Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 11:17
  • Data zakończenia: 22 maja 2025 11:47

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. pola magnetycznego
C. zmiany natężenia dźwięku
D. zmiany temperatury
Czujnik kontaktronowy działa na zasadzie detekcji pola magnetycznego. W jego wnętrzu znajdują się dwa metalowe styki, które są zamknięte w hermetycznej obudowie. Gdy w pobliżu czujnika pojawia się pole magnetyczne, styki te zbliżają się do siebie, co skutkuje zmianą stanu czujnika z otwartego na zamknięty. To zjawisko jest wykorzystywane w systemach sygnalizacji włamania oraz w różnych zastosowaniach automatyki budynkowej. Na przykład, w systemach alarmowych, czujniki kontaktronowe mogą być umieszczane w drzwiach i oknach, by informować o ich otwarciu. Dobrą praktyką jest umieszczanie ich w miejscach, gdzie mogą być łatwo zintegrowane z centralą alarmową, co zwiększa bezpieczeństwo obiektu. Warto również zauważyć, że kontaktrony są preferowane w sytuacjach, gdzie wymagana jest wysoka niezawodność oraz estetyka, ponieważ ich działanie jest ciche, a sama konstrukcja jest minimalistyczna.

Pytanie 2

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. ekranu.
B. żyły.
C. izolacji zewnętrznej.
D. izolacji wewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 3

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. krzyżowym
B. gwiazdkowym
C. płaskim
D. czworokątnym
Wkręty z łbem oznaczonym symbolem PH, czyli Phillips, charakteryzują się krzyżowym rowkiem, który pozwala na lepsze dopasowanie wkrętaka. Użycie wkrętaka krzyżowego pozwala na przekazywanie większego momentu obrotowego, co ułatwia wkręcanie i odkręcanie. Dzięki specyficznej konstrukcji łba, wkrętak krzyżowy minimalizuje ryzyko poślizgu, co jest szczególnie ważne w zastosowaniach wymagających precyzyjnego dokręcenia. W praktyce, wkręty Phillips są powszechnie stosowane w konstrukcji mebli, elektroniki oraz w różnych projektach DIY. Warto również zaznaczyć, że wkrętaki krzyżowe są dostępne w różnych rozmiarach, co pozwala na ich użycie w szerokim zakresie zastosowań. W kontekście standardów przemysłowych, wkręty z łbem Phillips są jednymi z najczęściej stosowanych, co sprawia, że znajomość odpowiedniego narzędzia jest niezbędna w pracy każdego fachowca.

Pytanie 4

Kiedy instalacja systemu monitoringu realizowana jest przy użyciu przewodu współosiowego zakończonego złączami typu F, do podłączenia kamery analogowej należy użyć złącza typu

A. F/IEC żeński
B. F/IEC męski
C. F/BNC
D. F/chinch
Wybór niewłaściwej przejściówki do podłączenia kamery analogowej do instalacji monitoringu może prowadzić do wielu problemów, w tym do złej jakości obrazu czy niestabilności sygnału. Przejściówka F/chinch nie jest właściwym rozwiązaniem, ponieważ złącze chinch, choć popularne w zastosowaniach audio, nie jest standardowo stosowane w systemach wideo. Użycie takiej przejściówki może skutkować problemami z przesyłem sygnału oraz nieodpowiednią impedancją, co prowadzi do zniekształceń obrazu. Z kolei przejściówka F/IEC męski i F/IEC żeński nie są odpowiednie, ponieważ złącza IEC zazwyczaj wykorzystywane są w zastosowaniach związanych z przesyłem sygnałów elektrycznych, a nie wideo. Takie podejście może również sugerować zrozumienie, że różne złącza mogą być ze sobą zamienne, co jest błędne. W systemach monitoringu kluczowe jest użycie odpowiednich złącz, które zapewniają stabilne połączenia i minimalizują straty sygnału. Dlatego, aby uniknąć problemów z jakością obrazu, zawsze należy stosować standardowe złącza BNC, które są dedykowane do tego typu aplikacji, co pozwala na zachowanie integralności sygnału oraz zgodności z branżowymi standardami.

Pytanie 5

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Oscyloskop
B. Multimetr
C. Mostek RLC
D. Waromierz
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 6

Elementy urządzeń elektronicznych przeznaczone do recyklingu nie powinny być

A. oddzielane od obudowy z materiałów sztucznych
B. demontowane ręcznie, w przypadku gdy zawierają wysoką ilość metali szlachetnych
C. demontowane ręcznie, jeśli są wykonane z stali lub aluminium
D. składowane w pomieszczeniach bezpośrednio na podłożu
Gromadzenie elementów urządzeń elektronicznych bezpośrednio na ziemi jest niewłaściwe i sprzeczne z zasadami ochrony środowiska oraz dobrymi praktykami recyklingu. Tego rodzaju praktyka może prowadzić do zanieczyszczenia gleby i wód gruntowych, a także zwiększać ryzyko kontaktu z substancjami niebezpiecznymi, które mogą występować w tych urządzeniach, takimi jak ołów, rtęć czy kadm. Właściwe gromadzenie odpadów elektronicznych powinno odbywać się w dedykowanych pomieszczeniach lub pojemnikach, które są odpowiednio przystosowane do przechowywania tego typu materiałów. Zgodnie z dyrektywami Unii Europejskiej dotyczącymi zużytego sprzętu elektrycznego i elektronicznego (WEEE), odpady te powinny być zbierane w sposób, który minimalizuje ich wpływ na środowisko. W praktyce oznacza to konieczność korzystania z odpowiednich systemów zbierania i transportu, które zapewniają bezpieczeństwo zarówno dla ludzi, jak i dla środowiska.

Pytanie 7

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. żółto-zielonym
B. czarno-białym
C. niebieskim
D. czerwonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 8

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Użyć przewodu o mniejszym przekroju
B. Zrezygnować z realizacji połączenia
C. Połączyć dwie żyły (lub więcej) równolegle
D. Wykorzystać przewód aluminiowy o identycznym przekroju
Odpowiedź, którą zaznaczyłeś, jest jak najbardziej trafna! Połączenie dwóch żył równolegle to dobry sposób na zmniejszenie oporu elektrycznego. W praktyce, jak masz przewody o tym samym przekroju, to równoległe połączenie zwiększa zdolność przewodzenia prądu, co jest mega przydatne, zwłaszcza gdy potrzebujesz więcej energii. To wszystko jest zgodne z normami instalacyjnymi, które sugerują, że takie połączenie pozwala lepiej zarządzać spadkiem napięcia. To ważne, zwłaszcza przy urządzeniach, które wymagają sporo energii. Warto pamiętać, że projektując instalacje elektryczne, trzeba mieć na uwadze te rzeczy, co poprawia efektywność energetyczną i bezpieczeństwo. A tak na marginesie, dobrze jest też regularnie sprawdzać instalacje, żeby upewnić się, że wszystko działa jak należy w zgodzie z normami, takimi jak PN-IEC 60364.

Pytanie 9

Czym jest funkcja AF w radiu?

A. Odbieranie lokalnych audycji
B. Automatyczna regulacja głośności
C. Odbieranie informacji drogowych
D. Automatyczne dostrajanie
Funkcja AF, czyli Automatyczne Dostosowanie, odnosi się do zdolności odbiornika radiowego do automatycznego przestrojenia się na najlepszą dostępną jakość sygnału w danym momencie. W praktyce oznacza to, że gdy sygnał stacji radiowej ulega osłabieniu, system AF może automatycznie przełączyć odbiornik na inną, ale powiązaną częstotliwość, na której ta sama stacja nadaje silniejszy sygnał. To rozwiązanie jest szczególnie przydatne w przypadku stacji, które nadają na kilku częstotliwościach, co jest typowe dla stacji FM. W rezultacie użytkownik nie musi ręcznie zmieniać częstotliwości, co zwiększa komfort i wygodę korzystania z odbiornika. Dobre praktyki w projektowaniu odbiorników radiowych zalecają implementację funkcji AF, aby zapewnić lepszą jakość odbioru oraz minimalizować zakłócenia w trakcie słuchania. To podejście jest zgodne z zasadami ergonomii, które kładą duży nacisk na potrzebę uproszczenia interakcji użytkownika z urządzeniami elektronicznymi.

Pytanie 10

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zjawiska indukcji
B. wyrównywania potencjałów połączeń
C. zmiany częstotliwości sygnału
D. tłumienia impulsów napięcia
Zjawisko indukcji elektromagnetycznej jest kluczowym fenomenem w systemach elektrycznych i telekomunikacyjnych. Powstaje ono, gdy zmienne pole magnetyczne wytwarza napięcie w przewodniku. W kontekście wysokich napięć w telekomunikacji, zjawisko to może prowadzić do niepożądanych efektów, jak na przykład powstawanie wysokich napięć w punktach przejściowych i gniazdach. Praktyczne zastosowanie tej wiedzy leży w projektowaniu odpowiednich układów zabezpieczeń, takich jak transformatory separacyjne, które minimalizują ryzyko indukcji. Warto również wspomnieć o standardach, takich jak IEC 61000, które dotyczą kompatybilności elektromagnetycznej (EMC) i zalecają odpowiednie metody ochrony urządzeń przed skutkami indukcji. Dobrze zaprojektowane systemy kablowe uwzględniają zjawisko indukcji, stosując odpowiednie materiały izolacyjne oraz prowadząc przewody w sposób zminimalizowany w kontekście potencjalnych źródeł zakłóceń.

Pytanie 11

Monter realizuje montaż instalacji telewizji satelitarnej dla 6 mieszkańców w czasie 8 godzin. Koszt materiałów to 2 080 zł, a stawka za roboczogodzinę wynosi 40 zł. Jaka suma przypada na instalację dla jednego lokatora?

A. 450 zł
B. 400 zł
C. 333 zł
D. 350 zł
Koszt instalacji telewizji satelitarnej dla jednego lokatora wynosi 400 zł. Aby to obliczyć, należy uwzględnić zarówno koszt materiałów, jak i robocizny. Koszt materiałów dla całej instalacji wynosi 2080 zł, co przy sześciu lokatorach daje 346,67 zł na lokatora. Następnie, monter pracuje przez 8 godzin, a stawka za roboczogodzinę wynosi 40 zł, co daje całkowity koszt robocizny równy 320 zł (8 godzin x 40 zł). Koszt robocizny również dzielimy przez sześciu lokatorów, co daje 53,33 zł na lokatora. Suma tych dwóch wartości (346,67 zł + 53,33 zł) daje 400 zł za instalację dla jednego lokatora. W praktyce, przy planowaniu kosztów instalacji telewizyjnych, ważne jest uwzględnienie zarówno materiałów, jak i pracy, aby odpowiednio zrozumieć całkowite wydatki. Przykładowo, w branży telekomunikacyjnej często stosuje się kalkulacje kosztów jednostkowych, aby optymalizować wydatki oraz zapewnić konkurencyjność usług.

Pytanie 12

Multiswitch to urządzenie, które pozwala na

A. łączenie odmiennych sieci komputerowych
B. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
C. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer
D. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
Pierwsza odpowiedź wcale nie jest trafiona, bo mówi, że multiswitch zapisuje sygnały wideo, a to nieprawda. Do nagrywania sygnałów wideo mamy inne urządzenia, na przykład rejestratory DVR czy systemy monitoringu. Multiswitch w ogóle nie zajmuje się nagrywaniem, tylko dystrybucją sygnału. Jak chcesz rozdzielić sygnał wideo do kilku monitorów, to używa się splitterów wideo, które są do tego stworzone. No i ostatnia odpowiedź też ma błąd, bo mówi, że multiswitch łączy różne sieci komputerowe. To też jest mylące, bo do tego mamy routery i switche, a nie multiswitch. Nieodpowiednie zrozumienie, do czego służy multiswitch, może krzyżować plany przy projektowaniu systemów telewizyjnych. Każda technologia ma swoją specyfikę i mylenie ich może prowadzić do nieefektywności i dodatkowych kosztów. Ważne jest, żebyś wiedział, jaką rolę pełni multiswitch, żeby systemy telewizyjne działały poprawnie.

Pytanie 13

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. wiertarka i kołki rozporowe
B. śruby i śrubokręt
C. gwoździe oraz młot
D. ołówek i poziomica
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 14

Korzystając z tabeli wskaż parametry pracy, przy których kamera nie może być uruchomiona?

Parametr pracy kamery IPWartość
Zasilanie12 VDC ±10%
Wilgotność5÷75%
Temperatura−25÷50°C

A. Temperatura -10°C, wilgotność 40%.
B. Zasilanie 13 V, wilgotność 65%.
C. Zasilanie 10 V, temperatura 45°C.
D. Temperatura 30°C, wilgotność 45%.
Zasilanie 10 V, temperatura 45°C to parametry, przy których kamera nie może być uruchomiona. Standardy branżowe określają, że kamery powinny być zasilane napięciem w zakresie 10,8 V - 13,2 V, co oznacza, że zasilanie 10 V jest poniżej minimalnego wymaganego napięcia. Taka sytuacja może prowadzić do niestabilnej pracy urządzenia, a w skrajnych przypadkach do jego uszkodzenia. Ponadto, temperatura 45°C, chociaż nie przekracza górnej granicy tolerancji, w połączeniu z zasilaniem na dolnej granicy może prowadzić do przegrzania elementów elektronicznych, co z kolei wpływa na żywotność kamery. W praktyce, przed uruchomieniem kamery należy zawsze sprawdzić, czy wszystkie parametry pracy mieszczą się w zalecanych zakresach, co jest kluczowe dla zapewnienia jej prawidłowej i długotrwałej eksploatacji.

Pytanie 15

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. z internetu
B. naziemnych
C. kablowych
D. satelitarnych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 16

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. współczynnik zawartości harmonicznych
B. zmiana częstotliwości
C. napięcie detektora
D. typ modulacji
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 17

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. drogą radiową
B. łączami światłowodowymi
C. skretkami telefonicznymi
D. kablami koncentrycznymi
Odpowiedź 'łączami światłowodowymi' jest prawidłowa, ponieważ magistrale optyczne są kluczowym elementem nowoczesnych systemów telekomunikacyjnych. Wykorzystują one światłowody do przesyłania danych na bardzo dużych odległościach z minimalnymi stratami sygnału. Światłowody działają na zasadzie całkowitego wewnętrznego odbicia, co pozwala na efektywne przekazywanie sygnałów świetlnych. W praktyce, światłowody są wykorzystywane w telekomunikacji do łączenia dużych miast oraz w infrastrukturze internetowej, gdzie wymagane jest przesyłanie dużych ilości danych w krótkim czasie. Standardowe systemy światłowodowe, takie jak ITU-T G.652, zapewniają optymalną wydajność w zakresie transmisji w różnych warunkach. Dzięki zastosowaniu technologii światłowodowej, operatorzy telekomunikacyjni mogą oferować usługi o wysokiej przepustowości, co jest niezbędne w dobie rosnącego zapotrzebowania na szybki internet. Zastosowanie magistrali optycznych w telewizji kablowej pozwala nie tylko na przesył sygnału telewizyjnego, ale także na jednoczesną transmisję danych i głosu, co zwiększa efektywność wykorzystania zasobów infrastrukturalnych.

Pytanie 18

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. fidery
B. direktory
C. symetryzatory
D. dipole
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 19

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa B
B. Klasa C
C. Klasa A
D. Klasa AB
Wzmacniacze klasy C są projektowane głównie do pracy w aplikacjach radiowych, gdzie sygnały są modulowane i nie wypadają w zakresie akustycznym. Ich struktura bazuje na pracy w trybie nasycenia, co oznacza, że przełączają się w stan aktywny na krótki czas, co prowadzi do znacznych zniekształceń nieliniowych. Dlatego nie nadają się do wzmacniania sygnałów akustycznych, które wymagają wysokiej jakości i minimalnych zniekształceń. W praktyce, wzmacniacze klasy C są używane w nadajnikach FM oraz w aplikacjach RF, gdzie istotne jest uzyskanie wysokiej efektywności i mocy wyjściowej, jednak zniekształcenia sygnału mogą być tolerowane. W kontekście audio, najlepszym wyborem są wzmacniacze klasy A lub AB, które oferują znacznie lepszą linearność i niższe zniekształcenia, co jest zgodne z dobrymi praktykami w produkcji sprzętu audio.

Pytanie 20

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Poprawia warunki funkcjonowania odbiornika.
B. Pogarsza warunki pracy odbiornika.
C. Aktywuje filtr fal odbitych w odbiorniku.
D. Modyfikuje zakres częstotliwości filtra w.cz.
Odpowiedzi sugerujące, że duże zachmurzenie polepsza warunki pracy odbiorników GPS, są mylne i opierają się na niepełnym rozumieniu zasad działania systemów nawigacji satelitarnej. Przykład pierwszej odpowiedzi, która mówi o uruchamianiu filtra fal odbitych, nie uwzględnia, że takie filtry są zaprojektowane do eliminacji zakłóceń, a nie do poprawy jakości sygnału w trudnych warunkach atmosferycznych. Zachmurzenie nie jest czynnikiem, który można filtrować; jego wpływ na sygnał GPS jest bezpośredni i negatywny. Kolejna odpowiedź, która sugeruje, że zachmurzenie polepsza warunki odbiorników, ignoruje fakt, że sygnały GPS są niezwykle wrażliwe na zmiany w atmosferze. Gęste chmury, zwłaszcza burzowe, mogą prowadzić do odbicia i rozproszenia sygnału, co wpływa na jego jakość i dokładność. Stwierdzenie, że zachmurzenie zmienia zakres częstotliwości filtra w.cz., jest również nieprawdziwe, ponieważ częstotliwości używane przez systemy GPS są stałe i niezależne od warunków atmosferycznych. Na koniec, musimy pamiętać, że w praktyce operacyjnej, niezrozumienie wpływu warunków atmosferycznych na GPS może prowadzić do poważnych błędów nawigacyjnych, co podkreśla znaczenie odpowiedniego szkolenia i świadomości wśród użytkowników technologii GPS. Zgodnie z zaleceniami standardów branżowych dla systemów nawigacyjnych, kluczowe jest, aby operatorzy byli świadomi potencjalnych zakłóceń związanych z warunkami atmosferycznymi i dostosowywali swoje strategie użytkowania systemów GPS w odpowiedzi na te czynniki.

Pytanie 21

Termin "adres MAC" odnosi się do adresu

A. karty sieciowej przypisanego przez producenta urządzenia.
B. komputera przydzielonego przez serwer DHCP.
C. bramy domowej.
D. serwera DHCP.
Bramka domyślna, będąca elementem sieci komputerowej, pełni funkcję punktu dostępu do innych sieci. Bramka nie ma przypisanego adresu MAC, gdyż pełni rolę pośrednika pomiędzy różnymi protokołami. Adresy komputerów, przypisywane przez serwer DHCP, są dynamicznymi adresami IP, a nie adresami MAC. Serwer DHCP, czyli Dynamic Host Configuration Protocol, odpowiada za automatyczne przydzielanie adresów IP do urządzeń w sieci, co pozwala na ich łatwiejsze zarządzanie, ale nie ma to związku z adresami MAC. Często mylone pojęcia wynikają z nieporozumienia dotyczącego roli różnych elementów sieci. W rzeczywistości, adres MAC jest stałym identyfikatorem, który jest wbudowany w sprzęt, podczas gdy adres IP, przydzielany przez DHCP, może się zmieniać w zależności od dostępności w danej sieci. Tego rodzaju błędne wnioski mogą prowadzić do nieprawidłowego zarządzania siecią oraz mogą utrudniać diagnostykę problemów z połączeniami. Właściwe zrozumienie różnicy pomiędzy tymi pojęciami jest kluczowe dla efektywnego administrowania infrastrukturą sieciową oraz dla zapewnienia bezpieczeństwa i stabilności działania sieci.

Pytanie 22

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
B. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
C. analogowy na zakresie U=20 V i Rwe=100 kOhm
D. analogowy na zakresie U=200 V i Rwe=10 kOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 23

Jaki sposób postępowania z wykorzystanymi kineskopami telewizorów jest zgodny z normami ochrony środowiska?

A. Wrzucenie do pojemnika na odpady plastikowe.
B. Przekazanie do firmy zajmującej się utylizacją niebezpiecznych odpadów.
C. Wrzucenie do pojemnika na szkło.
D. Zabranie ich bezpośrednio na wysypisko.
Przekazanie zużytych kineskopów telewizorów do firmy zajmującej się utylizacją niebezpiecznych odpadów jest zgodne z przepisami ochrony środowiska, ponieważ kineskopy zawierają substancje chemiczne, takie jak ołów, kadm i rtęć, które są szkodliwe dla zdrowia ludzi i środowiska. Firmy zajmujące się utylizacją niebezpiecznych odpadów mają odpowiednie procedury oraz technologie, które pozwalają na bezpieczne i zgodne z prawem usunięcie tych substancji. Przykładem dobrych praktyk jest zgodność z normą ISO 14001, która określa wymagania dotyczące systemów zarządzania środowiskowego, co zapewnia, że odpady są traktowane w sposób minimalizujący wpływ na środowisko. Utylizacja przez profesjonalne firmy nie tylko chroni środowisko, ale także pomaga w recyklingu materiałów, co sprzyja zrównoważonemu rozwojowi i zmniejsza ilość odpadów składowanych na wysypiskach. Przykładowo, szkło z kineskopów może być przetworzone na nowe produkty szklane, a metale odzyskane z ich wnętrza mogą być ponownie wykorzystane w różnych gałęziach przemysłu.

Pytanie 24

Aby zabezpieczyć drogi oddechowe przed szkodliwymi oparami, podczas lutowania należy używać

A. odsysacza dymu
B. półmaski filtracyjnej bez zaworka
C. wiatraka
D. odsysacza cyny
Odsysacz dymu jest kluczowym urządzeniem do ochrony dróg oddechowych podczas lutowania, gdyż skutecznie eliminuje toksyczne opary i cząstki, które powstają w procesie lutowania. Dym lutowniczy zawiera m.in. substancje chemiczne, takie jak opary metali oraz substancje lotne, które mogą mieć negatywny wpływ na zdrowie, w tym powodować podrażnienia dróg oddechowych, a w dłuższym okresie prowadzić do poważnych problemów zdrowotnych. Odsysacze dymu działają na zasadzie lokalnego odsysania, co oznacza, że są w stanie zbierać dym w bezpośrednim sąsiedztwie miejsca pracy. Dobrą praktyką jest również ich regularne serwisowanie i wymiana filtrów, aby zapewnić ich maksymalną efektywność. W normach dotyczących BHP oraz w wytycznych dotyczących ochrony zdrowia w miejscu pracy, takich jak normy OSHA, podkreśla się znaczenie stosowania odpowiednich środków ochrony osobistej oraz systemów wentylacyjnych. W sytuacjach, gdzie nie można zastosować odsysacza dymu, zaleca się stosowanie wentylacji ogólnej, jednak jej skuteczność w eliminowaniu toksycznych substancji jest znacznie niższa. Dlatego, aby zapewnić sobie bezpieczne warunki pracy, należy zawsze korzystać z odsysaczy dymu.

Pytanie 25

Skrót SNR odnosi się do

A. bitowej stopy błędów
B. współczynnika błędów modulacji
C. współczynnika zniekształceń nieliniowych
D. stosunku sygnału do szumu
Zarówno bitowa stopa błędów, współczynnik zniekształceń nieliniowych, jak i współczynnik błędów modulacji są ważnymi parametrami w inżynierii telekomunikacyjnej, jednak nie są one tym, co oznacza skrót SNR. Bitowa stopa błędów (BER) odnosi się do liczby błędnie odebranych bitów w stosunku do całkowitej liczby przesyłanych bitów. Wysoka bitowa stopa błędów może być rezultatem niskiego SNR, ponieważ szum w systemie może zniekształcać sygnał, prowadząc do niepoprawnego odbioru danych. Z kolei współczynnik zniekształceń nieliniowych odnosi się do wpływu nieliniowych efektów w systemach, które mogą wprowadzać dodatkowe zniekształcenia do sygnału. Wartości tego współczynnika mogą być wyznaczane w kontekście jakości sygnału, ale same w sobie nie mierzą stosunku sygnału do szumu. Współczynnik błędów modulacji dotyczy skuteczności procesu modulacji sygnału i również nie jest bezpośrednio związany ze stosunkiem sygnału do szumu. Zrozumienie tych różnic jest kluczowe dla prawidłowej analizy jakości systemów komunikacyjnych. Często osoby uczące się tych zagadnień mylą te koncepcje, zakładając, że są one wymienne, podczas gdy SNR jest kluczowym wskaźnikiem efektywności systemu komunikacyjnego i jego zdolności do przesyłania informacji przy minimalnym wpływie szumów.

Pytanie 26

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 2 000 zł
B. 2 440 zł
C. 3 660 zł
D. 3 000 zł
Całkowity koszt wykonania instalacji alarmowej można obliczyć poprzez zsumowanie kosztów materiałów oraz wykonania, a następnie dodanie podatku VAT. Koszt materiałów wynosi 2000 zł, a koszt wykonania to 50% ceny materiałów, czyli 1000 zł (2000 zł * 0,5). Łączny koszt przed opodatkowaniem wynosi więc 3000 zł (2000 zł + 1000 zł). Aby obliczyć kwotę z VAT, należy pomnożyć łączny koszt przez stawkę VAT, co daje 660 zł (3000 zł * 0,22). Całkowity koszt po uwzględnieniu VAT wynosi zatem 3660 zł (3000 zł + 660 zł). Zrozumienie tego procesu jest kluczowe dla właściwego planowania budżetu. W praktyce, dokładne obliczenia kosztów są niezwykle ważne w branży budowlanej i instalacyjnej, gdzie nieprecyzyjne oszacowanie wydatków może prowadzić do znaczących przekroczeń budżetowych. Prawidłowe podejście do kalkulacji kosztów materiałów i robocizny pozwala na efektywne zarządzanie projektami budowlanymi oraz utrzymanie zgodności z regulacjami dotyczącymi VAT.

Pytanie 27

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. w badanym obwodzie znajduje się źródło prądowe
B. badany obwód jest ciągły
C. badany obwód jest uszkodzony
D. w badanym obwodzie znajduje się złącze półprzewodnikowe
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 28

Wskaż, którego urządzenia dotyczą dane przedstawione we fragmencie dokumentacji technicznej.

StandardyIEEE 802.11b/g/n
Technika modulacjiCCK, OFDM
Częstotliwość pracy [GHz]2.4 - 2.4835
Moc wyjściowa [dBm]do 20
Chipset radiowyAtheros
Max. szybkość transmisji11n: 150Mbps
11g: 54Mbps
11b: 11Mbps
Czułość130M: -68dBm@10% PER
108M: -68dBm@10% PER
54M: -68dBm@10% PER
11M: -85dBm@8% PER
6M: -88dBm@10% PER
1M: -90dBm@8% PER
Tryby pracyAP router
WISP router + AP
Serwer DHCPTak
DDNSTak
Wbudowane zabezpieczeniaWPA/WPA2: 64/128/152 BIT WEP;
TKIP/AES

Tablica dostępu / odmowy dostępu
definiowana
po adresach MAC kart klienckich,
Filtrowanie dostępu do Internetu
poprzez filtry adresów IP, MAC
oraz poszczególnych portów protokołu
TCP/IP
Typ antenydipolowa (dipol ćwierćfalowy) o zysku
3dBi,
możliwe jest dołączenie anteny
zewnętrznej
Złącze antenySMA R/P
Porty LANIEEE802.3 (10BASE-T), IEEE802.3u
(100BASE-TX)
Ilość portów LAN1 port WAN (RJ-45)
4 porty LAN 10/100 Mb (RJ-45, UTP/STP)
Kontrolki LEDPower, System, WLAN, WAN, Act/Link (4
x Ethernet)
Temperatura pracy0 °C do 50°C
Wymiary [mm]192 x 130 x 33
Napięcie zasilania230 V AC/9 V DC

A. Karty Wi-Fi
B. Rejestratora NVR
C. Routera Wi-Fi
D. Kamery IP
Wybór odpowiedzi "Routera Wi-Fi" jest naprawdę dobrym wyborem, bo w tym fragmencie dokumentacji widać wyraźnie, że pasuje do cech routerów. Routery Wi-Fi mają super istotną rolę w tym, jak działa sieć, łączą różne urządzenia i dają nam dostęp do internetu, łącząc się z naszym dostawcą. Zresztą, w dokumentacji wymienione są różne tryby pracy, jak AP router czy WISP router + AP, co pokazuje, że routery mogą działać w różnych sytuacjach w sieci. A to, że mają funkcje jak serwer DHCP, który przydziela adresy IP automatycznie, to już standard w nowoczesnych sieciach. Zabezpieczenia sieci, takie jak WPA/WPA2, WEP czy TKIP/AES, są niezwykle ważne, bo chronią nasze dane przesyłane przez sieć, a to bezpieczeństwo staje się coraz bardziej istotne w naszych domach i biurach. Generalnie, routery Wi-Fi pozwalają na korzystanie z internetu na wielu urządzeniach naraz, co jest bardzo wygodne, a przy tym dbają o dobrą ochronę danych.

Pytanie 29

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. wzmacniak
B. koncentrator
C. konwerter
D. router
Konwerter to urządzenie, które umożliwia interakcję między różnymi typami mediów transmisyjnych, w tym wypadku między światłowodem a skrętką. Światłowód transmituje dane za pomocą światła, co zapewnia znacznie większe prędkości oraz mniejsze straty sygnału na długich dystansach w porównaniu do skrętki, która wykorzystuje sygnał elektryczny. W praktyce, konwertery światłowodowe są często stosowane w sieciach komputerowych, gdzie metrów kabli światłowodowych nie można bezpośrednio podłączyć do urządzeń korzystających z kabli miedzianych. Przy użyciu konwertera można zrealizować połączenie, które łączy różne segmenty sieci, na przykład w biurach czy dużych obiektach. Standardy, takie jak IEEE 802.3, uwzględniają konwertery w kontekście budowy nowoczesnych sieci, co czyni je istotnym elementem infrastruktury. Dodatkowo, korzystanie z konwerterów pozwala na elastyczne rozbudowywanie sieci oraz adaptację do różnych wymagań technologicznych.

Pytanie 30

Podstawowym celem hermetycznej obudowy urządzenia elektronicznego z tworzywa sztucznego jest zapewnienie właściwej odporności tego urządzenia na wpływ

A. wilgoci
B. wysokiej temperatury
C. przepięć
D. pól elektromagnetycznych
Obudowa hermetyczna w urządzeniach elektronicznych, zrobiona z tworzywa sztucznego, jest bardzo ważna, bo chroni je przed różnymi warunkami atmosferycznymi. Jej podstawowym zadaniem jest ochrona przed wilgocią, co jest kluczowe, kiedy urządzenia mogą mieć kontakt z wodą lub w wysokiej wilgotności. Jeśli obudowa jest dobrze zaprojektowana, to spełnia normy, takie jak te od IP67, które pokazują, jak dobrze urządzenie jest zabezpieczone przed wodą oraz innymi zanieczyszczeniami. Można to zobaczyć na przykład w smartfonach czy zegarkach sportowych, które narażone są na deszcz czy pot. W przemyśle morskim i budowlanym hermetyzacja to standard, bo to zapewnia, że urządzenia działają prawidłowo w trudnych warunkach. Ważne jest, żeby używać odpowiednich materiałów i technologii uszczelniania, jak silikonowe uszczelki, bo to naprawdę pomaga w ochronie przed wilgocią. Moim zdaniem, producenci powinni też regularnie testować szczelność obudów, bo to wydłuży ich żywotność.

Pytanie 31

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. pomiaru parametrów
B. uaktualniania oprogramowania
C. kontroli temperatury elementów
D. znajdowania anomalii w działaniu urządzenia
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 32

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. oscyloskop jednokanałowy
B. woltomierz cyfrowy
C. miernik zniekształceń
D. analyzer widma
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 33

Który rodzaj pamięci półprzewodnikowej po zaprogramowaniu powinien być chroniony przed działaniem światła słonecznego, aby zabezpieczyć jej dane?

A. SRAM
B. EEPROM
C. EPROM
D. DDR
Wybierając DDR, SRAM albo EEPROM jako odpowiedź, można się pomylić, bo w działaniu i przechowywaniu danych różnią się od EPROM. DDR, czyli Double Data Rate, to pamięć dynamiczna, używana głównie w komputerach do tymczasowego trzymania danych. Nie musi być chroniona przed światłem, bo dane są w kondensatorach, które się cyklicznie odświeżają. SRAM, czyli Static Random-Access Memory, działa z kolei na zasadzie stałych komórek pamięci, więc też światło nie jest jej straszne. Jest szybka, ale droższa i więcej energii potrzebuje. EEPROM, czyli Electrically Erasable Programmable Read-Only Memory, pozwala na elektroniczne zapisywanie i usuwanie danych, ale na szczęście nie jest czuła na światło UV, co sprawia, że jest bardziej praktyczna w sytuacjach, gdzie często się korzysta z pamięci. Często błędy przy wyborze zła odpowiedzi wynikają z nieznajomości różnic między tymi pamięciami oraz ich zastosowania. Dlatego warto mieć podstawową wiedzę o tych typach pamięci, żeby podejmować lepsze decyzje w projektach elektronicznych.

Pytanie 34

Jakim skrótem opisuje się modulację szerokości impulsów?

A. PSK
B. FSK
C. QAM
D. PWM
Modulacja szerokości impulsów (PWM) jest techniką, która pozwala na kontrolowanie wartości średniej mocy dostarczanej do obciążenia poprzez regulację szerokości impulsów w sygnale cyfrowym. W przeciwieństwie do innych metod modulacji, PWM nie zmienia częstotliwości sygnału, a jedynie jego czas trwania w cyklu pracy. Jest to szeroko stosowane podejście w wielu aplikacjach, takich jak regulacja prędkości silników elektrycznych, dimmery do oświetlenia LED, a także w systemach audio do modulacji sygnałów dźwiękowych. W kontekście standardów, PWM znajduje zastosowanie w różnych protokołach komunikacyjnych oraz w systemach sterowania automatyki, gdzie precyzyjna kontrola nad mocą jest kluczowa dla wydajności i niezawodności. Dzięki swojej prostocie i skuteczności, PWM jest istotnym narzędziem w inżynierii elektronicznej i automatyce, co czyni go fundamentem dla wielu nowoczesnych rozwiązań technologicznych.

Pytanie 35

Bezpiecznik topikowy stanowi komponent, który chroni przed efektami

A. spadku napięcia zasilającego
B. zwarć w obwodzie elektrycznym
C. przepięć w instalacji elektrycznej
D. nagromadzenia ładunku elektrostatycznego
Bezpiecznik topikowy jest kluczowym elementem zabezpieczeń elektrycznych, zapobiegającym skutkom zwarć w obwodzie elektrycznym. Działa na zasadzie przerywania obwodu, gdy prąd przepływający przez niego przekroczy określoną wartość. W przypadku zwarcia, prąd składający się z dużych wartości może prowadzić do przegrzania przewodów, co skutkuje uszkodzeniem urządzeń i zwiększa ryzyko pożaru. Bezpieczniki topikowe są powszechnie stosowane w instalacjach domowych i przemysłowych, zgodnie z normami takimi jak PN-EN 60269. Dobrze dobrany bezpiecznik topikowy chroni nie tylko instalację, ale również podłączone urządzenia, takie jak komputery czy sprzęt RTV. W przypadku awarii, wymiana bezpiecznika jest prostym zadaniem, które można wykonać samodzielnie, co czyni je praktycznym rozwiązaniem. Zrozumienie roli bezpiecznika topikowego w systemach zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 36

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. fartuchy ochronne
B. kaski ochronne
C. chodniki izolacyjne
D. ekrany z uziemieniem
Ekrany z uziemieniem są kluczowym elementem ochrony przed falami elektromagnetycznymi, które mogą być emitowane przez różne urządzenia elektryczne i elektroniczne. Uziemienie ekranów pozwala na odprowadzenie nadmiaru ładunku elektrycznego do ziemi, co skutecznie minimalizuje ryzyko narażenia pracowników na szkodliwe skutki promieniowania. W praktyce, ekrany te mogą być stosowane w pomieszczeniach biurowych, laboratoriach oraz wszędzie tam, gdzie występuje znaczna emisja fal elektromagnetycznych. Przykładem zastosowania są stanowiska pracy w laboratoriach analitycznych, gdzie sprzęt pomiarowy wymaga osłony przed zakłóceniami elektromagnetycznymi. Dobre praktyki w branży zalecają regularne kontrole poziomów promieniowania oraz stosowanie odpowiednich środków ochrony osobistej, co obejmuje także monitorowanie skuteczności ekranów z uziemieniem. Warto również podkreślić, że stosowanie takich rozwiązań jest zgodne z normami ochrony zdrowia i bezpieczeństwa w miejscu pracy, co jest kluczowe dla zapewnienia komfortowych warunków pracy.

Pytanie 37

Które z poniższych urządzeń nie jest wykorzystywane w lokalnej sieci komputerowej?

A. Multiswitch.
B. Switch.
C. Hub.
D. Router.
Zarówno routery, switch'e, jak i hub'y są fundamentalnymi elementami lokalnych sieci komputerowych, pełniąc różne, ale komplementarne funkcje w zarządzaniu komunikacją między urządzeniami. Router to urządzenie, które kieruje ruchem danych pomiędzy różnymi sieciami, umożliwiając komunikację z Internetem i innymi sieciami lokalnymi. W lokalnych sieciach komputerowych routery są niezbędne do łączenia sieci lokalnych z Internetem, a także do zarządzania adresacją IP i zapewnienia bezpieczeństwa danych poprzez zastosowanie firewalli. Switch'e z kolei działają na poziomie drugiej warstwy modelu OSI i są odpowiedzialne za przekazywanie danych między urządzeniami w obrębie tej samej sieci lokalnej, skutecznie redukując kolizje i zwiększając wydajność w porównaniu do hubów, które działają na poziomie pierwszej warstwy i wysyłają dane do wszystkich podłączonych urządzeń. Hub jest prostym urządzeniem umożliwiającym połączenie kilku komputerów, jednak jego niedoskonałości w zarządzaniu ruchem danych sprawiają, że jest coraz rzadziej używany w nowoczesnych sieciach. Wybór odpowiedniego sprzętu sieciowego jest kluczowy dla zapewnienia efektywności i niezawodności lokalnych sieci komputerowych, dlatego ważne jest, aby rozumieć różnice między tymi urządzeniami oraz ich rolę w architekturze sieciowej. W praktyce, stosowanie multiswitchy w lokalnych sieciach komputerowych byłoby błędnym podejściem, ponieważ to urządzenie jest przeznaczone do rozdzielania sygnałów telewizyjnych, a nie do transferu danych komputerowych.

Pytanie 38

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. wykonania sztucznego oddychania
B. odłączenia osoby od źródła prądu
C. zgłoszenia sytuacji przełożonemu
D. przeprowadzenia masażu serca
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 39

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. uziemienie robocze
B. zerowanie
C. uziemienie ochronne
D. wyłącznik różnicowoprądowy
Uziemienie robocze jest stosowane do zapewnienia stabilności układów elektrycznych oraz do minimalizowania zakłóceń elektromagnetycznych, lecz nie jest to rozwiązanie, które automatycznie wyłącza zasilanie w przypadku wystąpienia prądu doziemnego. Jego główną funkcją jest ochrona przed wzrostem napięcia, a nie bezpośrednie przerywanie obwodu w sytuacji ryzyka porażenia. Uziemienie ochronne, z kolei, ma na celu odprowadzenie nadmiaru energii elektrycznej do ziemi, co ma na celu ochronę urządzeń oraz osób przed skutkami przepięć, jednak nie reaguje na sytuacje, w których prąd doziemny przekracza dopuszczalne wartości. Zerowanie jest metodą ochrony polegającą na połączeniu części przewodzących z uziemieniem, ale podobnie jak uziemienie robocze i ochronne, nie oferuje automatycznego odłączenia zasilania w przypadku wystąpienia prądu doziemnego. Istotnym błędem jest mylenie funkcji tych systemów z automatycznym odłączeniem zasilania, co może prowadzić do błędnych założeń na temat ich właściwego zastosowania i ograniczenia bezpieczeństwa elektrycznego. Aby zapewnić skuteczną ochronę przed porażeniem prądem, niezbędne jest zrozumienie specyfiki działania wyłączników różnicowoprądowych i ich roli w instalacjach elektrycznych.

Pytanie 40

Jakie urządzenie jest łączone za pomocą interfejsu SATA?

A. drukarka
B. napęd dyskietek
C. karta graficzna
D. dysk twardy
Interfejs SATA (Serial ATA) jest standardem używanym do podłączania urządzeń pamięci masowej, głównie dysków twardych oraz dysków SSD, do płyty głównej komputera. Dzięki swojej architekturze, SATA oferuje znaczące zalety w porównaniu do starszych rozwiązań, takich jak PATA (Parallel ATA). Prędkość transferu danych za pomocą SATA jest znacznie wyższa, co jest kluczowe w przypadku nowoczesnych dysków o dużej pojemności. Na przykład, SATA III, który jest najnowszą wersją tego standardu, pozwala na transfer danych z prędkością do 6 Gb/s. W praktyce oznacza to szybsze ładowanie systemu operacyjnego i aplikacji, a także efektywniejszą pracę z dużymi plikami multimedialnymi. Dobre praktyki branżowe zalecają stosowanie interfejsu SATA w większości nowoczesnych systemów komputerowych, zarówno w komputerach stacjonarnych, jak i laptopach. Warto również zauważyć, że standard SATA jest szeroko stosowany nie tylko w komputerach osobistych, ale także w serwerach i systemach nas, co potwierdza jego uniwersalność i niezawodność.