Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 17:20
  • Data zakończenia: 15 kwietnia 2025 17:49

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Wysokościowej
B. Topograficznej
C. Sytuacyjnej
D. Ewidencyjnej
Wybór błędnych nakładek tematycznych do przedstawienia włązu studzienki kanalizacyjnej na mapie zasadniczej może wynikać z niepełnego zrozumienia ich funkcji oraz przeznaczenia. Nakładka ewidencyjna, która jest często mylona z sytuacyjną, ma na celu dokumentowanie i ewidencjonowanie obiektów w kontekście prawnym oraz administracyjnym. Nie zawiera jednak szczegółowych informacji o lokalizacji i funkcjonowaniu infrastruktury technicznej, co czyni ją nieodpowiednią do przedstawienia elementów takich jak studzienki kanalizacyjne. Nakładka wysokościowa jest stworzona do przedstawiania poziomów terenu i obiektów w kontekście wysokościowym; nie dostarcza informacji dotyczących układu infrastruktury podziemnej. Z kolei nakładka topograficzna, koncentrująca się na ogólnych ukształtowaniach terenu, również nie uwzględnia szczegółowych informacji na temat obiektów, które są kluczowe dla zarządzania infrastrukturą, takich jak studzienki. Zastosowanie niewłaściwej nakładki może prowadzić do nieefektywnego zarządzania infrastrukturą oraz utrudnienia w przeprowadzaniu niezbędnych prac konserwacyjnych, co w dłuższej perspektywie może prowadzić do poważnych problemów związanych z funkcjonowaniem systemów kanalizacyjnych. Dlatego ważne jest, aby stosować odpowiednie nakładki tematyczne zgodnie z ich przeznaczeniem, co jest zgodne z najlepszymi praktykami w dziedzinie zarządzania danymi przestrzennymi.

Pytanie 5

Jakim kolorem na mapie zasadniczej przedstawia się przewód elektroenergetyczny?

A. żółtym
B. pomarańczowym
C. czerwonym
D. niebieskim
Kolory używane do oznaczania różnych elementów infrastruktury, w tym przewodów elektroenergetycznych, mają swoje specyficzne znaczenie i są ustalane na podstawie norm i regulacji. Odpowiedzi, które sugerują inne kolory, takie jak żółty, niebieski czy pomarańczowy, mogą prowadzić do nieporozumień i pomyłek podczas planowania oraz wykonywania prac związanych z infrastrukturą energetyczną. Na przykład, kolor żółty często oznacza przewody gazowe, co może wprowadzać w błąd, gdyż nieodpowiednia identyfikacja linii może prowadzić do niebezpiecznych sytuacji. Podobnie, kolor niebieski jest zazwyczaj używany do reprezentacji wody lub systemów hydraulicznych. Pomarańczowy z kolei jest często zarezerwowany dla telekomunikacji. Wskutek tego, użycie tych kolorów do oznaczania przewodów elektroenergetycznych może wprowadzać zamieszanie wśród pracowników, co zwiększa ryzyko wypadków, a także opóźnia realizację projektów. W branży energetycznej, gdzie bezpieczeństwo i precyzja są kluczowe, przyjęcie standardów dotyczących kolorystyki oznaczeń jest niezbędne do zapewnienia właściwej komunikacji między różnymi służbami. Właściwe zrozumienie i stosowanie tych konwencji jest zatem istotne dla skuteczności działań oraz bezpieczeństwa na placu budowy.

Pytanie 6

Zgodnie z ustawodawstwem geodezyjnym oraz kartograficznym mapy zasadnicze powinny być sporządzane w następujących skalach:

A. 1:10 000, 1:25 000, 1:50 000
B. 1:1000, 1:2000, 1:5000, 1:10 000
C. 1:500, 1:1000, 1:2000, 1:5000
D. 1:25 000, 1:50 000, 1:100 000
Mapa zasadnicza to kluczowy dokument w geodezji, który odzwierciedla rzeczywiste warunki na terenie, w tym granice działek, infrastrukturę oraz inne istotne elementy. Zgodnie z prawem geodezyjnym i kartograficznym, mapy zasadnicze powinny być wykonywane w skalach 1:500, 1:1000, 1:2000 oraz 1:5000, co pozwala na dokładne odwzorowanie szczegółów terenu. Te skale są stosowane w praktyce do planowania przestrzennego, budowy oraz zarządzania nieruchomościami. Na przykład, skala 1:500 jest często wykorzystywana w projektach budowlanych, gdzie precyzyjne odwzorowanie terenu jest kluczowe dla projektantów i architektów. W przypadku dużych obszarów, takich jak planowanie strategiczne czy zagospodarowanie przestrzenne, skala 1:5000 może być bardziej odpowiednia, ponieważ daje szerszy kontekst geograficzny. Wybór odpowiedniej skali jest więc istotny dla zapewnienia dokładności i użyteczności map, co jest zgodne z najlepszymi praktykami w branży geodezyjnej.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 2,22 m
B. 55,50 m
C. 22,20 m
D. 5,55 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 30 m
B. 15 m
C. 20 m
D. 25 m
Odpowiedzi, które sugerują inne długości rzędnej, takie jak 20 m, 30 m czy 15 m, mogą prowadzić do poważnych nieporozumień dotyczących standardów pomiarowych. Długości te są nieadekwatne do wymagań zawartych w normach geodezyjnych, które jasno określają optymalne zasięgi dla różnych metod pomiarowych. W przypadku 20 m można sądzić, że to zbyt krótka długość, która nie pozwala na uzyskanie wystarczającej precyzji przy dużych odległościach. Z kolei długość 30 m staje się problematyczna w kontekście pomiarów, gdyż może zwiększać ryzyko błędów kumulacyjnych oraz trudności związanych z precyzyjnym przenoszeniem wymiarów na większe odległości. Odpowiedź sugerująca 15 m jest nie tylko niewłaściwa, ale także w praktyce może prowadzić do istotnych trudności w realizacji pomiarów budowlanych, szczególnie na otwartych terenach, gdzie warunki atmosferyczne i uwarunkowania przestrzenne mogą wpływać na dokładność. Istotne jest, aby geodeci mieli świadomość, że stosowanie nieodpowiednich długości rzędnych może skutkować błędami, które mogą wpłynąć na całkowitą rzetelność projektu budowlanego, prowadząc do niepoprawnych danych geodezyjnych i konsekwencji w fazach realizacji inwestycji. Dlatego znajomość i stosowanie przyjętej długości rzędnej, jaką jest 25 m, jest kluczowe dla zapewnienia wysokiej jakości pomiarów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. +3,043 m
B. -4,055 m
C. -3,043 m
D. +4,055 m
Wybór błędnej odpowiedzi może wynikać z nieprawidłowego zrozumienia podstawowych zasad pomiarów niwelacyjnych. Kluczowym błędem jest nieprawidłowa interpretacja odczytów z łaty. Odczyt wstecz (3549 mm) należy odjąć od odczytu w przód (0506 mm), a nie odwrotnie. Wiele osób może mylnie sądzić, że należy dodać oba odczyty, co prowadzi do pomyłek w obliczeniach. W przypadku odpowiedzi -3,043 m, można zauważyć, że ktoś mógł spróbować wziąć różnicę, ale pomylił kierunki, co skutkuje negatywną wartością, zamiast zrozumieć, że różnica powinna być dodatnia, jeśli odczyt wstecz jest wyższy. Osoby, które wskazały opcję +4,055 m, najprawdopodobniej popełniły błąd obliczeniowy, dodając odczyty lub myląc się w przekształceniu jednostek. Również, wybór -4,055 m sugeruje mylne założenie, że odczyt w przód był wyższy, co jest sprzeczne z podanymi wartościami. W geodezji i innych dziedzinach związanych z pomiarami, kluczowe jest zrozumienie, jak poprawnie interpretować wyniki i stosować odpowiednie procedury, aby uzyskać rzetelne dane. Prawidłowe wykonanie niwelacji przed budową czy podczas pomiarów geodezyjnych ma fundamentalne znaczenie dla późniejszej jakości i trwałości budowli.

Pytanie 19

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Szkic budowlany
B. Szkic polowy
C. Plan osnowy
D. Opis topograficzny
Analizując inne dokumenty geodezyjne, łatwo można zauważyć ich różnorodność oraz specyfikę, która nie zawsze jest zrozumiała dla osób nieobeznanych z tematem. Projekt osnowy to dokument, który ma na celu zaplanowanie rozmieszczenia punktów osnowy, jednak nie jest to dokument powstający w terenie, lecz raczej przedprojektowy. Ponadto, jego zawartość nie umożliwia odnalezienia konkretnego, zastabilizowanego punktu osnowy, ponieważ projekt ma charakter koncepcyjny, a nie operacyjny. Szkic tyczenia, z drugiej strony, jest dokumentem używanym w trakcie prac geodezyjnych do zaznaczania lokalizacji budynków czy innych obiektów, ale także nie służy bezpośrednio do identyfikacji punktów osnowy. Warto zauważyć, że szkic polowy to dokument, który jest bardziej roboczy i obejmuje zapisy dotyczące pomiarów wykonanych na ziemi, ale również nie dostarcza pełnej informacji o stałych punktach osnowy. Zrozumienie różnicy między tymi dokumentami i ich zastosowaniami jest kluczowe dla każdego geodety, a błędne przypisanie ich funkcji może prowadzić do nieporozumień oraz błędów w wykonaniu prac geodezyjnych. W branży geodezyjnej ważne jest, aby każdy dokument był wykorzystywany zgodnie z jego przeznaczeniem, co wpływa na efektywność i dokładność prowadzonych pomiarów oraz projektów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna systemu uzbrojenia terenu
B. geodezyjna ewidencja sieci uzbrojenia terenu
C. ewidencja geodezyjna systemu urządzeń technicznych
D. ewidencja geometryczna sieci uzbrojenia terenu
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 24

Niwelator to narzędzie służące do dokonania pomiaru

A. kątów nachylenia
B. kątów zenitalnych
C. wysokości punktów
D. różnic wysokości
Często ludzie mylą to, do czego służy niwelator, co może prowadzić do nieporozumień. Gdy wybierasz odpowiedzi związane z kątami zenitalnymi czy nachyleniem, może się zdarzyć, że pomylisz niwelator z innymi narzędziami geodezyjnymi, jak teodolity czy inklinometry. Kąty zenitalne mierzysz zwykle teodolitem, bo on do tego właśnie jest stworzony, a ma zupełnie inny cel niż niwelator. Z kolei kąty nachylenia wymagają czasem innych narzędzi, jak poziomice. Dlatego przypisywanie tych funkcji niwelatorowi jest trochę błędne. Często mylone jest też pojęcie wysokości punktów – niwelator mierzy różnice w wysokościach, a nie konkretne wysokości miejsc. W geodezji i budownictwie ważne, by ogarnąć te różnice, bo byle błąd w pomiarach może zmienić dużo w projektach budowlanych. Więc szanujmy niwelator jako narzędzie do pomiaru różnic, a nie do pomiaru kątów czy bezpośrednio wysokości.

Pytanie 25

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d<sub>1-2</sub> = 100,00 m, sinAz<sub>1-2</sub> = 0,760400, cosAz<sub>1-2</sub> = 0,649455.

A. 64,94 m
B. 6,49 m
C. 7,60 m
D. 76,04 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Wyznacz wysokość reperu końcowego H<sub>K</sub>, jeśli wysokość reperu początkowego wynosi H<sub>P</sub> = 325,000 m, różnica wysokości na badanym odcinku wynosi Ah<sub>P-K</sub> = 2500 mm, a poprawka ma wartość v<sub>∆h</sub> = -10 mm?

A. HK = 322,510 m
B. HK = 322,490 m
C. HK = 327,490 m
D. HK = 327,510 m
Aby obliczyć wysokość reperu końcowego H<sub>K</sub>, zaczynamy od wysokości reperu początkowego H<sub>P</sub>, która wynosi 325,000 m. Następnie dodajemy różnicę wysokości mierzonego odcinka, która wynosi Ah<sub>P-K</sub> = 2500 mm, co przekłada się na 2,500 m. Ważnym krokiem jest uwzględnienie poprawki v<sub>∆h</sub> = -10 mm, co oznacza, że musimy odjąć tę wartość od uzyskanego wyniku. Zatem, obliczenia wyglądają następująco: H<sub>K</sub> = H<sub>P</sub> + Ah<sub>P-K</sub> + v<sub>∆h</sub> = 325,000 m + 2,500 m - 0,010 m = 327,490 m. To podejście jest zgodne z praktykami w geodezji, w których dokładność pomiarów jest kluczowa. Wysokość reperów jest istotna w budownictwie i inżynierii lądowej, gdzie precyzyjne ustalanie poziomów jest niezbędne dla bezpieczeństwa i funkcjonalności budowli. Rekomenduje się regularne stosowanie takich obliczeń w praktyce inżynieryjnej, aby zapewnić zgodność z normami i standardami branżowymi.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaki błąd jest wskaźnikiem precyzji tyczenia?

A. Błąd przypadkowy tyczenia
B. Błąd graniczny tyczenia
C. Błąd względny tyczenia
D. Błąd średni tyczenia
Błąd średni tyczenia to naprawdę ważna sprawa, jeśli chodzi o dokładność w pomiarach. Mówiąc prościej, to średnia różnica między tym, co zmierzyliśmy, a tym, co jest rzeczywiste. Dzięki temu wiemy, jak dobrze nam idzie w terenie. W praktyce, na przykład przy ustalaniu granic działki, precyzyjność pomiaru jest kluczowa. Jeśli coś pójdzie nie tak, mogą pojawić się konflikty z sąsiadami. No i w dokumentach geodezyjnych też musimy być dokładni. W branży są różne normy, jak te z ISO/TS, które pokazują, jakie błędy są akceptowalne. To naprawdę dowodzi, jak istotny jest błąd średni w geodezji. Analizując go, geodeci mogą zdecydować, czy trzeba coś poprawić czy powtórzyć pomiary, co zdecydowanie wpływa na jakość danych geodezyjnych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Korzystając z którego z poniższych wzorów można obliczyć teoretyczną sumę kątów lewych w otwartym ciągu poligonowym, dowiązanym dwustronnie?

A. [β] = AP + AK - n × 200g
B. [β] = AP - AK + n × 200g
C. [α] = AK - AP + n × 200g
D. [α] = AK + AP - n × 200g
Poprawna odpowiedź to [α] = AK - AP + n × 200g, ponieważ ten wzór precyzyjnie określa sumę teoretyczną kątów lewych w otwartym ciągu poligonowym dwustronnie dowiązanym. Wzór ten uwzględnia różnicę między kątami zewnętrznymi (AK) a kątami wewnętrznymi (AP), a także liczbę punktów (n) w ciągu, co jest kluczowe w kontekście analizy geometrycznej. W praktyce, ten wzór jest szczególnie przydatny w geodezji i inżynierii lądowej, gdzie precyzyjne wyznaczanie kątów jest niezbędne do tworzenia dokładnych map i projektów budowlanych. Na przykład, przy projektowaniu dróg, inżynierowie muszą obliczyć odpowiednie kąty, aby zapewnić prawidłowy przebieg trasy. Wzór ten wpisuje się w standardy geodezyjne, które definiują metody obliczeń kątów w poligonach, gwarantując ich poprawność i precyzję.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 25 cm
B. 2,5 cm
C. 5 cm
D. 50 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.