Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 maja 2025 16:16
  • Data zakończenia: 13 maja 2025 16:34

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W systemie Windows Server narzędzie, które pozwala na zarządzanie zasadami grupowymi, to

A. Menedżer procesów
B. Serwer DNS
C. Konsola GPMC
D. Panel kontrolny
Konsola GPMC, czyli Group Policy Management Console, jest kluczowym narzędziem w zarządzaniu zasadami grupy w systemie Windows Server. Umożliwia administratorom centralne zarządzanie politykami, co jest niezbędne dla utrzymania bezpieczeństwa i zgodności w dużych środowiskach informatycznych. Korzystając z GPMC, administratorzy mogą tworzyć, edytować i zarządzać obiektami zasad grupy (GPO), co pozwala na automatyzację konfiguracji systemów operacyjnych oraz aplikacji na komputerach klienckich w sieci. Na przykład, poprzez GPMC można zdefiniować zasady dotyczące zabezpieczeń, takich jak wymuszanie silnych haseł, czy ograniczenie dostępu do określonych zasobów. GPMC integruje się z Active Directory, co pozwala na przypisywanie zasad do określonych jednostek organizacyjnych, co jest zgodne z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT. Dobre praktyki zalecają regularne przeglądanie i aktualizację zasad grupy, aby dostosować je do zmieniających się potrzeb organizacji oraz standardów bezpieczeństwa.

Pytanie 2

Administrator systemu Linux wyświetlił zawartość katalogu /home/szkoła w terminalu, uzyskując następujący rezultat -rwx –x r-x 1 admin admin 25 04-09 15:17 szkola.txt. Następnie wydał polecenie ```chmod ug=rw szkola.txt | Is``` Jaki będzie rezultat tego działania, pokazany w oknie terminala?

A. -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt
B. -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt
C. -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt
D. -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt
Odpowiedź -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt jest poprawna, ponieważ wynika z zastosowania polecenia chmod ug=rw, które modyfikuje uprawnienia do pliku szkola.txt. Użycie 'ug=rw' oznacza, że zarówno właściciel pliku (user), jak i grupa (group) otrzymują uprawnienia do odczytu (r) i zapisu (w). Uprawnienia są reprezentowane w systemie Linux w formie trzech grup: właściciel, grupa i inni (others). Oryginalne uprawnienia pliku to -rwx –x r-x, co oznacza, że właściciel miał uprawnienia do odczytu, zapisu i wykonywania, grupa miała uprawnienia do wykonywania, a inni mieli uprawnienia do odczytu i wykonywania. Po zastosowaniu chmod ug=rw, poprawione uprawnienia stają się -rw- rw- r-x. Widać, że właściciel i grupa uzyskali uprawnienia do odczytu i zapisu, natomiast uprawnienia dla innych pozostały bez zmian. Dobrą praktyką jest zrozumienie, w jaki sposób zmiany uprawnień wpływają na bezpieczeństwo i dostęp do plików, co jest kluczowe w zarządzaniu systemami Linux. Umożliwia to nie tylko kontrolę dostępu do danych, ale także ochronę przed nieautoryzowanym dostępem.

Pytanie 3

Wskaż błędny sposób podziału dysku MBR na partycje?

A. 2 partycje podstawowe oraz 1 rozszerzona
B. 1 partycja podstawowa oraz 2 rozszerzone
C. 1 partycja podstawowa oraz 1 rozszerzona
D. 3 partycje podstawowe oraz 1 rozszerzona
Poprawna odpowiedź wskazuje, że na dysku MBR (Master Boot Record) można utworzyć maksymalnie cztery partycje, z czego tylko trzy mogą być partycjami podstawowymi, natomiast jedna może być rozszerzona. W przypadku wyboru opcji z jedną partycją podstawową i dwiema rozszerzonymi jest to nieprawidłowy podział, ponieważ MBR pozwala na utworzenie tylko jednej partycji rozszerzonej, która z kolei może zawierać wiele partycji logicznych. Praktyczne zastosowanie tego podziału jest istotne w kontekście organizacji danych na dysku, gdzie partycje podstawowe mogą być używane do instalacji systemów operacyjnych, podczas gdy partycje rozszerzone są wykorzystywane do tworzenia dodatkowych przestrzeni dla danych, bez ograniczeń liczby logicznych partycji. Na przykład, w typowych scenariuszach wykorzystania serwerów, administratorzy mogą tworzyć jedną partycję podstawową na system operacyjny oraz partycję rozszerzoną na dane, co jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi i bezpieczeństwem danych.

Pytanie 4

Jaką funkcję pełni serwer ISA w systemie Windows?

A. Jest serwerem stron WWW
B. Rozwiązuje nazwy domen
C. Pełni funkcję firewalla
D. Służy jako system wymiany plików
Rozważając odpowiedzi, które podałeś, warto zauważyć, że każda z nich odnosi się do różnych aspektów funkcjonowania systemów informatycznych, ale żadna nie oddaje rzeczywistej roli, jaką pełni ISA Server. To oprogramowanie zostało zaprojektowane w celu zapewnienia bezpieczeństwa oraz optymalizacji dostępu do zasobów internetowych, co jest zupełnie inne od funkcji rozwiązywania nazw domenowych, które wykonują serwery DNS. Nie można mylić roli firewalla z rolą serwera DNS; ten ostatni odpowiada za tłumaczenie nazw domenowych na adresy IP, co jest istotne, ale nie jest zadaniem ISA Server. Z kolei systemy wymiany plików, takie jak FTP czy SMB, mają zupełnie inne cele i nie są związane z funkcjonalnością firewalli. Ponadto, serwery stron internetowych, chociaż mogą współdziałać z ISA Server, są z definicji odpowiedzialne za przechowywanie i dostarczanie treści internetowych, a nie za ich zabezpieczanie. Często zdarza się, że użytkownicy mylą różne aspekty działania systemów sieciowych, co prowadzi do nieporozumień. Zrozumienie odmiennych funkcji, które pełnią różne serwery, jest kluczowe w zarządzaniu infrastrukturą IT. Dlatego istotne jest, aby w procesie nauki dążyć do wyraźnego rozgraniczenia tych ról oraz ich odniesienia do praktyki bezpieczeństwa sieci, co pozwala na skuteczniejsze zastosowanie technologii IT w organizacjach.

Pytanie 5

Jakie polecenie w systemie Linux umożliwia wyświetlenie identyfikatora użytkownika?

A. id
B. who
C. users
D. whoami
Wybór innych odpowiedzi sugeruje niepełne zrozumienie funkcji poszczególnych poleceń w systemie Linux. Odpowiedź 'whoami' zwraca jedynie nazwę użytkownika aktualnie zalogowanej sesji, co jest przydatne, ale nie dostarcza pełnych informacji o identyfikatorze użytkownika. 'who' z kolei wyświetla listę wszystkich zalogowanych użytkowników w systemie, co także nie odnosi się bezpośrednio do identyfikacji konkretnego użytkownika. Odpowiedź 'users' pokazuje jedynie listę użytkowników obecnie zalogowanych, lecz nie ujawnia szczegółowych danych dotyczących ich identyfikacji. Typowym błędem jest mylenie nazw użytkowników z ich identyfikatorami, co może prowadzić do nieprawidłowych założeń w kontekście zarządzania systemem. W praktyce, zrozumienie różnicy pomiędzy tymi poleceniami jest kluczowe dla administrowania systemem i efektywnego zarządzania uprawnieniami. Użytkownicy mogą łatwo pomylić te polecenia, myśląc, że oferują one podobne funkcje, co jest nieprawidłowe, a to z kolei może prowadzić do nieefektywnej pracy w systemie. Kluczowe w nauce korzystania z Linuxa jest rozróżnianie pomiędzy różnymi poleceniami, co pozwala na skuteczniejsze i bezpieczniejsze zarządzanie zasobami.

Pytanie 6

Jak należy rozmieszczać gniazda komputerowe RJ45 w odniesieniu do przestrzeni biurowej zgodnie z normą PN-EN 50174?

A. Gniazdo komputerowe 2 x RJ45 na 20 m2 powierzchni biura
B. Gniazdo komputerowe 1 x RJ45 na 10 m2 powierzchni biura
C. Gniazdo komputerowe 1 x RJ45 na 20 m2 powierzchni biura
D. Gniazdo komputerowe 2 x RJ45 na 10 m2 powierzchni biura
Odpowiedź wskazująca na gniazdo komputerowe 2 x RJ45 na 10 m2 powierzchni biura jest zgodna z normą PN-EN 50174, która definiuje wymagania dotyczące infrastruktury telekomunikacyjnej w obiektach budowlanych. Ta norma zaleca, aby na każde 10 m2 powierzchni biura przypadały co najmniej dwa gniazda RJ45, co zapewnia odpowiednią dostępność i elastyczność w zakresie podłączania urządzeń. Dzięki temu użytkownicy mają zapewniony dostęp do szybkiego internetu i mogą swobodnie podłączać różne urządzenia, takie jak komputery, drukarki i inne sprzęty. Praktycznie, takie rozmieszczenie gniazd umożliwia także łatwiejsze zarządzanie siecią oraz minimalizuje ryzyko przeciążenia jednego gniazda, co może prowadzić do problemów z wydajnością. W kontekście dobrych praktyk można także zauważyć, że zapewnienie odpowiedniej liczby gniazd zwiększa komfort pracy, a tym samym pozytywnie wpływa na efektywność zespołu. Warto również pamiętać, że w przypadku rozwoju organizacji, możliwość łatwego dostępu do większej liczby gniazd jest niezwykle istotna, co czyni tę odpowiedź nie tylko technicznie poprawną, ale także praktycznie użyteczną.

Pytanie 7

Złącze widoczne na ilustracji służy do podłączenia

Ilustracja do pytania
A. myszy
B. modemu
C. monitora
D. drukarki
Złącze przedstawione na zdjęciu to złącze VGA (Video Graphics Array) które jest standardowym typem połączenia wykorzystywanym do podłączania monitorów do komputerów. VGA jest analogowym standardem przesyłania sygnału wideo który został wprowadzony w 1987 roku przez firmę IBM. Charakteryzuje się 15 pinami ułożonymi w trzy rzędy. Choć obecnie coraz częściej zastępowane jest przez złącza cyfrowe takie jak HDMI czy DisplayPort nadal znajduje zastosowanie w przypadku starszych monitorów projektorów czy kart graficznych. Złącze VGA przesyła sygnały wideo RGB oraz sygnały synchronizacji poziomej i pionowej co pozwala na obsługę różnych rozdzielczości ekranu. Podczas podłączania urządzeń za pomocą tego złącza kluczowe jest wykorzystanie odpowiedniego kabla VGA aby uniknąć zakłóceń sygnału i zapewnić dobrą jakość obrazu. W praktyce stosowanie złącza VGA w środowiskach gdzie wymagana jest wysoka jakość obrazu na przykład w prezentacjach lub przy pracy graficznej może wymagać dodatkowych konwerterów sygnału na cyfrowe aby zapewnić najwyższą jakość obrazu. Pomimo rozwoju technologii VGA nadal pozostaje szeroko wykorzystywany w wielu aplikacjach przemysłowych i edukacyjnych.

Pytanie 8

Jaki parametr powinien być użyty do wywołania komendy netstat, aby pokazać statystykę interfejsu sieciowego (ilość wysłanych oraz odebranych bajtów i pakietów)?

A. -n
B. -a
C. -e
D. -o
Wybór parametrów -n, -o oraz -a w poleceniu netstat nie pozwala na uzyskanie informacji o statystykach interfejsów sieciowych, co często prowadzi do nieporozumień i błędnej interpretacji wyników. Parametr -n służy do wyświetlania adresów IP zamiast ich nazw, co jest przydatne w kontekście diagnostyki, ale nie dostarcza żadnych informacji o ruchu sieciowym. Z kolei -o oferuje możliwość wyświetlania identyfikatorów procesów powiązanych z połączeniami, co może być użyteczne w zarządzaniu procesami, ale również nie ma związku z metrykami interfejsów. Użycie parametru -a wyświetla wszystkie połączenia i porty nasłuchujące, a zatem daje szeroki obraz aktywności sieciowej, jednak brak jest szczegółowych informacji o liczbie przesłanych bajtów czy pakietów. Takie błędne podejście do analizy wyników netstat może prowadzić do niewłaściwych wniosków na temat wydajności sieci. Ważne jest, aby użytkownicy mieli świadomość, że skuteczne zarządzanie siecią wymaga zrozumienia specyfiki poszczególnych parametrów oraz ich rzeczywistego zastosowania w kontekście monitorowania i diagnostyki. Właściwe podejście do analizy danych sieciowych powinno opierać się na zrozumieniu, które informacje są kluczowe dla podejmowania decyzji dotyczących infrastruktury sieciowej.

Pytanie 9

Ile sieci obejmują adresy IPv4 pokazane w tabeli?

Adres IPv4Maska sieci
10.10.10.10255.255.0.0
10.10.20.10255.255.0.0
10.10.20.20255.255.0.0
10.10.30.30255.255.0.0
10.20.10.10255.255.0.0
10.20.20.10255.255.0.0
10.20.20.30255.255.0.0

A. 3 sieci
B. 5 sieci
C. 4 sieci
D. 2 sieci
Niewłaściwe zrozumienie podziału adresów IP na sieci może prowadzić do błędnych wniosków. Maska sieciowa pełni kluczową rolę w określaniu które części adresu IP odpowiadają za identyfikację sieci a które za identyfikację hosta wewnątrz tej sieci. W masce 255.255.0.0 pierwszy i drugi oktet adresu określa sieć a reszta identyfikuje hosty. Mylenie tego prowadzi do błędów jak zakładanie że każdy unikalny adres to osobna sieć co nie jest prawdą. Przy masce 255.255.0.0 adresy takie jak 10.10.10.10 i 10.10.20.20 należą do jednej sieci 10.10.0.0 a 10.20.10.10 do sieci 10.20.0.0. Błędne rozumienie może wynikać z niewłaściwego założenia że zmiana w dowolnym oktecie adresu zawsze sygnalizuje inną sieć co jest nieprawidłowe w przypadku gdy maska sieciowa określa które oktety są odpowiedzialne za identyfikację sieciową. Takie nieporozumienia są często spotykane wśród początkujących administratorów sieci co pokazuje jak ważne jest zrozumienie roli maski sieciowej w projektowaniu i zarządzaniu sieciami IP. Dobre praktyki sugerują dokładne analizowanie struktury adresów IP i ich masek co jest podstawą efektywnego zarządzania zasobami sieciowymi i planowania infrastruktury sieciowej. Edukacja w tym zakresie pozwala na uniknięcie błędów konfiguracyjnych które mogą prowadzić do problemów z dostępnością i bezpieczeństwem sieci. Dlatego też znajomość zasad podziału adresów IP i ich praktyczne zastosowanie są kluczowe w pracy specjalisty sieciowego.

Pytanie 10

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. heksadecymalnej
B. dziesiętnej
C. oktalnej
D. binarnej
Adres AC-72-89-17-6E-B2 to przykład adresu MAC, który jest zapisany w formacie heksadecymalnym. W systemie heksadecymalnym każda cyfra może przyjmować wartości od 0 do 9 oraz od A do F, co pozwala na reprezentację 16 różnych wartości. W kontekście adresów MAC, każda para heksadecymalnych cyfr reprezentuje jeden bajt, co jest kluczowe w identyfikacji urządzeń w sieci. Adresy MAC są używane w warstwie łącza danych modelu OSI i są istotne w takich protokołach jak Ethernet. Przykładowe zastosowanie adresów MAC to filtrowanie adresów w routerach, co pozwala na kontrolę dostępu do sieci. Zrozumienie systemów liczbowych, w tym heksadecymalnego, jest istotne dla profesjonalistów w dziedzinie IT, ponieważ wiele protokołów i standardów, takich jak IPv6, stosuje heksadecymalną notację. Ponadto, dobra znajomość adresowania MAC jest niezbędna przy rozwiązywaniu problemów z sieciami komputerowymi, co czyni tę wiedzę kluczową w pracy administratorów sieci.

Pytanie 11

ACPI to interfejs, który pozwala na

A. konwersję sygnału analogowego na cyfrowy
B. zarządzanie konfiguracją oraz energią dostarczaną do różnych urządzeń komputera
C. przeprowadzenie testu weryfikującego działanie podstawowych komponentów komputera, takich jak procesor
D. przesył danych między dyskiem twardym a napędem optycznym
Zrozumienie roli ACPI w kontekście zarządzania energią i konfiguracją sprzętową jest kluczowe dla prawidłowego pojmowania jego funkcji. Odpowiedzi wskazujące na konwersję sygnału analogowego na cyfrowy dotyczą innych technologii, takich jak przetworniki A/C, które są wykorzystywane w elektroakustyce i systemach pomiarowych, a nie w zarządzaniu zasilaniem. Kolejna koncepcja, związana z transferem danych między dyskiem twardym a napędem optycznym, odnosi się do interfejsów komunikacyjnych, takich jak SATA czy SCSI, które odpowiadają za przesył danych, a nie zarządzenie energią czy konfiguracją urządzeń. Ponadto przeprowadzenie testu poprawności działania podzespołów komputera, jak procesor, kojarzy się bardziej z procedurami bootowania oraz diagnostyką sprzętową, w tym standardami POST, a nie z funkcjami ACPI. Typowym błędem myślowym w takich przypadkach jest utożsamianie złożonych funkcji zarządzania komputerem z podstawowymi operacjami na sygnałach lub transferze danych. W rzeczywistości ACPI jest bardziej skomplikowanym i wyspecjalizowanym mechanizmem odpowiedzialnym za efektywne i dynamiczne zarządzanie energią, co jest kluczowe w kontekście nowoczesnych, złożonych systemów komputerowych.

Pytanie 12

Aby podłączyć kabel w module Keystone, jakie narzędzie należy zastosować?

A. narzędzie uderzeniowe
B. bit imbusowy
C. wkrętak typu Torx
D. narzędzie ręczne do zaciskania
Narzędzie uderzeniowe to kluczowy element w procesie podłączania kabli w module Keystone, gdyż umożliwia precyzyjne i skuteczne zaszycie przewodów w gniazdach bez uszkadzania ich. Jego działanie polega na zastosowaniu mechanizmu uderzeniowego, który wprowadza druty do odpowiednich styków w module, zapewniając solidne połączenie. Tego typu narzędzia są szczególnie cenione w branży, ponieważ minimalizują ryzyko błędów oraz przyspieszają proces instalacji. W praktyce, zastosowanie narzędzia uderzeniowego jest zgodne z normami instalacyjnymi, takimi jak TIA/EIA-568, które definiują standardy dla okablowania strukturalnego. Dobrą praktyką jest także regularne sprawdzanie narzędzi przed użyciem, aby zagwarantować ich prawidłowe działanie oraz uniknąć niepotrzebnych problemów podczas pracy. Właściwe zaszycie kabli w module Keystone przyczynia się do wydajności i niezawodności sieci, co jest kluczowe w dzisiejszym środowisku technologicznym.

Pytanie 13

Dane dotyczące kont użytkowników w systemie LINUX są zapisane w pliku

A. /etc/shells
B. /etc/group
C. /etc/passwd
D. /etc/shadow
Plik /etc/passwd jest kluczowym elementem systemu operacyjnego Linux, ponieważ przechowuje podstawowe informacje o kontach użytkowników. W tym pliku znajdują się dane takie jak nazwa użytkownika, identyfikator użytkownika (UID), identyfikator grupy (GID), pełna nazwa użytkownika, katalog domowy oraz powłoka (shell), która jest przypisana do danego użytkownika. Struktura pliku jest jasno zdefiniowana i każdy wpis jest oddzielony dwukropkiem. Na przykład, wpis dla użytkownika może wyglądać następująco: "jan:xyz123:1001:1001:Jan Kowalski:/home/jan:/bin/bash". Warto także pamiętać, że plik /etc/passwd jest dostępny dla wszystkich użytkowników systemu, co oznacza, że nie przechowuje on poufnych informacji, takich jak hasła, które są zamiast tego przechowywane w pliku /etc/shadow, co jest zgodne z najlepszymi praktykami zabezpieczeń. Zrozumienie struktury i zawartości pliku /etc/passwd jest niezbędne dla administratorów systemu oraz osób zajmujących się zarządzaniem tożsamością, ponieważ pozwala na efektywne zarządzanie kontami i uprawnieniami użytkowników.

Pytanie 14

Jaki jest maksymalny transfer danych napędu CD przy prędkości x42?

A. 6300 KiB/s
B. 2400 KiB/s
C. 3600 KiB/s
D. 6000 KiB/s
Wybór innej wartości transferu danych może wynikać z nieporozumienia dotyczącego obliczeń związanych z prędkością odczytu napędu CD. Napędy te operują na określonym standardzie transferu, gdzie prędkość x1 to 150 KiB/s. Dlatego, błędne odpowiedzi mogą wynikać z nieprawidłowych założeń przy mnożeniu lub błędnego rozumienia, czym jest prędkość przesyłu. Na przykład, odpowiedzi 2400 KiB/s i 3600 KiB/s byłyby poprawne dla znacznie niższych prędkości odczytu, takich jak x16 czy x24, co sugeruje brak znajomości standardowych prędkości transferu napędów optycznych. Natomiast 6000 KiB/s, mimo że jest bliższe poprawnej odpowiedzi, nie uwzględnia rzeczywistej wydajności dla x42. Dlatego, jeśli ktoś przyjąłby, że prędkość ta jest liniowa i pomnożyłby 150 KiB/s tylko przez 40, popełniłby błąd, nie zdając sobie sprawy z tego, że przy x42 rzeczywista wydajność przekracza 6000 KiB/s. Zrozumienie tej zależności jest kluczowe, aby uniknąć pomyłek oraz stosować się do standardów przesyłania danych w branży technologii informacyjnej.

Pytanie 15

Jak określamy atak na sieć komputerową, który polega na łapaniu pakietów przesyłanych w sieci?

A. Nasłuchiwanie
B. ICMP echo
C. Skanowanie sieci
D. Spoofing
Skanowanie sieci to technika, która polega na analizowaniu dostępnych urządzeń i ich otwartych portów w celu zrozumienia struktury sieci. Choć skanowanie może być częścią większej strategii oceny bezpieczeństwa, nie jest to technika ataku na przechwytywanie danych. W rzeczywistości, skanowanie jest często wykorzystywane do identyfikacji potencjalnych luk w zabezpieczeniach, co różni się od nasłuchiwania, które koncentruje się na aktywnym odbiorze danych. ICMP echo, znany bardziej jako ping, to protokół używany do sprawdzania dostępności hostów w sieci, a nie do przechwytywania danych. Użycie ICMP echo w kontekście ataku jest mylące, ponieważ jego celem jest jedynie diagnostyka sieciowa, a nie monitorowanie ruchu. Spoofing natomiast odnosi się do techniki, w której atakujący podszywa się pod inny adres IP w celu oszukania systemów zabezpieczeń. Chociaż spoofing może być używany jako część ataku, nie jest bezpośrednio związany z przechwytywaniem pakietów. Bardzo ważne jest zrozumienie, że pomylenie tych pojęć może prowadzić do niewłaściwego projektowania strategii bezpieczeństwa, co zwiększa podatność na rzeczywiste ataki. Właściwe rozróżnienie terminów i technik jest kluczowe w budowaniu efektywnego systemu obrony przed zagrożeniami w sieciach komputerowych.

Pytanie 16

Technologia, która umożliwia szerokopasmowy dostęp do Internetu z różnymi prędkościami pobierania i wysyłania danych, to

A. ISDN
B. MSK
C. QAM
D. ADSL
MSK (Minimum Shift Keying) to metoda modulacji, która jest używana w telekomunikacji, ale nie jest technologią dostępu do Internetu. MSK jest stosowana do przesyłania danych w systemach radiowych i nie zapewnia szerokopasmowego dostępu do Internetu. ISDN (Integrated Services Digital Network) to system, który umożliwia przesyłanie telefonii, wideo i danych przez linie telefoniczne, ale jego prędkości są ograniczone i nie osiągają poziomu szerokopasmowego, typowego dla ADSL. ISDN jest wykorzystywany w przypadku, gdy potrzebne są jednoczesne połączenia głosowe i transmisja danych, ale jego zastosowania są coraz mniej popularne w obliczu rosnącej dostępności technologii szerokopasmowych, takich jak ADSL. QAM (Quadrature Amplitude Modulation) to technika modulacji, która może być używana w różnych technologiach komunikacyjnych, ale sama w sobie nie jest sposobem na zapewnienie dostępu do Internetu. Pomimo że QAM zapewnia efektywną transmisję danych, jej zastosowanie w kontekście dostępu do Internetu wymaga innych technologii, które mogą ją wykorzystać. Typowe błędy myślowe prowadzące do niepoprawnych wniosków obejmują mylenie technologii komunikacyjnych z technologiami dostępu do Internetu oraz niedostateczne zrozumienie różnicy między metodami modulacji a standardami szerokopasmowego przesyłania danych.

Pytanie 17

Czym zajmuje się usługa DNS?

A. weryfikacja poprawności adresów IP
B. weryfikacja poprawności adresów domenowych
C. przekład nazw domenowych na adresy IP
D. przekład adresów IP na nazwy domenowe
Wybierając odpowiedzi, które sugerują sprawdzanie poprawności adresów IP lub domenowych, można łatwo wpaść w pułapkę nieporozumień dotyczących funkcji usług DNS. Usługa DNS nie zajmuje się weryfikacją poprawności adresów IP – jej rola nie obejmuje analizy, czy dany adres IP jest prawidłowy czy nie. Zamiast tego, DNS odpowiada na zapytania o translację nazw domenowych, co oznacza, że jego celem jest zamiana łatwych do zapamiętania nazw na ich odpowiedniki numeryczne. Istnieje również mylne przekonanie, że DNS może tłumaczyć adresy IP na nazwy domenowe, ale to nie jest jego podstawowa funkcja. Chociaż dostępne są techniki, takie jak reverse DNS lookup, które mogą dostarczyć nazwę domenową z adresu IP, są one mniej powszechne i nie stanowią głównego zadania DNS. Istotne jest więc, aby zrozumieć, że główną odpowiedzialnością DNS jest ułatwienie dostępu do zasobów internetowych poprzez translację nazw, a nie weryfikacja ich poprawności. Takie błędne koncepcje mogą prowadzić do nieporozumień, które w dłuższej perspektywie mogą wpłynąć na skuteczność i bezpieczeństwo zarządzania domenami oraz korzystania z zasobów sieciowych.

Pytanie 18

Jednym z rezultatów wykonania poniższego polecenia jest ```sudo passwd -n 1 -x 5 test```

A. automatyczne zablokowanie konta użytkownika test po pięciokrotnym wprowadzeniu błędnego hasła
B. ustawienie możliwości zmiany hasła po jednym dniu
C. wymuszenie konieczności stosowania haseł o długości minimum pięciu znaków
D. zmiana aktualnego hasła użytkownika na test
Odpowiedź dotycząca ustawienia możliwości zmiany hasła po upływie jednego dnia jest poprawna, ponieważ polecenie 'sudo passwd -n 1 -x 5 test' ustawia parametry polityki haseł dla użytkownika 'test'. Opcja '-n 1' oznacza, że użytkownik będzie mógł zmienić swoje hasło po jednym dniu od ostatniej zmiany, co sprzyja bezpieczeństwu, umożliwiając regularne aktualizowanie haseł. Z kolei '-x 5' określa maksymalny czas ważności hasła, wynoszący pięć dni, po którym hasło musi być zmienione. Tego typu regulacje są zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem w systemach operacyjnych, które zalecają regularną wymianę haseł, aby ograniczyć ryzyko naruszeń. Przykładem zastosowania tej komendy może być zarządzanie kontami dostępu w organizacjach, gdzie bezpieczeństwo danych jest kluczowe, a użytkownicy są zobowiązani do regularnej zmiany haseł, co redukuje ryzyko nieautoryzowanego dostępu.

Pytanie 19

W norma PN-EN 50174 brak jest wskazówek odnoszących się do

A. zapewnienia jakości instalacji kablowych
B. realizacji instalacji wewnątrz obiektów
C. uziemień instalacji urządzeń przetwarzania danych
D. realizacji instalacji na zewnątrz obiektów
Norma PN-EN 50174, która dotyczy instalacji systemów okablowania strukturalnego, nie wnosi wytycznych dotyczących zapewnienia jakości instalacji okablowania. Użytkownicy mogą być mylnie przekonani, że jakość instalacji można ocenić na podstawie samej normy, jednak w rzeczywistości normy te nie obejmują kryteriów jakości, które są kluczowe dla prawidłowego funkcjonowania systemów. Jakość instalacji powinna być zapewniona poprzez stosowanie odpowiednich procedur testowych oraz standardów jakości, takich jak ISO 9001, które koncentrują się na systemach zarządzania jakością. W odniesieniu do wykonania instalacji wewnątrz budynków, norma PN-EN 50174 oferuje wskazówki, lecz nie jest jedynym dokumentem, na którym można się opierać. Z kolei instalacje na zewnątrz budynków również wymagają szczegółowych wytycznych, które nie są zawarte wyłącznie w tej normie. Każda instalacja musi spełniać określone normy dotyczące odporności na warunki atmosferyczne oraz ochrony przed uszkodzeniami mechanicznymi, co należy łączyć z innymi przepisami czy normami branżowymi. Stąd wynika, że ignorowanie aspektów jakości oraz specyfikacji dla instalacji zewnętrznych prowadzi do błędnych wniosków, przyczyniających się do nieprawidłowej eksploatacji systemów okablowania.

Pytanie 20

Na zaprezentowanym schemacie logicznym sieci przedstawiono

Ilustracja do pytania
A. 2 kampusowe punkty dystrybucji
B. 7 budynkowych punktów dystrybucji
C. 9 gniazd telekomunikacyjnych
D. 4 kondygnacyjne punkty sieciowe
Odpowiedź jest prawidłowa ponieważ na schemacie logicznym sieci przedstawiono dokładnie 9 gniazd telekomunikacyjnych oznaczonych jako TO czyli Telecommunications Outlet. Gniazda te stanowią końcowy punkt dostępu do sieci dla użytkowników i urządzeń. W praktyce są to fizyczne połączenia takie jak złącza RJ-45 które umożliwiają podłączenie urządzeń sieciowych do sieci LAN. Umiejętne rozmieszczenie gniazd telekomunikacyjnych jest kluczowe w projektowaniu sieci zapewniając optymalny dostęp i minimalizując ryzyko przeciążenia sieci. Standardy takie jak ISO/IEC 11801 wskazują na właściwe rozmieszczenie i ilość gniazd w zależności od przeznaczenia pomieszczeń i ich wielkości co wpływa na efektywność i skalowalność infrastruktury sieciowej. Znajomość liczby i rozmieszczenia gniazd jest istotna dla techników odpowiedzialnych za utrzymanie i rozwój sieci ponieważ umożliwia to prawidłowe planowanie okablowania i rozmieszczenia urządzeń sieciowych.

Pytanie 21

Protokołem umożliwiającym bezpołączeniowe przesyłanie datagramów jest

A. ARP
B. IP
C. UDP
D. TCP
Wybór IP, TCP lub ARP jako protokołu do bezpołączeniowego dostarczania datagramów wykazuje pewne nieporozumienia dotyczące funkcji i charakterystyki tych protokołów. IP (Internet Protocol) jest protokołem warstwy sieciowej, który odpowiada za adresowanie i routing pakietów w sieci, ale nie jest protokołem transportowym. Nie zapewnia on bezpośredniej komunikacji pomiędzy aplikacjami ani zarządzania tranzytem danych, co czyni go niewłaściwym wyborem w kontekście dostarczania datagramów. TCP, mimo że jest protokołem bezpołączeniowym, oferuje pełne zarządzanie połączeniami, co obejmuje mechanizmy kontroli błędów i retransmisji, co wprowadza dodatkowe opóźnienia i narzuty, przez co nie jest odpowiedni do sytuacji, gdzie kluczowe jest szybkie dostarczanie danych. ARP (Address Resolution Protocol) działa na warstwie łącza danych i ma na celu mapowanie adresów IP na adresy MAC, co również nie ma związku z dostarczaniem datagramów na poziomie transportowym. Zrozumienie specyfiki tych protokołów jest kluczowe, aby uniknąć błędnych wniosków i zastosować odpowiednie technologie w odpowiednich kontekstach, co jest podstawą skutecznej komunikacji sieciowej. Podczas wyboru protokołu, ważne jest rozważenie wymagań aplikacji oraz charakterystyki przesyłanych danych, aby dostosować odpowiednią metodę komunikacji.

Pytanie 22

Mysz bezprzewodowa jest podłączona do komputera, jednak kursor nie porusza się gładko i „skacze” po ekranie. Możliwą przyczyną problemu z urządzeniem może być

A. brak baterii
B. wyczerpywanie się baterii zasilającej
C. uszkodzenie mikroprzełącznika
D. uszkodzenie lewego klawisza
Odpowiedź dotycząca wyczerpywania się baterii zasilającej jest prawidłowa, ponieważ jest to najczęstsza przyczyna problemów z płynnością ruchu kursora w przypadku myszy bezprzewodowych. Gdy baterie w myszce zaczynają się rozładowywać, urządzenie może nie być w stanie wysyłać stabilnych sygnałów do komputera, co skutkuje "skakaniem" kursora. W praktyce, użytkownicy powinni regularnie sprawdzać poziom naładowania baterii, a w przypadku zauważenia problemów z działaniem myszy, pierwszym krokiem powinno być wymienienie baterii. Dobre praktyki w branży sugerują również korzystanie z akumulatorów wielokrotnego ładowania, co jest bardziej ekonomiczne i ekologiczne. Dodatkowo, warto zwrócić uwagę na powierzchnię, na której używamy myszki; niektóre materiały mogą wpływać na precyzję ruchu, ale w kontekście tego pytania, problemem jest niewątpliwie wyczerpywanie się baterii.

Pytanie 23

Jak nazywa się serwer Windows, na którym zainstalowano usługę Active Directory?

A. serwerem WWW
B. serwerem DHCP
C. serwerem plików
D. kontrolerem domeny
Serwer Windows z zainstalowaną usługą Active Directory nazywa się kontrolerem domeny, ponieważ pełni kluczową rolę w zarządzaniu infrastrukturą informatyczną w organizacjach. Kontroler domeny jest odpowiedzialny za przechowywanie obiektów, takich jak konta użytkowników, komputery oraz zasoby sieciowe, a także za autoryzację i uwierzytelnianie użytkowników, co zapewnia bezpieczeństwo i kontrolę dostępu do zasobów. Korzystając z Active Directory, administratorzy mogą centralnie zarządzać politykami bezpieczeństwa, przypisywać uprawnienia oraz konfigurować zasady grupowe, co jest zgodne z najlepszymi praktykami w zakresie zarządzania systemami informatycznymi. Przykładem zastosowania kontrolera domeny może być organizacja, w której pracownicy logują się do swoich komputerów za pomocą tych samych poświadczeń, co umożliwia im dostęp do wspólnych zasobów i aplikacji w sposób bezpieczny i efektywny. Warto zaznaczyć, że kontrolery domeny mogą być zreplikowane w środowisku, co zwiększa niezawodność i dostępność usług.

Pytanie 24

Aplikacja komputerowa, która umożliwia zarządzanie plikami oraz folderami, to:

A. menedżer sprzętu
B. edytor tekstu
C. system plików
D. menedżer plików
Menedżer plików to aplikacja, która umożliwia użytkownikom zarządzanie plikami i katalogami na komputerze lub innym urządzeniu. Jego głównym zadaniem jest umożliwienie przeglądania, organizowania, kopiowania, przenoszenia oraz usuwania plików. Przykładem menedżera plików są narzędzia takie jak Windows Explorer czy Finder w systemie macOS. Użytkownicy mogą wizualizować strukturę folderów, co ułatwia nawigację i zarządzanie danymi. Dobre praktyki w korzystaniu z menedżera plików obejmują organizowanie plików w logiczne katalogi, co zwiększa efektywność pracy i ułatwia lokalizację potrzebnych danych. Warto również zaznaczyć, że nowoczesne menedżery plików często oferują dodatkowe funkcje, takie jak tagowanie plików, co pozwala na ich łatwiejsze wyszukiwanie. Używanie menedżerów plików to standardowa praktyka w codziennej pracy z komputerem, co podkreśla ich znaczenie w zarządzaniu danymi.

Pytanie 25

Element systemu komputerowego przedstawiony na ilustracji to

Ilustracja do pytania
A. GPU
B. moduł pamięci Cache
C. karta graficzna do laptopa
D. dysk SSD
Dysk SSD, czyli Solid State Drive, to naprawdę nowoczesne urządzenie do przechowywania danych. Wykorzystuje pamięć flash, co oznacza, że jest dużo szybszy i bardziej niezawodny niż tradycyjne dyski HDD. Brak ruchomych części sprawia, że nie jest tak podatny na uszkodzenia mechaniczne. Dlatego dyski SSD są teraz powszechnie używane w komputerach, laptopach i serwerach, zwłaszcza tam, gdzie szybkość dostępu do danych ma kluczowe znaczenie. Czasami naprawdę można zauważyć różnicę w czasach ładowania systemu czy aplikacji – to potrafi znacznie poprawić komfort pracy. Z tego co pamiętam, dyski SSD zazwyczaj łączą się przez interfejsy SATA, M.2 lub PCIe, co daje różne prędkości transferu. Dodatkowo, pamięć flash zużywa mniej energii, co jest super ważne w przenośnych urządzeniach jak laptopy. Tak więc, podsumowując, dyski SSD to naprawdę kluczowy element w dzisiejszych komputerach, oferując świetną wydajność, niezawodność i oszczędność energii.

Pytanie 26

Wykonanie polecenia tar -xf dane.tar w systemie Linux spowoduje

A. pokazanie informacji o zawartości pliku dane.tar
B. stworzenie archiwum dane.tar, które zawiera kopię katalogu /home
C. wyodrębnienie danych z archiwum o nazwie dane.tar
D. przeniesienie pliku dane.tar do katalogu /home
Polecenie 'tar -xf dane.tar' jest używane w systemie Linux do wyodrębnienia zawartości archiwum tar o nazwie 'dane.tar'. Flaga '-x' oznacza 'extract', co jest kluczowe, ponieważ informuje program tar, że zamierzamy wydobyć pliki z archiwum. Flaga '-f' wskazuje, że będziemy pracować z plikiem, a następnie podajemy nazwę pliku archiwum. Pozycjonowanie tych flag jest istotne, ponieważ tar interpretuje je w określony sposób. W praktyce, kiedy używasz tego polecenia, otrzymujesz dostęp do zawartości archiwum, która może zawierać różne pliki i katalogi, w zależności od tego, co zostało pierwotnie skompresowane. Użycie tar jest powszechne w zadaniach związanych z tworzeniem kopii zapasowych oraz przenoszeniem zbiorów danych między systemami. Dobrą praktyką jest również używanie flagi '-v', co pozwala na wyświetlenie informacji o plikach podczas ich wyodrębniania, co ułatwia monitorowanie postępu. Warto również wspomnieć, że tar jest integralną częścią wielu procesów w systemach opartych na Unixie, a znajomość jego działania jest niezbędna dla administratorów systemów.

Pytanie 27

Obniżenie ilości jedynek w masce pozwala na zaadresowanie

A. większej liczby sieci i większej liczby urządzeń
B. mniejszej liczby sieci i większej liczby urządzeń
C. większej liczby sieci i mniejszej liczby urządzeń
D. mniejszej liczby sieci i mniejszej liczby urządzeń
Jeśli zmniejszysz liczbę jedynek w masce podsieci, to zwiększysz liczbę zer, co pozwala na zaadresowanie większej ilości urządzeń w sieci. Weźmy na przykład maskę /24 (255.255.255.0) – mamy w niej 256 adresów IP, a 254 z nich można przypisać do urządzeń (bo adresy 0 i 255 są już zajęte). Kiedy zmienimy maskę na /23 (255.255.254.0), dostajemy aż 512 adresów IP i możemy podłączyć 510 urządzeń. To często się stosuje w większych sieciach lokalnych, gdzie liczba urządzeń rośnie, jak komputery, drukarki czy smartfony. Dobrze jest też planować zakresy adresów IP, myśląc o przyszłości, żeby potem nie było problemów. Subnetting to naprawdę ważna sprawa dla inżynierów sieciowych, a znajomość standardów, jak RFC 950, pomaga w efektywnym zarządzaniu sieciami.

Pytanie 28

Który z poniższych zapisów stanowi właściwy adres w wersji IPv6?

A. 2001:DB8::BAF::FE94
B. 2001-DB8-BAF-FE94
C. 2001:DB8::BAF:FE94
D. 2001.DB8.BAF.FE94
Wybór adresu IPv6, który nie jest zgodny z przyjętymi standardami, może prowadzić do poważnych problemów z komunikacją w sieciach komputerowych. W przypadku adresu 2001:DB8::BAF::FE94 występuje błąd polegający na podwójnym użyciu podwójnego dwukropka (::), co nie jest dozwolone. Podwójny dwukropek może być użyty tylko raz w adresie IPv6, aby zastąpić jedną lub więcej sekwencji zer, co oznacza, że jego wielokrotne użycie w jednym adresie prowadzi do niejednoznaczności i błędów w interpretacji adresu przez routery i inne urządzenia sieciowe. Podobnie, zapis 2001-DB8-BAF-FE94 używa myślników zamiast dwukropków, co również narusza standardy RFC 4291. Poprawne zapisywanie adresów IPv6 wymaga stosowania wyłącznie dwukropków jako separatorów, a nie myślników czy kropek, co jest częstym błędem wynikającym z mylenia konwencji zapisu. Zapis 2001.DB8.BAF.FE94 również nie spełnia norm, gdyż użycie kropek jako separatorów jest typowe dla adresów IPv4, co może prowadzić do zamieszania i nieporozumień w kontekście protokołów sieciowych. W związku z tym, klasyczne błędy w adresacji IPv6 mogą wynikać z braku zrozumienia zasad składni i struktury tego formatu adresów, co jest kluczowe dla prawidłowego działania współczesnych sieci komputerowych.

Pytanie 29

Który z elementów przedstawionych na diagramie karty dźwiękowej na rysunku jest odpowiedzialny za cyfrowe przetwarzanie sygnałów?

Ilustracja do pytania
A. Syntezator
B. Przetwornik A/D
C. Mikser
D. Procesor DSP
Procesor DSP, czyli Digital Signal Processor, to kluczowy element w cyfrowym przetwarzaniu sygnałów na karcie dźwiękowej. Jego zadaniem jest wykonywanie złożonych obliczeń matematycznych w czasie rzeczywistym, co umożliwia skuteczne przetwarzanie sygnałów audio. DSP jest w stanie realizować zadania takie jak filtrowanie sygnałów, kompresja, redukcja szumów oraz efektów dźwiękowych. Jego architektura jest zoptymalizowana do szybkiego przetwarzania danych, co czyni go niezastąpionym w systemach audio nowoczesnych rozwiązań multimedialnych. Dzięki zastosowaniu procesora DSP karty dźwiękowe mogą oferować zaawansowane funkcje takie jak przestrzenny dźwięk surround czy dynamiczna korekcja dźwięku. W standardach branżowych DSP jest powszechnie uznawany za fundament efektywnego przetwarzania sygnałów cyfrowych, co pozwala na osiągnięcie wysokiej jakości dźwięku w aplikacjach profesjonalnych oraz konsumenckich. Jego wykorzystanie w aplikacjach muzycznych, nadawczo-odbiorczych czy systemach komunikacji cyfrowej podkreśla jego uniwersalność i skuteczność. Procesory DSP są stosowane także w systemach redukcji echa oraz w diagnostyce medycznej, co pokazuje ich szerokie zastosowanie w różnych dziedzinach technologicznych.

Pytanie 30

Jakim materiałem eksploatacyjnym dysponuje ploter solwentowy?

A. farba na bazie rozpuszczalników
B. zestaw metalowych narzędzi tnących
C. atrament w żelu
D. element tnący
Wybór niewłaściwego materiału eksploatacyjnego w kontekście ploterów solwentowych może prowadzić do wielu problemów, w tym obniżenia jakości druku i zwiększenia kosztów. Głowica tnąca, mimo że jest istotnym elementem w procesie cięcia, nie jest materiałem eksploatacyjnym, lecz komponentem, który wykonuje fizyczne cięcie materiałów, takich jak folie lub papier. Wybór zestawu metalowych rylców również nie ma zastosowania w ploterach solwentowych, ponieważ są to narzędzia bardziej związane z innego rodzaju technologiami użytkowymi, jak np. plotery tnące. Atrament żelowy jest przeznaczony do innych typów drukarek, w szczególności tych, które wykorzystują technologię druku atramentowego opartą na wodzie. Często błędem myślowym jest mylenie różnych technologii druku oraz materiałów eksploatacyjnych, co prowadzi do nieefektywnego wykorzystania sprzętu. Warto zaznaczyć, że dobór odpowiednich materiałów eksploatacyjnych powinien opierać się na znajomości specyfikacji urządzeń oraz wymagań dotyczących jakości i trwałości wydruków. W branży druku wielkoformatowego, znajomość odpowiednich norm i praktyk jest kluczowa dla osiągnięcia pożądanych rezultatów.

Pytanie 31

Czym jest dziedziczenie uprawnień?

A. przeniesieniem uprawnień z obiektu podrzędnego do obiektu nadrzędnego
B. przekazywaniem uprawnień od jednego użytkownika do innego
C. przyznawaniem uprawnień użytkownikowi przez administratora
D. przeniesieniem uprawnień z obiektu nadrzędnego do obiektu podrzędnego
Dziedziczenie uprawnień to kluczowy mechanizm w zarządzaniu dostępem w systemach informatycznych, który polega na przenoszeniu uprawnień z obiektu nadrzędnego na obiekt podrzędny. Dzięki temu, gdy administrator przydziela uprawnienia do folderu głównego (nadrzędnego), wszystkie podfoldery (obiekty podrzędne) automatycznie dziedziczą te same uprawnienia. Działa to na zasadzie propagacji uprawnień, co znacznie upraszcza zarządzanie dostępem i minimalizuje ryzyko błędów wynikających z ręcznego przydzielania uprawnień do każdego obiektu z osobna. Na przykład, w systemach opartych na modelu RBAC (Role-Based Access Control), gdy rola użytkownika ma przypisane określone uprawnienia do folderu, wszystkie pliki oraz podfoldery w tym folderze będą miały te same uprawnienia, co ułatwia zarządzanie i zapewnia spójność polityki bezpieczeństwa. Dobre praktyki zalecają stosowanie dziedziczenia uprawnień w organizacjach, aby zredukować złożoność administracyjną oraz zwiększyć efektywność zarządzania dostępem.

Pytanie 32

Po przeprowadzeniu eksportu klucza HKCR zostanie utworzona kopia rejestru, zawierająca dane dotyczące konfiguracji

A. powiązań między typami plików a aplikacjami
B. sprzętu komputera
C. pulpitu aktualnie zalogowanego użytkownika
D. kont użytkowników
Niepoprawne odpowiedzi sugerują różne aspekty, które nie są związane z rzeczywistą funkcją klucza HKCR w rejestrze systemu Windows. Przykładowo, konta użytkowników nie mają związku z tym kluczem, ponieważ HKCR koncentruje się na tym, jak system operacyjny interpretuje i zarządza różnymi typami plików, a nie na specyficznych ustawieniach użytkowników. Odnośnie sprzętu komputera, również nie ma to zastosowania w kontekście klucza HKCR, gdyż ten klucz nie przechowuje informacji o sprzęcie. Natomiast pulpity zalogowanych użytkowników to również temat niezwiązany z HKCR, ponieważ klucz ten nie dotyczy ustawień związanych z interfejsem użytkownika, a jedynie z powiązaniami plików. Wszystkie te nieporozumienia mogą wynikać z błędnego rozumienia roli rejestru systemowego w zarządzaniu konfiguracjami systemowymi i aplikacjami. Właściwe zrozumienie, że HKCR dotyczy kojarzenia typów plików z aplikacjami, to klucz do efektywnego wykorzystania wiedzy o rejestrze, co jest zgodne z najlepszymi praktykami w zakresie zarządzania systemami Windows.

Pytanie 33

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
B. wysyła prośbę o rozpoczęcie transmisji
C. czeka na żeton pozwalający na rozpoczęcie nadawania
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
W metodzie CSMA/CD, kiedy stacja zamierza rozpocząć nadawanie, kluczowym etapem jest nasłuch na obecność sygnału w sieci. Gdy stacja wykryje ruch, musi czekać, aż nośnik będzie wolny. To podejście zapobiega kolizjom, które mogą wystąpić, gdy więcej niż jedna stacja podejmuje próbę nadawania jednocześnie. Czekanie na wolny nośnik jest istotne, ponieważ w przeciwnym razie dane mogą zostać usunięte lub zniekształcone, co wymagałoby ponownego nadawania, prowadząc do obniżenia efektywności sieci. Przykładem zastosowania tej zasady jest tradycyjna sieć Ethernet, gdzie kolizje są sygnalizowane przez specjalny sygnał zwrotny, a stacje muszą ponownie spróbować nadawania po losowym czasie. W praktyce, stosowanie CSMA/CD w sieciach lokalnych jest zgodne z normą IEEE 802.3, która definiuje ramy dla Ethernetu. Przestrzeganie tego wzorca działania jest kluczowe dla utrzymania płynności transmisji danych i minimalizacji opóźnień w komunikacji.

Pytanie 34

Jakie urządzenie stosuje się do pomiaru rezystancji?

A. watomierz
B. woltomierz
C. amperomierz
D. omomierz
Wybór nieodpowiednich przyrządów do pomiaru rezystancji często wynika z nieporozumienia dotyczącego ich funkcji. Watomierz jest narzędziem przeznaczonym do pomiaru mocy elektrycznej, a nie rezystancji. Jego działanie opiera się na pomiarze zarówno napięcia, jak i prądu w obwodzie, co pozwala na obliczenie zużywanej energii. W praktyce nie można użyć watomierza do oceny rezystancji, ponieważ nie dostarcza on informacji o oporze elektrycznym elementów. Amperomierz z kolei służy do pomiaru natężenia prądu w obwodzie. W celu pomiaru rezystancji, trzeba znać wartość prądu i napięcia, co wymaga użycia dodatkowych wzorów matematycznych i może prowadzić do błędów pomiarowych. Użycie amperomierza do pomiaru rezystancji jest niepraktyczne i złożone. Woltomierz jest urządzeniem do pomiaru napięcia w obwodzie elektrycznym, a jego zastosowanie do mierzenia rezystancji wymaga dodatkowych obliczeń, co w praktyce czyni go mniej efektywnym niż omomierz. Typowym błędem w myśleniu jest założenie, że każdy przyrząd pomiarowy można wykorzystać w dowolnym celu. Kluczowe jest zrozumienie specyfiki urządzeń pomiarowych oraz ich właściwego zastosowania, co jest fundamentem dla prawidłowego przeprowadzania pomiarów i analizy obwodów elektrycznych.

Pytanie 35

Komputer uzyskuje dostęp do Internetu za pośrednictwem sieci lokalnej. Gdy użytkownik wpisuje w przeglądarkę internetową adres www.wp.pl, nie może otworzyć strony WWW, natomiast podanie adresu IP, przykładowo 212.77.100.101, umożliwia otwarcie tej strony. Jakie mogą być tego powody?

A. Brak adresu bramy
B. Brak serwera DNS
C. Brak serwera WINS
D. Brak serwera PROXY
Brak serwera DNS jest kluczowym problemem w tej sytuacji, ponieważ DNS (Domain Name System) odpowiada za tłumaczenie nazw domen na adresy IP. Kiedy użytkownik wpisuje adres strony, np. www.wp.pl, system operacyjny żąda od serwera DNS przetłumaczenia tej nazwy na odpowiadający jej adres IP. Jeśli serwer DNS nie działa lub jest niedostępny, komputer nie jest w stanie nawiązać połączenia z odpowiednim serwerem, co skutkuje brakiem dostępu do strony. W przypadku wpisania bezpośredniego adresu IP, system omija proces DNS, co pozwala na nawiązanie połączenia z serwerem. W praktyce, aby zapewnić prawidłowe działanie aplikacji internetowych i dostęp do zasobów w sieci, ważne jest, aby konfiguracja serwera DNS była poprawna oraz aby urządzenia w sieci miały odpowiednie ustawienia DNS. Standardy branżowe, takie jak RFC 1035, definiują mechanizmy działania DNS, które są kluczowe dla prawidłowego funkcjonowania internetu.

Pytanie 36

Wykonanie polecenia net localgroup w systemie Windows skutkuje

A. tworzeniem dowolnej grupy użytkowników
B. defragmentowaniem plików
C. prezentowaniem lokalnych grup użytkowników zdefiniowanych w systemie
D. kompresowaniem wszystkich plików
Polecenie 'net localgroup' w systemie Windows jest narzędziem wiersza poleceń, które pozwala na zarządzanie lokalnymi grupami użytkowników na danym urządzeniu. Używając tego polecenia, administratorzy mogą wyświetlać listę wszystkich zdefiniowanych w systemie lokalnych grup użytkowników, co jest istotne dla zarządzania dostępem do zasobów i zapewnienia bezpieczeństwa systemu. Przykładem zastosowania może być sytuacja, w której administrator chce zweryfikować, jakie grupy użytkowników istnieją w systemie przed dodaniem nowego użytkownika do odpowiedniej grupy. To podejście jest zgodne z najlepszymi praktykami zarządzania użytkownikami i grupami w systemach Windows, umożliwia kontrolę nad uprawnieniami i dostosowanie ustawień bezpieczeństwa. Zrozumienie działania polecenia 'net localgroup' pozwala również na lepsze planowanie i audyt polityki bezpieczeństwa w organizacji.

Pytanie 37

Jak najlepiej chronić zgromadzone dane przed ich odczytem w przypadku kradzieży komputera?

A. ustawić atrybut ukryty dla wszystkich ważnych plików
B. wdrożyć szyfrowanie partycji
C. chronić konta silnym hasłem
D. przygotować punkt przywracania systemu
Szyfrowanie partycji to jedna z najskuteczniejszych metod ochrony danych w przypadku kradzieży komputera. Gdy partycja jest zaszyfrowana, wszystkie dane na niej przechowywane są nieczytelne dla osób, które nie dysponują odpowiednim kluczem szyfrowania. Przykładem popularnych narzędzi do szyfrowania partycji są BitLocker w systemie Windows i FileVault w macOS. W praktyce zastosowanie szyfrowania partycji oznacza, że nawet w przypadku fizycznego dostępu do dysku twardego, dane nie mogą być odczytane bez posiadania klucza dostępu. Ponadto, zgodnie z najlepszymi praktykami bezpieczeństwa, szyfrowanie danych powinno być integralną częścią strategii ochrony informacji, szczególnie w kontekście danych wrażliwych, takich jak dane osobowe czy finansowe. Warto także zainwestować w regularne aktualizacje oprogramowania oraz tworzenie kopii zapasowych, aby dodatkowo zwiększyć bezpieczeństwo zgromadzonych danych.

Pytanie 38

Jakie znaczenie ma parametr NVP (Nominal Velocity of Propagation) podczas pomiarów okablowania strukturalnego?

A. na szybkość
B. na koszt
C. na jakość
D. na długość
Zrozumienie wpływu NVP na różne aspekty okablowania strukturalnego jest kluczowe, aby uniknąć nieporozumień. Na przykład, odpowiedź sugerująca, że NVP ma wpływ na prędkość, może wydawać się logiczna, jednak w rzeczywistości NVP to już określona prędkość, a nie parametr, który ją zmienia. Inną mylną koncepcją jest stwierdzenie, że NVP wpływa na jakość sygnału. Choć NVP pośrednio może wpływać na jakość w kontekście odległości, to nie jest to bezpośredni czynnik determinujący. Jakość sygnału bardziej zależy od parametrów takich jak zakłócenia, tłumienie czy zastosowane materiały. Ponadto, wybór parametrów kabli nie jest bezpośrednio związany z ceną, ponieważ koszty komponentów są określane przez inne czynniki, takie jak materiały i technologia produkcji. Pojęcie długości ma znaczenie, ale tylko w kontekście zastosowania NVP do obliczeń wymaganych dla właściwego doboru długości kabli w instalacji. Często błędne interpretacje tych parametrów prowadzą do niewłaściwego doboru materiałów i projektowania sieci, co w konsekwencji może skutkować problemami z wydajnością i niezawodnością systemu. Właściwe zrozumienie NVP oraz jego zastosowanie w zgodności z normami branżowymi, takimi jak ANSI/TIA-568, jest niezbędne dla osiągnięcia optymalnych rezultatów w instalacjach okablowania strukturalnego.

Pytanie 39

W złączu zasilania SATA uszkodzeniu uległ żółty kabel. Jakie to ma konsekwencje dla napięcia, które nie jest przesyłane?

A. 8,5V
B. 3,3V
C. 5V
D. 12V
Odpowiedzi 5V, 8,5V oraz 3,3V są niepoprawne w kontekście pytania o uszkodzony żółty przewód w wtyczce SATA. Wtyczki SATA są zdefiniowane przez standardy ATX, w których przewód żółty jest jednoznacznie przypisany do napięcia 12V, co oznacza, że awaria tego przewodu uniemożliwia dostarczenie tego napięcia do urządzeń, które go wymagają. Odpowiedź 5V odnosi się do przewodu czerwonego, który jest używany do zasilania komponentów, ale nie dotyczy problemu z żółtym przewodem. Z kolei 8,5V to wartość, która nie jest standardowo wykorzystywana w systemach zasilania komputerowego, co czyni ją całkowicie nieadekwatną w tym kontekście. Przewód pomarańczowy dostarcza 3,3V, które również nie jest związane z napięciem 12V. Często popełnianym błędem jest mylenie napięć oraz przypisywanie ich do niewłaściwych przewodów, co może wynikać z braku znajomości zasad działania zasilaczy oraz ich standardów. W praktyce, niedopatrzenie podczas podłączania lub diagnozowania problemów z zasilaniem może prowadzić do poważnych uszkodzeń sprzętu, dlatego ważne jest, aby zrozumieć, jakie napięcia są dostarczane przez konkretne przewody w złączach zasilających.

Pytanie 40

W dwóch sąsiadujących pomieszczeniach w pewnej firmie występują bardzo silne zakłócenia elektromagnetyczne. Aby osiągnąć jak największą przepustowość podczas działania istniejącej sieci LAN, jakie medium transmisyjne powinno zostać użyte?

A. kabel telefoniczny
B. kabel światłowodowy
C. skrętkę nieekranowaną
D. fale elektromagnetyczne w zakresie podczerwieni
Kabel światłowodowy jest najlepszym rozwiązaniem w przypadku silnych zakłóceń elektromagnetycznych, jak te występujące w przyległych pomieszczeniach. Dzięki wykorzystaniu światła jako medium transmisyjnego, kable światłowodowe są całkowicie odporne na zakłócenia elektromagnetyczne, co zapewnia nieprzerwaną i wysoką przepustowość danych. W zastosowaniach biznesowych, gdzie stabilność i prędkość połączenia są kluczowe, światłowody stają się standardem. Przykłady ich zastosowania obejmują centra danych oraz infrastruktury telekomunikacyjne, gdzie duża ilość danych musi być przesyłana w krótkim czasie. Co więcej, światłowody mogą przesyłać sygnały na dużą odległość bez znacznej degradacji jakości, co jest istotne w dużych biurowcach czy kampusach. Według standardów IEEE, światłowody są zalecane do zastosowań w sieciach lokalnych, zwłaszcza tam, gdzie wymagane są wysokie prędkości oraz niezawodność, co czyni je najlepszym wyborem w warunkach dużych zakłóceń.