemie. Pirometr to narzędzie służące do pomiaru temperatury obiektów na podstawie promieniowania cieplnego, co czyni go narzędziem nieodpowiednim do pomiaru ciśnienia. Błędem jest myślenie, że każde urządzenie pomiarowe może być stosowane zamiennie, co podkreśla znaczenie wiedzy na temat specyficznych funkcji różnych typów mierników. Prawidłowe zrozumienie zastosowania tych narzędzi jest kluczowe dla bezpieczeństwa i efektywności w różnych branżach.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W instrukcji uruchomienia urządzenia znalazło się polecenie: "....dostroić obwód rezonansowy trymerem do częstotliwości....". Jakie jest inne określenie na trymer?

A. cewki regulowanej
B. filtru z regulowaną indukcyjnością
C. kondensatora dostrojczego
D. potencjometru
Kondensator dostrojczy, często nazywany trymerem, jest elementem elektronicznym, który pozwala na precyzyjne dostrajanie obwodów rezonansowych, szczególnie w aplikacjach radiowych i audio. Umożliwia on zmianę pojemności w sposób, który wpływa na częstotliwość rezonansową obwodu LC (cewka-kondensator). Przykładowo, w urządzeniach odbiorczych, takich jak radia, dostrajanie za pomocą kondensatora dostrojczego pozwala na selekcję konkretnej stacji radiowej poprzez precyzyjne ustawienie częstotliwości. W standardach projektowania obwodów analogowych, korzystanie z kondensatorów dostrojczych jest powszechną praktyką, związaną z zapewnieniem stabilności i dokładności w działaniu urządzeń. W kontekście inżynierii RF (radiofrekwencyjnej), poprawne dostrojenie obwodu rezonansowego jest kluczowe dla optymalizacji wydajności sygnałów oraz minimalizacji zakłóceń, co jest istotne dla jakości odbioru sygnałów radiowych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 200 W
B. 800 W
C. 100 W
D. 400 W
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. C.
B. A.
C. B.
D. D.
Poprawna odpowiedź to D, ponieważ spełnia wymogi logicznej funkcji F(abc). Aby funkcja przyjęła wartość "1", musimy mieć a=1, b̅=1 (co oznacza, że b=0) oraz c=1. Oznacza to, że dla kombinacji D (a=1, b=0, c=1) wszystkie warunki są spełnione, co daje wynik mnożenia logicznego równy 1. W praktycznych zastosowaniach wiedza o funkcjach logicznych jest kluczowa w inżynierii cyfrowej, szczególnie w projektowaniu układów przełączających w systemach elektronicznych. Na przykład, układy te są często wykorzystywane w systemach automatyki przemysłowej, gdzie odpowiednie sygnały muszą być ze sobą skorelowane, aby aktywować określone urządzenia. Przestrzeganie standardów takich jak IEC 61131-3 jest istotne, aby zapewnić spójność i niezawodność operacyjną w układach programowalnych. W związku z tym, zrozumienie tego zagadnienia jest niezbędne dla każdego inżyniera pracującego w dziedzinie automatyki i elektroniki.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.