Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 09:50
  • Data zakończenia: 7 kwietnia 2025 10:27

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zdalnie i jednocześnie bezpiecznie zarządzać systemem Linux, należy zastosować protokół

A. Telnet
B. SMTP
C. FTP
D. SSH2
SSH2 (Secure Shell 2) jest protokołem, który umożliwia bezpieczne zdalne logowanie oraz administrowanie systemami operacyjnymi opartymi na Linuxie. Zapewnia szyfrowanie przesyłanych danych, co chroni je przed podsłuchiwaniem i manipulacją. Dzięki użyciu SSH2, administratorzy mogą bezpiecznie łączyć się z serwerami, zdalnie wydawać polecenia i zarządzać systemem bez obaw o utratę poufnych informacji. Przykładowe zastosowanie SSH2 obejmuje zdalne aktualizacje systemu, monitorowanie stanu serwera, a także transfer plików za pomocą SFTP (SSH File Transfer Protocol). W praktyce, każdy serwer Linux powinien być skonfigurowany do akceptacji połączeń SSH2, aby zapewnić zarówno bezpieczeństwo, jak i wygodę w zdalnym zarządzaniu. Użycie SSH2 jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa IT, które zalecają szyfrowanie wszystkich połączeń zdalnych. Z tego powodu, SSH2 jest powszechnie uznawany za standard w zabezpieczonym dostępie do systemów zdalnych.

Pytanie 2

Który adres IP posiada maskę w postaci pełnej, zgodną z klasą adresu?

A. 140.16.5.18, 255.255.255.0
B. 180.12.56.1, 255.255.0.0
C. 118.202.15.6, 255.255.0.0
D. 169.12.19.6, 255.255.255.0
Adres IP 180.12.56.1 należy do klasy B, co oznacza, że standardowa maska podsieci dla tej klasy to 255.255.0.0. Klasa B obejmuje adresy IP od 128.0.0.0 do 191.255.255.255, gdzie pierwsze dwa oktety są przeznaczone do identyfikacji sieci, a dwa pozostałe do identyfikacji hostów w tej sieci. Użycie maski 255.255.0.0 dla adresu 180.12.56.1 jest zgodne z tą klasyfikacją i umożliwia utworzenie dużej liczby podsieci oraz hostów. W praktyce, taka konfiguracja jest często wykorzystywana w dużych organizacjach oraz dostawcach usług internetowych, gdzie potrzeba obsługiwać wiele urządzeń w ramach jednej sieci, a zarazem umożliwić łatwe zarządzanie i routing informacji. Zastosowanie pełnej maski klasy B pomaga w optymalizacji ruchu sieciowego oraz przydzielaniu zasobów. W związku z tym, znajomość klas adresów oraz powiązanych z nimi masek jest fundamentem efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 3

Redukcja liczby jedynek w masce pozwoli na zaadresowanie

A. mniejszej liczby sieci oraz mniejszej liczby urządzeń
B. większej liczby sieci oraz większej liczby urządzeń
C. mniejszej liczby sieci oraz większej liczby urządzeń
D. większej liczby sieci oraz mniejszej liczby urządzeń
Przyglądając się pozostałym odpowiedziom, można zauważyć, że kluczowym błędem jest mylenie liczby jedynek w masce sieciowej z liczbą zaadresowanych urządzeń. Odpowiedzi sugerujące, że zmniejszenie liczby jedynek prowadzi do mniejszej liczby urządzeń dotyczą nieporozumienia dotyczącego sposobu działania maski sieciowej. W rzeczywistości, im mniej bitów jest zarezerwowanych dla identyfikacji sieci, tym więcej bitów pozostaje dla hostów, co skutkuje większą liczbą adresów IP dostępnych w tej sieci. Koncepcje te są szczególnie istotne w kontekście projektowania sieci i planowania adresacji IP. Kolejnym powszechnym błędem jest zakładanie, że zmniejszenie liczby jedynek w masce sieciowej sprzyja zwiększeniu liczby sieci. W rzeczywistości, większa liczba bitów przeznaczonych dla części hosta prowadzi do mniejszej liczby dostępnych sieci. Na przykład, w przypadku klasycznego podziału na klasy adresów IP, zwiększenie liczby bitów przeznaczonych dla hostów ogranicza liczbę dostępnych podsieci, co jest niezgodne z zasadami projektowania sieci. Dlatego ważne jest, aby podczas tworzenia planu adresacji IP zrozumieć, jak maski sieciowe wpływają na liczby zarówno sieci, jak i hostów, aby uniknąć nieefektywności i problemów z zarządzaniem ruchem danych.

Pytanie 4

Na ilustracji zaprezentowano układ

Ilustracja do pytania
A. przekierowania portów
B. wirtualnych sieci
C. rezerwacji adresów MAC
D. sieci bezprzewodowej
Wybór niepoprawnych odpowiedzi sugeruje niezrozumienie koncepcji lub zastosowań przedstawionych technologii. Przekierowanie portów dotyczy procesu mapowania numerów portów w sieci lokalnej na inne numery w publicznej przestrzeni adresowej, co jest kluczowe dla konfiguracji routerów i zarządzania dostępem do zasobów sieciowych z zewnątrz. Jest to procedura związana głównie z sieciami NAT i firewallami, a nie z wewnętrzną konfiguracją przełączników sieciowych. Rezerwacja adresów MAC dotyczy przypisywania statycznych adresów IP konkretnym urządzeniom na podstawie ich unikalnych adresów MAC w serwerze DHCP, co zwiększa kontrolę nad zarządzaniem adresacją IP w sieci. Choć jest to praktyka przydatna, nie ma bezpośredniego związku z VLAN-ami przedstawionymi na rysunku. Sieci bezprzewodowe, z kolei, odnoszą się do technologii zapewniających bezprzewodowy dostęp do sieci i nie dotyczą bezpośrednio konfiguracji VLAN-ów w zarządzanych przełącznikach. Typowym błędem jest mylenie technologii bezprzewodowych z konfiguracjami przełączników przewodowych. Wszystkie te elementy są ważne w kontekście całościowego zarządzania siecią, ale nie odnoszą się bezpośrednio do przedstawionej konfiguracji VLAN-ów, która jest fundamentalną techniką zarządzania siecią w nowoczesnych środowiskach IT.

Pytanie 5

Podaj domyślny port używany do przesyłania poleceń w serwerze FTP

A. 20
B. 110
C. 21
D. 25
Port 21 jest domyślnym portem do przekazywania poleceń w protokole FTP (File Transfer Protocol). Protokół ten służy do przesyłania plików między klientem a serwerem w sieci. Protokół FTP działa w modelu klient-serwer, gdzie klient nawiązuje połączenie z serwerem, a port 21 jest używany do inicjowania sesji oraz przesyłania poleceń, takich jak logowanie czy komendy do przesyłania plików. W praktycznych zastosowaniach, gdy użytkownik korzysta z klienta FTP, np. FileZilla lub WinSCP, to właśnie port 21 jest wykorzystywany do połączenia z serwerem FTP. Ponadto, standard RFC 959 precyzuje, że port 21 jest przeznaczony dla komend, podczas gdy port 20 jest używany do transferu danych w trybie aktywnym. Znajomość tych portów i ich funkcji jest kluczowa dla administratorów sieci oraz profesjonalistów zajmujących się bezpieczeństwem, ponieważ niewłaściwe zarządzanie portami może prowadzić do problemów z bezpieczeństwem i nieefektywnością transferu plików.

Pytanie 6

Który z komponentów NIE JEST zgodny z płytą główną MSI A320M Pro-VD-S socket AM4, 1x PCI-Ex16, 2x PCI-Ex1, 4x SATA III, 2x DDR4- max 32 GB, 1x D-SUB, 1x DVI-D, ATX?

A. Karta graficzna Radeon RX 570 PCI-Ex16 4GB 256-bit 1310MHz HDMI, DVI, DP
B. Procesor AMD Ryzen 5 1600, 3.2GHz, s-AM4, 16MB
C. Pamięć RAM Crucial 8GB DDR4 2400MHz Ballistix Sport LT CL16
D. Dysk twardy 500GB M.2 SSD S700 3D NAND
Dysk twardy 500GB M.2 SSD S700 3D NAND nie jest kompatybilny z płytą główną MSI A320M Pro-VD, ponieważ ta płyta obsługuje standardy SATA III oraz PCI-Express, ale nie ma złącza M.2, które jest konieczne do podłączenia dysków SSD w formacie M.2. Płyta główna MSI A320M Pro-VD jest idealnym rozwiązaniem dla budżetowych zestawów komputerowych, które wykorzystują pamięci DDR4 oraz oferuje złącza dla kart rozszerzeń w standardzie PCI-Express. W praktyce, użytkownicy tej płyty głównej mogą korzystać z tradycyjnych dysków SATA III, które są łatwo dostępne na rynku. W przypadku modernizacji, warto zainwestować w dyski SSD SATA III, które znacząco poprawią wydajność systemu operacyjnego oraz czas ładowania aplikacji. Warto również zwrócić uwagę na zgodność z pamięciami RAM DDR4 oraz procesorami z rodziny AMD Ryzen, co czyni tę płytę wszechstronnym wyborem dla różnych zastosowań.

Pytanie 7

Ile bitów zawiera adres MAC karty sieciowej?

A. 16
B. 32
C. 64
D. 48
Zrozumienie, że adres fizyczny MAC karty sieciowej składa się z 48 bitów, jest kluczowe dla efektywnego zarządzania sieciami komputerowymi. Można jednak natknąć się na nieporozumienia dotyczące liczby bitów, które mogą prowadzić do błędnych koncepcji. Odpowiedzi 16, 32, czy 64 bity są nietrafione, ponieważ wprowadzenie błędnych wartości nie tylko zniekształca prawidłowy obraz funkcjonowania adresacji w sieciach, ale także może skutkować nieefektywnym zarządzaniem i bezpieczeństwem w lokalnych sieciach. Adresy MAC, składające się z 48 bitów, zapewniają 281 474 976 710 656 unikalnych identyfikatorów, co jest wystarczające do obsługi ogromnej liczby urządzeń w sieciach lokalnych. W przypadku 16 lub 32 bitów liczba unikalnych adresów byłaby znacznie ograniczona, co w praktyce prowadziłoby do kolizji adresów i problemów z identyfikacją urządzeń. Z kolei 64 bity, choć teoretycznie mogą wydawać się rozsądne w kontekście rozwoju technologii, nie są standardem w obecnie używanych protokołach, co czyni je niepraktycznymi. W konsekwencji, ważne jest, aby opierać się na uznanych standardach, takich jak IEEE 802, które jasno określają, że adresy MAC powinny mieć długość 48 bitów. Prawidłowe zrozumienie tej kwestii pozwala na efektywne projektowanie i zarządzanie infrastrukturą sieciową oraz unikanie typowych pułapek w zakresie konfiguracji i bezpieczeństwa sieci.

Pytanie 8

Jak nazywa się interfejs wewnętrzny w komputerze?

A. IrDA
B. PCMCIA
C. D-SUB
D. AGP
AGP, czyli Accelerated Graphics Port, to interfejs zaprojektowany specjalnie do szybkiej komunikacji między kartą graficzną a płytą główną komputera. Wprowadzenie tego standardu miało na celu zwiększenie wydajności renderowania grafiki, co jest szczególnie istotne w kontekście gier komputerowych oraz aplikacji wymagających intensywnego przetwarzania wizualnego. AGP zapewnia wyższą przepustowość niż wcześniejsze interfejsy, takie jak PCI, co pozwala na szybszy transfer danych. W praktyce oznacza to, że karty graficzne mogły korzystać z większej ilości pamięci i lepiej współpracować z procesorem, co przekładało się na płynniejsze działanie gier i programów graficznych. Standard AGP zyskał popularność w latach 90. i na początku XXI wieku, jednak z czasem został wyparty przez PCI Express, który oferuje jeszcze wyższą wydajność.

Pytanie 9

System S.M.A.R.T jest stworzony do kontrolowania działania i identyfikacji usterek

A. kart rozszerzeń
B. dysków twardych
C. napędów płyt CD/DVD
D. płyty głównej
System S.M.A.R.T to naprawdę fajna technologia, która monitoruje dyski twarde. Dzięki różnym wskaźnikom, jak chociażby temperatura czy ilość błędów, można w miarę wcześnie zauważyć, że coś się dzieje. Na przykład, duża ilość błędów odczytu może oznaczać, że dysk zaczyna mieć problemy z powierzchnią, co w najgorszym przypadku może skończyć się utratą danych. Z własnego doświadczenia wiem, że warto co jakiś czas sprawdzić te wskaźniki, bo to naprawdę pomoże w zarządzaniu danymi i unikaniu niespodzianek. S.M.A.R.T jest super ważny zwłaszcza w miejscach, gdzie dane są na wagę złota, jak serwery czy stacje robocze. Regularne sprawdzanie może znacząco zredukować ryzyko awarii i przestojów, więc nie bagatelizujcie tego tematu!

Pytanie 10

Grupa, w której uprawnienia przypisane członkom mogą dotyczyć tylko tej samej domeny, co nadrzędna grupa lokalna domeny, to grupa

A. lokalna domeny
B. uniwersalna
C. lokalna komputera
D. globalna
Grupa lokalna domeny to typ grupy, w której uprawnienia członków są ograniczone do konkretnej domeny. Oznacza to, że członkowie tej grupy mogą mieć przypisane uprawnienia tylko w obrębie tej samej domeny, co domena nadrzędna grupy. W praktyce, grupy lokalne są często wykorzystywane do zarządzania dostępem do zasobów, takich jak foldery czy aplikacje, w obrębie jednego kontrolera domeny. Na przykład, jeżeli chcemy przyznać dostęp do określonego zasobu jedynie użytkownikom w danej domenie, tworzymy grupę lokalną i dodajemy do niej odpowiednich użytkowników. Z perspektywy bezpieczeństwa i zarządzania, stosowanie grup lokalnych umożliwia precyzyjniejsze kontrolowanie uprawnień oraz zwiększa efektywność administracji. Warto zaznaczyć, że zgodnie z najlepszymi praktykami, używanie grup lokalnych w połączeniu z grupami globalnymi i uniwersalnymi pozwala na elastyczne zarządzanie dostępem w złożonych środowiskach sieciowych.

Pytanie 11

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne tworzenie kopii zapasowych danych na nowo podłączonym nośniku pamięci
B. rozpoznawanie nowo podłączonego urządzenia i automatyczne przydzielanie mu zasobów
C. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
D. automatyczne uruchamianie ostatnio używanej gry
Głównym celem mechanizmu Plug and Play (PnP) jest automatyczne wykrywanie nowo podłączonego sprzętu oraz efektywne przydzielanie mu wymaganych zasobów systemowych, takich jak adresy I/O, przerwania (IRQ) czy kanały DMA. Mechanizm ten znacząco ułatwia użytkownikom instalację urządzeń, eliminując konieczność ręcznego konfigurowania ustawień, co było standardem w starszych systemach operacyjnych. Przykładem zastosowania PnP może być podłączenie drukarki USB do komputera. System operacyjny automatycznie wykrywa urządzenie, instaluje odpowiednie sterowniki oraz konfiguruje zasoby potrzebne do jego poprawnej pracy. Z punktu widzenia dobrych praktyk, mechanizm ten wspiera zasadę ułatwienia użytkowania technologii, a także przyspiesza proces integracji nowych komponentów w infrastrukturze IT. Współczesne systemy operacyjne, takie jak Windows, Linux czy macOS, w pełni wykorzystują możliwości PnP, co świadczy o fundamentalnym znaczeniu tego mechanizmu w zarządzaniu sprzętem komputerowym. Dodatkowo, Plug and Play współczesne standardy, takie jak USB, są zgodne z tym mechanizmem, co pozwala na szeroką interoperacyjność urządzeń.

Pytanie 12

Technologia procesorów z serii Intel Core, wykorzystywana w układach i5, i7 oraz i9, umożliwiająca podniesienie częstotliwości w sytuacji, gdy komputer potrzebuje większej mocy obliczeniowej, to

A. BitLocker
B. Turbo Boost
C. Hyper Threading
D. CrossFire
CrossFire to technologia firmy AMD, która pozwala na łączenie dwóch lub więcej kart graficznych w celu zwiększenia wydajności graficznej. Nie ma ona jednak żadnego związku z procesorami Intel Core ani ich zarządzaniem mocą obliczeniową. Często mylenie CrossFire z funkcjami procesorów wynika z braku zrozumienia różnic między komponentami systemu komputerowego, takimi jak procesory i karty graficzne. BitLocker to usługa szyfrowania dysków w systemach operacyjnych Windows, która ma na celu ochronę danych przed nieautoryzowanym dostępem, a nie zwiększanie wydajności procesora. Pojęcie Hyper Threading odnosi się do technologii wirtualizacji rdzeni w procesorach Intel, co pozwala na lepsze wykorzystanie dostępnych zasobów procesora, ale również nie dotyczy dynamicznego zwiększania taktowania, jak ma to miejsce w przypadku Turbo Boost. Zrozumienie działania tych technologii i ich zastosowań jest kluczowe dla efektywnej optymalizacji systemu komputerowego. Wiele osób popełnia błąd, zakładając, że wszystkie funkcje związane z wydajnością procesora są ze sobą tożsame, podczas gdy każda z nich pełni inną rolę i ma swoje specyficzne zastosowania. Dlatego ważne jest, aby przed podjęciem decyzji dotyczącej hardware'u zrozumieć, jak różne technologie współpracują ze sobą, aby osiągnąć optymalną wydajność systemu.

Pytanie 13

Płyta główna z gniazdem G2 będzie kompatybilna z procesorem

A. AMD Opteron
B. Intel Core i7
C. Intel Pentium 4 EE
D. AMD Trinity
Gniazdo G2, znane również jako LGA 1156, zostało zaprojektowane z myślą o wspieraniu procesorów Intel, a szczególnie serii Core i7. Procesory te charakteryzują się architekturą Nehalem lub Westmere, co zapewnia ich wysoką wydajność oraz wsparcie dla technologii Hyper-Threading i Turbo Boost. Płyta główna z gniazdem G2 może obsługiwać procesory o wysokiej wydajności, co czyni ją idealnym wyborem dla użytkowników wymagających mocy obliczeniowej, na przykład do gier, obróbki wideo czy aplikacji inżynieryjnych. Dzięki tej architekturze, system może jednocześnie obsługiwać wiele wątków, co przyspiesza wykonywanie skomplikowanych zadań. W praktyce, wybierając płytę główną z gniazdem G2 i procesor Intel Core i7, użytkownik może liczyć na stabilność i doskonałą wydajność, co jest zgodne z najlepszymi praktykami w budowie komputerów osobistych.

Pytanie 14

Jaką wartość ma największa liczba 16-bitowa?

A. 65535
B. 32767
C. -32767
D. 65536
Wybór liczb 65536, 32767 lub -32767 jako największej liczby 16-bitowej wskazuje na nieporozumienie dotyczące sposobu, w jaki liczby są reprezentowane w systemach binarnych. 65536 jest jedną z typowych pułapek, w które wpadają osoby, które myślą, że 16-bitowy system może obejmować wszystkie liczby w zakresie od 0 do 65536. W rzeczywistości jednak, w 16-bitowym systemie reprezentacyjnym, posługujemy się 0 do 65535, co pokazuje, że maksymalna wartość jest o jeden niższa niż liczba wszystkich możliwych kombinacji. Liczba 32767 jest połową maksymalnej wartości i dotyczy systemu liczb całkowitych ze znakiem, gdzie zakres wynosi od -32768 do 32767. Z kolei -32767 jest liczbą ujemną, co jest również błędne w kontekście pytania o maksymalną wartość dla 16-bitowego systemu bez znaku. Pojawiające się błędne odpowiedzi często wynikają z nieznajomości zasad reprezentacji liczb w systemach komputerowych oraz z braku zrozumienia różnicy między liczbami ze znakiem a bez znaku. Zrozumienie standardów reprezentacji danych oraz ich ograniczeń jest kluczowe dla programistów i inżynierów oprogramowania, aby prawidłowo projektować aplikacje, które muszą operować na liczbach oraz unikać błędów związanych z przepełnieniem buforów.

Pytanie 15

Jak nazywa się proces dodawania do danych z warstwy aplikacji informacji powiązanych z protokołami funkcjonującymi na różnych poziomach modelu sieciowego?

A. Fragmentacja
B. Enkapsulacja
C. Multipleksacja
D. Dekodowanie
Enkapsulacja to proces, w którym dodatkowe informacje, takie jak nagłówki i stopki, są dodawane do danych na różnych poziomach modelu OSI lub TCP/IP, w celu zapewnienia ich prawidłowej transmisji przez sieć. W praktyce, kiedy aplikacja generuje dane, te dane są najpierw enkapsulowane w warstwie aplikacji, co oznacza dodanie stosownych nagłówków specyficznych dla protokołów, takich jak HTTP czy FTP. Następnie, w warstwie transportowej, mogą być dodawane kolejne informacje, takie jak numery portów, co pozwala na identyfikację usług w systemie. Warto zauważyć, że proces ten jest fundamentalny dla komunikacji sieciowej, jako że pozwala na niezawodne przesyłanie danych pomiędzy urządzeniami, a także na zarządzanie różnymi protokołami i standardami. Przykładowo, w przypadku przesyłania plików przez FTP, dane są najpierw podzielone na segmenty, a następnie enkapsulowane w nagłówki, co umożliwia ich prawidłowe przesłanie i odbiór. Zrozumienie enkapsulacji jest kluczowe, aby móc projektować i analizować efektywne sieci komputerowe oraz implementować odpowiednie protokoły zgodnie z obowiązującymi standardami w branży.

Pytanie 16

Aby naprawić uszkodzony sektor rozruchowy dysku w systemie Windows 7, należy użyć polecenia

A. fixboot /renew
B. bootrec /fixmbr
C. nircmd /standby
D. fixmbr /all
Inne polecenia wymienione w pytaniu są niewłaściwe w kontekście naprawy sektora rozruchowego dysku twardego w systemie Windows 7. Przykładowo, polecenie 'nircmd /standby' nie ma związku z naprawą jakichkolwiek problemów dotyczących rozruchu. Narzędzie nircmd jest używane do wykonywania różnorodnych zadań systemowych, takich jak wprowadzanie systemu w stan wstrzymania, ale nie dotyczy naprawy MBR ani sektora rozruchowego. Z kolei 'fixboot /renew' nie jest poprawnym poleceniem w systemie Windows, ponieważ 'fixboot' jest używane do naprawy sektora rozruchowego, lecz nie ma opcji '/renew'. Użytkownicy mogą się mylić, sądząc, że dodawanie różnych przełączników może zwiększyć skuteczność polecenia, podczas gdy w rzeczywistości użycie niepoprawnych argumentów może prowadzić do błędów. 'fixmbr /all' również jest niepoprawne, ponieważ poprawne polecenie 'fixmbr' nie przyjmuje argumentu '/all'. To nieporozumienie może wynikać z mylnego podejścia do zrozumienia, jak działają polecenia w wierszu poleceń. Kluczowym błędem jest zatem nadmierne skomplikowanie prostych poleceń, co prowadzi do frustracji i niepowodzeń w naprawie systemu. Znajomość poprawnych poleceń oraz ich zastosowań jest fundamentalna dla skutecznej diagnostyki i rozwiązywania problemów związanych z systemem operacyjnym.

Pytanie 17

Na ilustracji pokazano porty karty graficznej. Które złącze jest cyfrowe?

Ilustracja do pytania
A. złącze 1 oraz 2
B. tylko złącze 3
C. tylko złącze 2
D. tylko złącze 1
Złącze numer 1 widoczne na zdjęciu to złącze VGA (Video Graphics Array) które wykorzystuje sygnał analogowy do przesyłania obrazu do monitora. Technologia VGA jest starsza i chociaż była bardzo popularna w przeszłości obecnie jest rzadziej używana ze względu na niższą jakość przesyłanego obrazu w porównaniu do nowszych złączy cyfrowych. Złącze numer 2 przypomina złącze S-Video które również jest analogowe i używane głównie do przesyłu obrazu wideo o niskiej rozdzielczości. Złącze VGA oraz S-Video są mniej efektywne w przesyłaniu obrazu wysokiej jakości ponieważ są podatne na zakłócenia sygnału i ograniczenia rozdzielczości. W przeciwieństwie do nich złącze numer 3 czyli DVI oferuje bezstratny przesył cyfrowego sygnału wideo co eliminuje problemy związane z konwersją sygnału analogowego na cyfrowy. W rezultacie złącza VGA i S-Video nie są preferowanymi rozwiązaniami w nowoczesnych systemach komputerowych gdzie wymagane są wysokiej jakości wyświetlenia. Typowym błędem jest przyjmowanie że każde złącze wideo jest cyfrowe co wprowadza w błąd zwłaszcza w kontekście starszych technologii. Ostatecznie wybór odpowiedniego złącza zależy od wymagań jakości obrazu i kompatybilności z urządzeniami docelowymi.

Pytanie 18

Podczas testowania kabla sieciowego zakończonego wtykami RJ45 przy użyciu diodowego testera okablowania, diody LED zapalały się w odpowiedniej kolejności, z wyjątkiem diod oznaczonych numerami 2 i 3, które świeciły równocześnie na jednostce głównej testera, natomiast na jednostce zdalnej nie świeciły wcale. Jaka mogła być tego przyczyna?

A. Nieciągłość kabla
B. Zwarcie
C. Pary skrzyżowane
D. Pary odwrócone
Wybór innych opcji jako przyczyny problemu z połączeniem w kablu sieciowym nie uwzględnia kluczowych aspektów związanych z zasadami działania kabli oraz standardami okablowania. Pary skrzyżowane są sytuacją, w której żyły przewodów są zamienione miejscami, co może prowadzić do problemów z komunikacją. Jednak w przypadku testera diodowego nie zaobserwujemy, aby diody zapalały się równocześnie dla innych par, co wskazuje, że to nie jest przyczyna problemu. Nieciągłość kabla oznaczałaby, że jedna z żył nie jest połączona, co byłoby widoczne w teście jako brak sygnału, co również nie miało miejsca, gdyż diody zapalały się dla innych par. Pary odwrócone to sytuacja, w której żyły są nieprawidłowo podłączone, ale również nie prowadziłoby to do równoczesnego zapalania się diod na jednostce głównej testera. W przeciwnym razie test wykazałby niesprawność w przesyłaniu sygnału do jednostki zdalnej. Zachowanie diod na testerze jasno wskazuje, że przyczyną problemu jest zwarcie, co prowadzi do mylnych konkluzji w przypadku błędnego wyboru. W praktyce, zrozumienie tych różnic oraz umiejętność diagnozowania problemów jest kluczowe dla efektywnej pracy z sieciami komputerowymi, a także dla zapewnienia ich prawidłowego funkcjonowania zgodnie z powszechnie przyjętymi standardami branżowymi.

Pytanie 19

Rozmiar pliku wynosi 2kB. Jaką wartość to reprezentuje?

A. 2000 bitów
B. 2048 bitów
C. 16384 bity
D. 16000 bitów
Odpowiedzi 2000 bitów oraz 2048 bitów są nieprawidłowe, ponieważ nie opierają się na standardowym przeliczeniu jednostek danych. Odpowiedź 2000 bitów wynika z błędnego zrozumienia koncepcji kilobajta, ponieważ ktoś może błędnie przyjąć, że 1 kB to 1000 bajtów zamiast właściwych 1024 bajtów. Z kolei 2048 bitów wynika z mylenia przeliczenia bajtów z bitami, gdyż nie uwzględnia się, że 1 kB to 1024 bajty, a każdy bajt to 8 bitów. Zatem tak naprawdę 2048 bitów odpowiada 256 bajtom, co nie ma związku z podanym rozmiarem 2 kB. Odpowiedź 16000 bitów również jest błędna, gdyż nie uwzględnia poprawnych przeliczeń, co prowadzi do nieprawidłowych wniosków. Błędy te mogą wynikać z nieaktualnej wiedzy na temat jednostek miary, które są kluczowe w informatyce i technologii komputerowej. Właściwe zrozumienie i przeliczenie bajtów i bitów jest niezbędne do efektywnej pracy z danymi, a także do zrozumienia, jak różne jednostki wpływają na wydajność systemów komputerowych. W praktyce, programiści i inżynierowie IT muszą być świadomi tych przeliczeń, aby podejmować właściwe decyzje dotyczące architektury systemów oraz optymalizacji transferów danych.

Pytanie 20

Jaka liczba hostów może być zaadresowana w podsieci z adresem 192.168.10.0/25?

A. 62
B. 64
C. 126
D. 128
Prawidłowe zrozumienie adresacji IP wymaga rozważenia, jak w rzeczywistości działają maski podsieci. Osoby, które wskazały 64 jako odpowiedź, mogą myśleć, że maska /25 oznacza po prostu podział na 64 adresy. Jednak jest to mylne, ponieważ w rzeczywistości 64 to liczba adresów, która obejmuje zarówno adres sieci, jak i adres rozgłoszeniowy, co oznacza, że nie są to adresy, które mogą być przypisane do urządzeń. Z kolei odpowiedź 128 sugeruje, że wszystkie adresy w podsieci mogą być przypisane do hostów, co również jest nieprawidłowe, gdyż pomija się dwa zarezerwowane adresy. Odpowiedź 62 wynika z błędnego obliczenia ilości dostępnych adresów — możliwe, że ktoś zrealizował odjęcie dodatkowego adresu, co nie jest potrzebne w przypadku standardowego obliczenia. Zrozumienie, że każdy system adresacji IP ma zarezerwowane adresy, jest kluczowe dla prawidłowej konfiguracji i działania sieci komputerowej. Dobre praktyki w zakresie projektowania sieci powinny opierać się na dokładnych obliczeniach oraz znajomości zasad, jakie rządzą przydzielaniem adresów IP, aby unikać typowych pułapek i utrudnień w zarządzaniu siecią.

Pytanie 21

Jaki rodzaj licencji pozwala na swobodne modyfikacje, kopiowanie oraz rozpowszechnianie po dokonaniu dowolnej płatności na rzecz twórcy?

A. shareware
B. donationware
C. postcardware
D. adware
Adware to model dystrybucji oprogramowania, w którym program jest dostarczany użytkownikowi za darmo, ale generuje przychody poprzez wyświetlanie reklam. Często prowadzi to do frustracji użytkowników, ponieważ muszą oni zmagać się z intruzywnymi reklamami, które mogą zakłócać korzystanie z aplikacji. Taki model nie umożliwia użytkownikom modyfikacji czy kopiowania oprogramowania, a jego głównym celem jest generowanie zysku dla twórcy poprzez reklamy. Shareware to kolejny typ licencji, który pozwala na ograniczone korzystanie z programu, zazwyczaj w formie próbnej wersji. Użytkownicy są zachęcani do zakupu pełnej wersji po upływie okresu próbnego. Shareware nie daje jednak swobody w zakresie modyfikacji czy rozpowszechniania oprogramowania, co czyni ten model nieodpowiednim w kontekście pytania. Postcardware to rzadko spotykana forma licencji, w której użytkownik jest zachęcany do wysłania pocztówki do autora w zamian za korzystanie z oprogramowania. Choć jest to podejście nieco kreatywne, nie wiąże się z modyfikacjami ani rozpowszechnianiem oprogramowania. Wspomniane modele licencji często prowadzą do mylnych przekonań, że oprogramowanie może być swobodnie modyfikowane i rozpowszechniane. Kluczowe dla zrozumienia tych typów licencji jest dostrzeganie różnic w zakresie przyznawanych praw, co jest niezbędne dla świadomego korzystania z oprogramowania.

Pytanie 22

Która usługa pozwala na zdalne logowanie do komputerów, wykonywanie poleceń systemowych oraz zarządzanie siecią?

A. NNTP
B. IMAP
C. DNS
D. TELNET
IMAP (Internet Message Access Protocol) jest protokołem wykorzystywanym do zarządzania wiadomościami e-mail na serwerze, co oznacza, że pozwala użytkownikom na dostęp do ich poczty elektronicznej w czasie rzeczywistym, ale nie ma nic wspólnego z logowaniem się na zdalne komputery czy zarządzaniem systemem. Jest to podejście zupełnie nieodpowiednie, gdyż IMAP skupia się jedynie na operacjach związanych z e-mailem, takich jak pobieranie, usuwanie czy organizowanie wiadomości, bez jakiejkolwiek możliwości zdalnej kontroli nad systemem operacyjnym. DNS (Domain Name System) jest z kolei systemem, który tłumaczy nazwy domenowe na adresy IP, a więc również nie oferuje funkcji logowania czy zarządzania komputerami. Jego podstawową rolą jest ułatwienie lokalizacji zasobów w sieci poprzez zapewnienie przyjaznych dla użytkowników nazw. NNTP (Network News Transfer Protocol) jest protokołem przeznaczonym do przesyłania wiadomości w grupach dyskusyjnych, co także nie ma związku z zdalnym dostępem do komputerów. Często mylenie tych protokołów wynika z nieporozumień dotyczących ich funkcji i zastosowań. Wiele osób przypisuje im podobne właściwości, nie rozumiejąc, że każdy z nich jest stworzony dla odmiennych celów i operacji sieciowych. Kluczowym błędem w myśleniu jest zakładanie, że każdy protokół komunikacyjny może pełnić dowolną funkcję, podczas gdy w rzeczywistości każdy z nich ma swoje specyficzne zastosowanie i ograniczenia.

Pytanie 23

AES (ang. Advanced Encryption Standard) to?

A. wykorzystuje symetryczny algorytm szyfrujący
B. nie można go zaimplementować sprzętowo
C. jest poprzednikiem DES (ang. Data Encryption Standard)
D. nie może być używany do szyfrowania plików
Pierwsza z niepoprawnych odpowiedzi sugeruje, że AES jest poprzednikiem DES (Data Encryption Standard). To stwierdzenie jest mylące, ponieważ AES nie jest bezpośrednim następcą DES, lecz zupełnie innym algorytmem, który powstał w odpowiedzi na ograniczenia DES, takie jak jego wrażliwość na ataki brute force z powodu krótkiego klucza (56 bitów). DES został uznany za przestarzały, a AES został wprowadzony jako standard szyfrowania, aby zapewnić wyższy poziom bezpieczeństwa. Kolejna odpowiedź twierdzi, że AES nie może być wykorzystywany przy szyfrowaniu plików, co jest całkowicie nieprawdziwe. W rzeczywistości AES jest bardzo często wykorzystywany do szyfrowania plików w różnych aplikacjach, takich jak oprogramowanie do szyfrowania dysków czy archiwizowania danych. Innym błędnym stwierdzeniem jest to, że AES nie może być zaimplementowany sprzętowo. AES jest szeroko stosowany w sprzętowych modułach bezpieczeństwa (HSM), a także w rozwiązaniach takich jak karty inteligentne. Warto zauważyć, że błędne przekonania mogą wynikać z niezrozumienia różnicy między algorytmem a jego zastosowaniem w różnych kontekstach, co prowadzi do mylnych wniosków dotyczących możliwości i ograniczeń AES.

Pytanie 24

Aby bezpiecznie połączyć się z firmowym serwerem przez Internet i mieć dostęp do zasobów firmy, należy wykorzystać odpowiednie oprogramowanie klienckie

A. WLAN (Wireless Local Area Network)
B. VLAN (Virtual Local Area Network)
C. VPN (Virtual Private Network)
D. NAP (Network Access Protection)
NAP, czyli Network Access Protection, jest technologią, której głównym celem jest ochrona sieci poprzez zapewnienie, że tylko urządzenia spełniające określone kryteria bezpieczeństwa mogą uzyskać dostęp do zasobów sieciowych. Jednak sama technologia NAP nie zapewnia bezpiecznego połączenia, a raczej kontroluje dostęp do sieci na podstawie polityk bezpieczeństwa. W kontekście zdalnego dostępu do zasobów firmowych przez Internet, NAP nie jest wystarczającym rozwiązaniem, ponieważ nie szyfruje danych ani nie tworzy bezpiecznego tunelu komunikacyjnego, co jest kluczowe w przypadku pracy zdalnej. VLAN, czyli Wirtualna Sieć Lokalna, jest technologią, która segreguje ruch w sieci lokalnej, ale również nie ma zastosowania w kontekście bezpiecznego łączenia z siecią firmową przez Internet. VLAN nie oferuje szyfrowania ani nie zabezpiecza połączeń między użytkownikami a serwerami. WLAN, czyli Bezprzewodowa Sieć Lokalna, odnosi się do technologii sieci bezprzewodowych, a jej zastosowanie w pracy zdalnej również nie gwarantuje bezpieczeństwa przesyłanych danych. Użytkownicy mogą błędnie zakładać, że te technologie mogą zapewnić odpowiedni poziom ochrony, jednak kluczowe jest zrozumienie różnicy między kontrolą dostępu a bezpieczeństwem komunikacji. W kontekście zdalnej pracy, właściwym rozwiązaniem jest stosowanie VPN, które łączy w sobie bezpieczeństwo i dostępność zasobów firmowych.

Pytanie 25

Jakie oprogramowanie dostarcza najwięcej informacji diagnostycznych na temat procesora CPU?

A. GPU-Z
B. Memtest86+
C. HD Tune
D. HWiNFO
Wybór innych programów diagnostycznych zamiast HWiNFO wskazuje na nieporozumienie dotyczące ich funkcji i możliwości. GPU-Z, na przykład, jest narzędziem skoncentrowanym na monitorowaniu parametrów karty graficznej, a nie procesora. Choć dostarcza cennych informacji o GPU, takich jak prędkość zegara, temperatura i użycie pamięci, nie jest odpowiednie do analizy wydajności CPU. HD Tune to narzędzie głównie do zarządzania dyskami twardymi, które pozwala na monitorowanie ich zdrowia oraz testowanie wydajności, co jest całkowicie niezwiązane z diagnostyką procesora. Memtest86+ to program do testowania pamięci RAM, który nie oferuje żadnych informacji o CPU, co czyni go nietrafnym wyborem w kontekście tego pytania. Wybór niewłaściwego narzędzia do analizy sprzętu może prowadzić do błędnych wniosków i potencjalnych problemów w diagnostyce. Często użytkownicy myślą, że każdy program diagnostyczny ma uniwersalne zastosowanie, co jest mylnym założeniem. Właściwe zrozumienie funkcji i przeznaczenia narzędzi diagnostycznych jest kluczowe dla efektywnej analizy i rozwiązywania problemów z komputerem. Aby uniknąć takich nieporozumień, warto zapoznać się z dokumentacją i możliwościami poszczególnych programów przed ich użyciem w praktyce.

Pytanie 26

Do pielęgnacji elementów łożyskowych oraz ślizgowych w urządzeniach peryferyjnych wykorzystuje się

A. tetrową ściereczkę
B. smar syntetyczny
C. sprężone powietrze
D. powłokę grafitową
Smar syntetyczny jest właściwym wyborem do konserwacji elementów łożyskowanych oraz ślizgowych w urządzeniach peryferyjnych ze względu na swoje wyjątkowe właściwości smarne oraz stabilność chemiczną. Smary syntetyczne, w przeciwieństwie do smarów mineralnych, charakteryzują się lepszymi właściwościami w wysokich temperaturach, a także odpornością na utlenianie i rozkład, co przekłada się na dłuższy czas eksploatacji. W praktyce smary te są często stosowane w silnikach, przekładniach oraz innych elementach mechanicznych, gdzie występują duże obciążenia i prędkości. Warto także zauważyć, że smar syntetyczny zmniejsza tarcie, co przyczynia się do wydajności energetycznej urządzeń oraz ich niezawodności. Zastosowanie smaru syntetycznego wpływa na zmniejszenie zużycia części, co jest zgodne z najlepszymi praktykami branżowymi, takimi jak normy ISO dotyczące smarowania i konserwacji urządzeń mechanicznych. Z tego względu, regularne stosowanie smaru syntetycznego w odpowiednich aplikacjach jest kluczowe dla utrzymania sprawności i długowieczności urządzeń.

Pytanie 27

Przyczyną niekontrolowanego wypełnienia przestrzeni na dysku może być

A. wirus komputerowy
B. niewłaściwie skonfigurowana pamięć wirtualna
C. częste defragmentowanie
D. zbyt małe jednostki alokacji plików
Częsta defragmentacja nie jest przyczyną niekontrolowanego zapełnienia dysku, lecz praktyką, która ma na celu poprawę wydajności systemu operacyjnego. Defragmentacja polega na reorganizacji danych na dysku twardym, aby pliki były uporządkowane i łatwiejsze do odczytu przez system. Właściwie przeprowadzona defragmentacja może poprawić czas dostępu do plików, ale nie wpływa na ilość wolnego miejsca na dysku. Zbyt małe jednostki alokacji plików mogą powodować nieefektywne wykorzystanie przestrzeni dyskowej, jednak same w sobie nie prowadzą do zapełnienia dysku; mogą jedynie skutkować fragmentacją danych. Wreszcie, źle skonfigurowana pamięć wirtualna może skutkować różnymi problemami z wydajnością systemu, ale nie prowadzi bezpośrednio do zajmowania miejsca na dysku w sposób niekontrolowany. Typowym błędem myślowym jest łączenie różnych problemów związanych z zarządzaniem danymi, co może prowadzić do błędnych interpretacji przyczyn zapełnienia dysku. Aby skutecznie zarządzać przestrzenią dyskową, użytkownicy powinni zwracać uwagę na przyczyny, które rzeczywiście mają wpływ na ilość dostępnego miejsca, takie jak wirusy, nieużywane pliki czy pełne foldery. Wiedza o tym, jak różne aspekty systemu operacyjnego wpływają na zarządzanie danymi, jest kluczowa dla utrzymania stabilności i wydajności komputera.

Pytanie 28

Protokół, który konwertuje nazwy domen na adresy IP, to

A. DNS (Domain Name System)
B. ICMP (Internet Control Message Protocol)
C. DHCP (Dynamic Host Configuration Protocol)
D. ARP (Address Resolution Protocol)
DNS, czyli Domain Name System, jest fundamentalnym protokołem w architekturze internetu, który odpowiedzialny jest za tłumaczenie nazw domenowych, takich jak www.przyklad.pl, na odpowiadające im adresy IP, np. 192.0.2.1. Dzięki temu użytkownicy mogą korzystać z łatwych do zapamiętania nazw, zamiast skomplikowanych numerów IP. W praktyce oznacza to, że gdy wpisujesz adres URL w przeglądarkę, system DNS przesyła zapytanie do serwera DNS, który zwraca właściwy adres IP. Przykładem zastosowania DNS jest rozwiązywanie nazw w usługach webowych, gdzie szybkość i dostępność są kluczowe. Standardy DNS, takie jak RFC 1034 i RFC 1035, regulują zasady działania tego systemu, zapewniając interoperacyjność pomiędzy różnymi systemami oraz bezpieczeństwo komunikacji. Dobre praktyki w konfiguracji DNS obejmują m.in. używanie rekordów CNAME do aliasów, a także implementację DNSSEC dla zwiększenia bezpieczeństwa, co chroni przed atakami typu spoofing.

Pytanie 29

Transmisję danych bezprzewodowo realizuje interfejs

A. DVI
B. HDMI
C. LFH60
D. IrDA
IrDA (Infrared Data Association) to standard bezprzewodowej transmisji danych wykorzystujący podczerwień. Jego główną zaletą jest możliwość wymiany informacji między urządzeniami, takimi jak telefony komórkowe, laptopy czy drukarki, w odległości do kilku metrów. IrDA jest szczególnie ceniona za niskie zużycie energii oraz prostotę wdrożenia, co czyni ją idealnym rozwiązaniem w urządzeniach mobilnych. W praktyce, standard ten był szeroko stosowany w urządzeniach osobistych do przesyłania plików, jak zdjęcia czy kontakty, bez potrzeby stosowania kabli. Jednakże, z biegiem lat, technologia ta została w dużej mierze zastąpiona przez inne metody przesyłania danych, takie jak Bluetooth czy Wi-Fi. Warto zaznaczyć, że IrDA wymaga bezpośredniej linii wzroku między urządzeniami, co może ograniczać jej zastosowanie w niektórych sytuacjach. Mimo to, ze względu na swoją prostotę i efektywność w określonych warunkach, IrDA pozostaje ważnym standardem w historii technologii komunikacyjnej.

Pytanie 30

W komputerze połączonym z Internetem, w oprogramowaniu antywirusowym aktualizację bazy wirusów powinno się przeprowadzać minimum

A. raz dziennie
B. raz do roku
C. raz w miesiącu
D. raz w tygodniu
Zarządzanie bezpieczeństwem systemów komputerowych wymaga świadomego podejścia do aktualizacji programów antywirusowych, a wybór interwałów aktualizacji jest kluczowy. Wybór aktualizacji bazy wirusów raz w miesiącu lub raz do roku stawia system w poważnym niebezpieczeństwie, ponieważ złośliwe oprogramowanie rozwija się w zastraszającym tempie. Nieaktualna baza wirusów może nie wykrywać nowych zagrożeń, co prowadzi do potencjalnych infekcji. Co więcej, w przypadku zaproponowanej odpowiedzi o aktualizacji raz w tygodniu, istnieje znaczne ryzyko, że wirusy lub złośliwe oprogramowanie, które pojawiły się w ciągu tygodnia, nie zostaną zidentyfikowane na czas. Takie podejście opiera się na błędnym przekonaniu, że zagrożenia są stabilne i nie zmieniają się dramatycznie w krótkim okresie, co nie jest zgodne z rzeczywistością. W praktyce, codzienna aktualizacja to najlepsza praktyka, którą zaleca wiele instytucji zajmujących się bezpieczeństwem IT, takich jak CERT. Ignorowanie tych wytycznych może prowadzić do poważnych konsekwencji, w tym utraty danych, kradzieży tożsamości oraz uszkodzenia reputacji firmy lub osoby. Dlatego kluczowe jest wdrożenie strategii, która zapewnia regularne, codzienne aktualizacje, aby zminimalizować ryzyko i skutecznie chronić system przed dynamicznie zmieniającym się krajobrazem zagrożeń.

Pytanie 31

Minimalna ilość pamięci RAM wymagana dla systemu operacyjnego Windows Server 2008 wynosi przynajmniej

A. 512 MB
B. 1,5 GB
C. 1 GB
D. 2 GB
Właściwa odpowiedź to 2 GB, ponieważ Microsoft zaleca, aby system operacyjny Windows Server 2008 miał co najmniej tę ilość pamięci RAM dla podstawowej funkcjonalności. W praktyce, 2 GB RAM to minimalna wielkość, która pozwala na uruchamianie serwera z podstawowymi usługami, takimi jak Active Directory, DNS czy DHCP. Przykładowo, jeśli planujesz hostować na tym serwerze aplikacje lub usługi, które wymagają większej ilości zasobów, warto rozważyć zwiększenie pamięci do 4 GB lub więcej, co będzie miało pozytywny wpływ na wydajność systemu. Standardy branżowe zalecają, aby serwery, w szczególności te działające w środowiskach produkcyjnych, miały odpowiednią ilość pamięci RAM, aby zminimalizować ryzyko przestojów oraz zapewnić efektywne przetwarzanie danych. Pamięć RAM odgrywa kluczową rolę w szybkości działania systemu operacyjnego oraz aplikacji, więc inwestycja w większą ilość RAM jest często uzasadniona w kontekście stabilności i wydajności serwera.

Pytanie 32

Taśma drukująca stanowi kluczowy materiał eksploatacyjny w drukarce

A. termicznej
B. igłowej
C. atramentowej
D. laserowej
Taśma barwiąca jest kluczowym elementem w drukarkach igłowych, które działają na zasadzie mechanicznego uderzania igieł w taśmę, w rezultacie co prowadzi do przeniesienia atramentu na papier. Taśma barwiąca składa się z materiału, który ma zdolność do przenoszenia barwnika na powierzchnię papieru, co jest niezbędne do uzyskania wyraźnego wydruku. W przypadku drukarek igłowych, taśmy te są wykorzystywane w zastosowaniach, gdzie wymagana jest duża wydajność oraz niskie koszty eksploatacji, na przykład w biurach, gdzie drukowane są dokumenty masowo. Dobre praktyki branżowe zalecają stosowanie oryginalnych taśm barwiących, ponieważ zapewniają one lepszą jakość druku oraz dłuższą żywotność urządzenia. Warto również pamiętać, że drukarki igłowe są często wykorzystywane w systemach POS (point of sale), gdzie niezawodność, szybkość i niski koszt eksploatacji są kluczowe. Używanie właściwych materiałów eksploatacyjnych, takich jak taśmy barwiące, jest niezbędne do utrzymania wysokiej jakości i efektywności druku.

Pytanie 33

Jaki typ macierzy dyskowych zapewnia tak zwany mirroring dysków?

A. RAID-5
B. RAID-3
C. RAID-1
D. RAID-0
RAID-1, znany jako mirroring, to technologia macierzy dyskowych, która zapewnia wysoką dostępność danych poprzez duplikację informacji na dwóch lub więcej dyskach. W przypadku jednego z dysków awarii, system może kontynuować pracę, korzystając z kopii zapasowej na drugim dysku, co znacząco podnosi bezpieczeństwo przechowywanych danych. Przykładem zastosowania RAID-1 może być środowisko przedsiębiorcze, gdzie krytyczne dane muszą być dostępne bez przerwy. Dzięki tej technologii, administratorzy mogą minimalizować ryzyko utraty danych oraz zapewnić ciągłość działania systemów informatycznych. Standardowe praktyki zalecają stosowanie RAID-1 w serwerach plików oraz w systemach, gdzie bezpieczeństwo danych jest kluczowe, takich jak bazy danych. Dodatkowo, RAID-1 może być wykorzystywany w połączeniu z innymi poziomami RAID, aby uzyskać dalsze korzyści, jak na przykład RAID-10, który łączy mirroring z podziałem na dyski, oferując jeszcze wyższą wydajność i niezawodność.

Pytanie 34

Element trwale zamontowany, w którym znajduje się zakończenie okablowania strukturalnego poziomego dla abonenta, to

A. punkt konsolidacyjny
B. gniazdo energetyczne
C. gniazdo teleinformatyczne
D. punkt rozdzielczy
Wybór punktu konsolidacyjnego jako odpowiedzi jest mylny, ponieważ termin ten odnosi się do elementu, który służy do łączenia różnych segmentów okablowania w sieci, a nie jako końcowy punkt dostępu dla użytkowników. Punkty konsolidacyjne są zazwyczaj instalowane w bardziej centralnych lokalizacjach systemu okablowania, co pozwala na organizację i zarządzanie kablami w obrębie budynku. Służą one do konsolidacji różnych połączeń i zapewniają elastyczność w przyszłych zmianach w infrastrukturze sieciowej. W kontekście gniazd energetycznych, ich funkcja jest zupełnie inna – służą one do zasilania urządzeń elektrycznych, a nie do przesyłania danych. Błędne założenie, że gniazdo energetyczne może pełnić rolę końcowego punktu okablowania strukturalnego, prowadzi do nieporozumień w zakresie projektowania i wdrażania infrastruktury IT. Z kolei punkt rozdzielczy, jako element systemu dystrybucji sygnałów, również nie pełni funkcji bezpośredniego zakończenia okablowania, lecz działa jako pośrednik w transmisji sygnałów między różnymi segmentami sieci. Właściwe zrozumienie ról i funkcji tych elementów jest kluczowe dla efektywnego projektowania oraz zarządzania sieciami teleinformatycznymi.

Pytanie 35

Menedżer urządzeń w systemie Windows umożliwia identyfikację

A. błędnej konfiguracji rozruchu systemu oraz uruchamianych usług
B. problemów systemu operacyjnego podczas jego działania
C. nieprawidłowego działania urządzeń podłączonych do komputera
D. niepoprawnej konfiguracji oprogramowania użytkowego
Menedżer urządzeń w systemie Windows jest kluczowym narzędziem do zarządzania sprzętem podłączonym do komputera. Jego głównym zadaniem jest monitorowanie statusu urządzeń oraz identyfikacja problemów z ich działaniem. Kiedy urządzenie nie funkcjonuje prawidłowo, Menedżer urządzeń wyświetla odpowiednie komunikaty, które mogą wskazywać na błędy sterowników lub problemy ze sprzętem. Przykładowo, jeśli podłączymy nowy drukarkę, a system nie rozpozna jej, Menedżer urządzeń może pomóc w identyfikacji, czy sterownik jest zainstalowany, czy może wymaga aktualizacji. Używanie Menedżera urządzeń zgodnie z najlepszymi praktykami branżowymi obejmuje regularne sprawdzanie stanu urządzeń oraz aktualizację sterowników, co pozwala na utrzymanie systemu w optymalnym stanie. W kontekście administracji IT, znajomość tego narzędzia jest niezbędna do efektywnego rozwiązywania problemów sprzętowych oraz zapewnienia stabilności infrastruktury IT.

Pytanie 36

Aby zrealizować wymianę informacji między dwoma odmiennymi sieciami, konieczne jest użycie

A. koncentratora
B. routera
C. mostu
D. przełącznika
Router to urządzenie sieciowe, które ma kluczowe znaczenie w zapewnieniu komunikacji pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie pakietów danych między różnymi segmentami sieci, co czyni go niezbędnym w przypadku wymiany informacji pomiędzy dwiema różnymi sieciami. Router działa na warstwie trzeciej modelu OSI – warstwie sieci, co pozwala mu na podejmowanie decyzji dotyczących trasowania pakietów na podstawie adresów IP. Przykładem zastosowania routera są połączenia internetowe w domach i biurach, gdzie router łączy lokalną sieć (LAN) z Internetem. Poza tym, routery często oferują funkcje takie jak NAT (Network Address Translation), co umożliwia wielu urządzeniom w sieci lokalnej dostęp do Internetu poprzez jeden adres IP. W praktyce, standardy takie jak IPv4 i IPv6 są kluczowymi elementami, które routery muszą obsługiwać, aby skutecznie zarządzać ruchem danych.

Pytanie 37

Administrator dostrzegł, że w sieci LAN występuje wiele kolizji. Jakie urządzenie powinien zainstalować, aby podzielić sieć lokalną na mniejsze domeny kolizji?

A. Switch
B. Modem
C. Router
D. Huba
Wybór koncentratora jako rozwiązania na problem kolizji w sieci LAN jest nieadekwatny z uwagi na sposób, w jaki działa to urządzenie. Koncentrator, działający na warstwie fizycznej modelu OSI, nie jest w stanie inteligentnie zarządzać ruchem danych - po prostu przesyła sygnał do wszystkich portów w sieci. W efekcie, gdy wiele urządzeń próbuje jednocześnie nadawać, dochodzi do kolizji, co prowadzi do spadku wydajności sieci. Koncentratory były powszechnie stosowane w dawnych sieciach, ale zostały w dużej mierze zastąpione przez przełączniki, które oferują znacznie lepszą wydajność i obsługę. Użycie routera również nie rozwiązuje problemu kolizji w lokalnej sieci, ponieważ routery operują na warstwie trzeciej, zarządzając ruchem między różnymi sieciami. Choć routery są kluczowe dla komunikacji z Internetem i mogą segmentować sieci, nie redukują one kolizji w obrębie pojedynczej lokalnej sieci. Modem, jako urządzenie konwertujące sygnały cyfrowe na analogowe (i odwrotnie), również nie jest rozwiązaniem dla kolizji w LAN, ponieważ nie pełni roli zarządzającej w lokalnej komunikacji. Wybierając odpowiednie urządzenia, ważne jest, aby zrozumieć ich funkcje i zastosowania, co pozwala uniknąć typowych błędów myślowych i zapewnić efektywność sieci.

Pytanie 38

Na ilustracji przedstawiono złącze

Ilustracja do pytania
A. FIRE WIRE
B. DVI
C. HDMI
D. D-SUB
Odpowiedzi które wybrałeś nie są poprawne ponieważ dotyczą innych typów złączy stosowanych w różnych kontekstach elektronicznych i komputerowych. Złącze FIRE WIRE inaczej nazywane IEEE 1394 jest używane głównie do przesyłania danych cyfrowych z wysoką prędkością w urządzeniach takich jak kamery cyfrowe i dyski twarde. Technologie takie były popularne na przełomie XX i XXI wieku szczególnie w środowiskach profesjonalnych gdzie wymagana była szybka transmisja danych multimedialnych. Natomiast DVI czyli Digital Visual Interface to standard zaprojektowany do przesyłania wysokiej jakości sygnału wideo do monitorów cyfrowych. DVI zazwyczaj wykorzystuje się w kontekście połączeń między komputerem a monitorem co umożliwia przesyłanie obrazu o wysokiej rozdzielczości bez kompresji. Z kolei HDMI czyli High-Definition Multimedia Interface to złącze służące do przesyłania zarówno sygnału wideo jak i audio w formie cyfrowej. HDMI jest obecnie standardem w wielu urządzeniach konsumenckich takich jak telewizory monitory czy konsole do gier oferując wysoką jakość obrazu i dźwięku. Myślenie że jedno z tych złączy mogłoby być złączem D-SUB wynikać może z pomylenia ich ze względu na fizyczne podobieństwa w konstrukcji niektórych złączy szczególnie gdy pełnią one rolę portów komunikacyjnych. Warto jednak pamiętać że każde z tych złączy ma swoje specyficzne zastosowania i jest projektowane z myślą o różnych rodzajach transmisji danych oraz różnych środowiskach operacyjnych. Kluczowe jest rozumienie różnic funkcjonalnych aby prawidłowo identyfikować typ złącza i jego zastosowanie w praktyce. Wybór odpowiedniego złącza dla danego zastosowania jest istotny z punktu widzenia wydajności i niezawodności całego systemu elektronicznego.

Pytanie 39

Użytkownik drukarki samodzielnie i poprawnie napełnił pojemnik z tonerem. Po jego zamontowaniu drukarka nie podejmuje się próby drukowania. Co może być przyczyną tej usterki?

A. niewymieniony chip zliczający, znajdujący się na pojemniku z tonerem
B. nieodpowiednia jakość użytego tonera do uzupełnienia pojemnika
C. niewłaściwie dobrany toner
D. zabrudzony wałek magnetyczny
Strasznie łatwo jest pomylić się przy wyborze tonera, ale to nie do końca o to chodzi, gdy drukarka działa źle. Jakość tonera to istotna sprawa, ale najważniejszy przy napełnianiu pojemnika jest chip zliczający, a nie sam toner. Często można spotkać się z problemem, że wałek magnetyczny jest zabrudzony, ale to nie blokuje drukarki przed działaniem. Tak, zabrudzenia mogą zepsuć jakość wydruków, ale przecież drukarka wciąż działa. A jeżeli użyjesz tonera niskiej jakości, to mogą wychodzić smugi i kolory będą nie równe, ale drukarka powinna działać, o ile jest sprawna. Warto zwrócić uwagę na kluczowe części systemu druku, takie jak ten wspomniany chip, bo to on komunikuje się z drukarką. Wiele osób błędnie myśli, że problem leży tylko w tonerze, a przecież monitoring elektroniczny jest równie ważny. Pamiętajmy, że serwisowanie drukarek i napełnianie tonerów wymaga zwracania uwagi na te małe, ale istotne szczegóły, bo inaczej mogą nas zaskoczyć nieprzyjemne sytuacje.

Pytanie 40

Aby zwiększyć lub zmniejszyć rozmiar ikony na pulpicie, należy obracać kółkiem myszy, trzymając jednocześnie wciśnięty klawisz

A. SHIFT
B. TAB
C. CTRL
D. ALT
Przytrzymywanie klawisza CTRL podczas kręcenia kółkiem myszy jest standardowym sposobem na zmianę rozmiaru ikon na pulpicie w systemach operacyjnych Windows. Gdy użytkownik przytrzymuje klawisz CTRL, a następnie używa kółka myszy, zmienia on skalę ikon w systemie, co pozwala na ich powiększenie lub pomniejszenie. Taka funkcjonalność jest szczególnie przydatna, gdy użytkownik chce dostosować wygląd pulpitu do własnych potrzeb lub zwiększyć widoczność ikon, co może być pomocne dla osób z problemami ze wzrokiem. Zmiana rozmiaru ikon jest również zastosowaniem w kontekście organizacji przestrzeni roboczej, co jest zgodne z dobrą praktyką w zakresie ergonomii cyfrowej. Warto dodać, że możliwość ta jest częścią większego zestawu funkcji personalizacji, które można znaleźć w menu kontekstowym pulpitu, ale użycie klawisza CTRL sprawia, że ta operacja staje się bardziej intuicyjna i szybsza.