Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 17:07
  • Data zakończenia: 30 maja 2025 17:10

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Zniekształcony wahacz przedniego zawieszenia

A. można pozostawić tak jak jest, wystarczy jedynie ustawić zbieżność kół
B. można poddać obróbce plastycznej w niskiej temperaturze
C. należy wymienić na nowy
D. można naprawić poprzez podgrzanie do temperatury uplastycznienia i nadanie mu pierwotnej formy
Wahacz zawieszenia przedniego jest kluczowym elementem układu jezdnego pojazdu, który odpowiada za prawidłowe prowadzenie kół oraz stabilność jazdy. Skrzywienie wahacza może prowadzić do wielu problemów, takich jak nierównomierne zużycie opon, problemy z prowadzeniem pojazdu oraz zagrożenie dla bezpieczeństwa. W przypadku zauważenia skrzywienia, najlepszym rozwiązaniem jest wymiana wahacza na nowy. Wymiana wahacza zapewnia, że wszystkie jego właściwości mechaniczne i geometrii są w pełni przywrócone do stanu fabrycznego, co jest kluczowe dla prawidłowego funkcjonowania zawieszenia. Warto zaznaczyć, że stosowanie nowych części zamiennych, które są zgodne z normami producenta, jest nie tylko wymogiem prawnym, ale również praktyką zalecaną przez specjalistów. Dodatkowo, nowy wahacz zapewnia lepszą trwałość i stabilność, co przekłada się na długotrwałe i bezpieczne użytkowanie pojazdu. Dlatego wymiana uszkodzonego wahacza to podejście zgodne z najlepszymi praktykami w branży motoryzacyjnej oraz normami bezpieczeństwa.

Pytanie 2

Równomierność funkcjonowania amortyzatorów w kołach jednej osi określa różnica wskaźnika EUSAMA. Maksymalna wartość tej różnicy nie powinna przekraczać

A. 10%
B. 20%
C. 30%
D. 25%
Wybór wartości 25%, 10% lub 30% jako granic dla różnicy wskaźnika EUSAMA jest nieprawidłowy ze względu na brak zgodności z ustalonymi normami branżowymi. Ustalenie granicy 25% może wynikać z mylnego założenia, że bardziej liberalne podejście do tolerancji jest akceptowalne. Jednakże, zbyt dużą różnicą wskaźnika można zasygnalizować problemy z równomiernością działania amortyzatorów, co przyczynia się do pogorszenia stabilności pojazdu. Z kolei odpowiedzi 10% i 30% wskazują na błędną interpretację danych. Przyjęcie 10% jako maksymalnej różnicy może być zbyt restrykcyjne, co w wielu przypadkach nie odpowiada rzeczywistości technicznej, a stosowanie tak rygorystycznych standardów może prowadzić do niepotrzebnych kosztów związanych z wymianą sprawnych amortyzatorów. Odpowiedź 30% jest natomiast rażącą przesadą, sugerującą, że problemy z amortyzatorami są mniej istotne, co jest szkodliwe dla bezpieczeństwa. Kluczowe jest zrozumienie, że tolerancje w działaniu amortyzatorów powinny być oparte na standardach, które uwzględniają zarówno bezpieczeństwo, jak i komfort jazdy, co podkreśla znaczenie wskaźnika EUSAMA na poziomie 20%.

Pytanie 3

Podczas próby olejowej, kiedy mierzono ciśnienie sprężania w silniku z zapłonem iskrowym, zaobserwowano wzrost ciśnienia w cylindrze o 0,4 MPa w porównaniu do pomiaru bez oleju. Najbardziej prawdopodobnym zakresem uszkodzeń silnika jest nieszczelność

A. uszczelki pod głowicą
B. zaworu dolotowego
C. zaworu wylotowego
D. układu tłok-cylinder
Nieszczelności w silniku można analizować z różnych perspektyw, jednak wskazanie zaworów dolotowych, wylotowych czy uszczelki pod głowicą jako potencjalnych źródeł problemów nie jest zasadne w kontekście wzrostu ciśnienia sprężania przy próbie olejowej. Zawory dolotowe odpowiadają za wprowadzenie mieszanki paliwowo-powietrznej do cylindra, a ich nieszczelność najczęściej prowadzi do spadku ciśnienia, ponieważ mieszanka nie jest poprawnie zamykana w cyklu sprężania. Zawory wylotowe, z drugiej strony, odpowiadają za wydostawanie się spalin, a ich nieszczelność również powoduje utratę ciśnienia, co także jest sprzeczne z zaobserwowanym zjawiskiem. Uszczelka pod głowicą, choć kluczowa dla szczelności układu, zwykle ujawnia swoje problemy przy wyższych temperaturach lub ciśnieniach, prowadząc do wycieku płynów, a nie sprężania. Dlatego, w kontekście wzrostu ciśnienia podczas używania oleju, należy koncentrować się na układzie tłok-cylinder. Ignorowanie tej logiki diagnostycznej może prowadzić do nieprawidłowych wniosków oraz nieefektywnej naprawy silnika. Kluczowe jest zrozumienie, że różne komponenty silnika mają swoje specyficzne funkcje i ich uszkodzenia manifestują się w różny sposób, co wymaga dokładnej analizy objawów.

Pytanie 4

Jakie jest zadanie gaźnika w pojeździe?

A. podgrzewanie powietrza
B. dozowanie paliwa i powietrza
C. pompowanie paliwa
D. regulowanie strumienia wtrysku
Gaźnik odgrywa kluczową rolę w silniku spalinowym, odpowiadając za dozowanie paliwa i powietrza do mieszanki paliwowej, która jest następnie dostarczana do cylindrów silnika. Właściwe proporcje tego połączenia są istotne dla efektywności spalania, co ma bezpośredni wpływ na osiągi silnika oraz emisję spalin. W praktyce, gaźniki są projektowane w taki sposób, aby zapewnić optymalne mieszanie paliwa i powietrza w różnych warunkach pracy silnika, takich jak różne prędkości obrotowe czy obciążenia. Przykładem zastosowania dobrych praktyk w konstrukcji gaźników jest zastosowanie dławików, które regulują przepływ powietrza, co pozwala na precyzyjne dostosowanie mieszanki do aktualnych potrzeb silnika. Wiedza na temat działania gaźnika ma kluczowe znaczenie dla mechaników i inżynierów zajmujących się diagnostyką i naprawą układów zasilania w silnikach spalinowych.

Pytanie 5

Jak dokonuje się bezkontaktowego pomiaru temperatury elementów silnika?

A. multimetrem
B. refraktometrem
C. stroboskopem
D. pirometrem
Pirometr to urządzenie, które umożliwia bezdotykowy pomiar temperatury obiektów, co czyni go idealnym narzędziem w kontekście monitorowania elementów silnika. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekty, co pozwala na ocenę ich temperatury bez fizycznego kontaktu. Przykładowo, w silnikach spalinowych, pirometry wykorzystywane są do kontrolowania temperatury głowicy cylindrów oraz układu wydechowego, co jest kluczowe dla optymalizacji wydajności silnika oraz zapobiegania uszkodzeniom spowodowanym przegrzaniem. Obecnie pirometry są standardem w diagnostyce silników, ponieważ pozwalają na szybkie i dokładne pomiary, eliminując ryzyko uszkodzenia komponentów. W przemyśle motoryzacyjnym, stosowanie pirometrów zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ISO 9001, zapewnia nie tylko wysoką jakość procesów, ale także bezpieczeństwo operacyjne. Dodatkowo, nowoczesne pirometry często wyposażone są w funkcje umożliwiające rejestrowanie i analizowanie danych, co wspiera procesy predykcyjnego utrzymania ruchu, zmniejszając koszty eksploatacji.

Pytanie 6

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. napędu wycieraczek
B. przekładni głównej
C. przekładni kierowniczej
D. napędu układu rozrządu
Wałek atakujący i koło talerzowe to naprawdę kluczowe części w przekładni głównej Twojego pojazdu. To one odpowiadają za to, że moc z silnika może dotrzeć do kół, co w efekcie sprawia, że auto w ogóle może jechać. Wałek atakujący, czyli wałek wejściowy, jest bezpośrednio podpięty do silnika i przekazuje tę żądaną energię do całej przekładni. A koło talerzowe w połączeniu z zębatką zmienia kierunek obrotów i przekształca je w ruch, który napędza koła. Fajnie jest zrozumieć, jak te elementy działają, bo to pomoże w diagnostyce i serwisowaniu układów napędowych w pojazdach. Jak coś w tej przekładni nie działa jak trzeba, to mogą być poważne problemy, dlatego warto regularnie kontrolować, a niekiedy wymieniać płyny, żeby wszystko śmigało jak w zegarku, zgodnie z tym, co piszą producenci i branżowe standardy.

Pytanie 7

Który z poniższych elementów nie jest częścią układu wydechowego?

A. Tłumik
B. Sonda lambda
C. Filtr powietrza
D. Katalizator
Filtr powietrza, w przeciwieństwie do katalizatora, nie jest częścią układu wydechowego. Jego główną funkcją jest oczyszczanie powietrza, które trafia do silnika, z kurzu, pyłów i innych zanieczyszczeń. Znajduje się on w układzie dolotowym i jest kluczowy dla zapewnienia odpowiedniej mieszanki paliwowo-powietrznej, co bezpośrednio wpływa na spalanie paliwa i wydajność silnika.

Pytanie 8

Jaką częścią łączy się wał korbowy z tłokiem?

A. korbowodu
B. zaworu
C. sworznia
D. popychacza
Wiesz, odpowiedź, którą zaznaczyłeś, to korbowód. To naprawdę ważny element w silnikach spalinowych i innych mechanizmach. Jego zadaniem jest przekształcanie ruchu posuwistego tłoka na ruch obrotowy wału korbowego. Bez korbowodu wszystko by się rozjechało. Ciekawostka: korbowody są zwykle wykonane z materiałów takich jak stal czy aluminium wzmocnione kompozytami, bo muszą wytrzymać naprawdę duże obciążenia. Mówiąc o silnikach samochodowych, to jego działanie jest kluczowe dla wydajności całego silnika. W projektowaniu korbowodów zwraca się też uwagę na to, żeby były jak najlżejsze, ale nadal wystarczająco mocne. To ma ogromne znaczenie zwłaszcza w sportach motorowych.

Pytanie 9

Jaką metodą realizuje się planowanie głowicy?

A. frezowania
B. toczenia
C. honowania
D. rozwiercania
Wybór niewłaściwych metod obróbczych, takich jak honowanie, rozwiercanie czy toczenie, często wynika z niepełnego zrozumienia specyfiki procesów obróbczych. Honowanie jest techniką, która służy głównie do poprawy jakości powierzchni w otworach cylindrycznych oraz do osiągania wysokiej precyzji wymiarowej, a nie do formowania kształtów głowic. Używane zazwyczaj na końcowym etapie obróbki, honowanie ma na celu eliminację mikrouszkodzeń i zapewnienie idealnego wykończenia, co czyni tę metodę nieodpowiednią w kontekście planowania głowicy, gdzie wymagana jest głównie obróbka kształtowa. Rozwiercanie z kolei to proces przeznaczony do zwiększania średnicy otworów w obrabianych materiałach, co nie jest kluczowym elementem w produkcji głowic, gdzie bardziej istotne jest kształtowanie ich konturów. Toczenie, mimo że jest skuteczną metodą obróbczo-formującą, także nie nadaje się do precyzyjnego planowania głowic, zwłaszcza w kontekście ich złożonej geometrii. Zrozumienie, które procesy obróbcze są właściwe do danego zastosowania, jest kluczowe w projektowaniu i produkcji, a wybór odpowiedniej metody ma bezpośredni wpływ na jakość oraz efektywność produkcji. W przemyśle stosuje się różne standardy, takie jak ISO 9001, które podkreślają znaczenie odpowiedniego doboru technologii obróbczej w odniesieniu do specyfiki produkcji.

Pytanie 10

Wymieniając części systemu wydechowego,

A. pojemność układu musi pozostać taka sama
B. można stosować rury o mniejszej średnicy
C. można usunąć elastyczny łącznik (plecionkę)
D. zamiast katalizatora można użyć tłumika
W układzie wydechowym zachowanie odpowiedniej pojemności jest kluczowe dla prawidłowego działania silnika. Odpowiednia wielkość układu wydechowego wpływa na ciśnienie gazów spalinowych oraz ich przepływ, co jest niezbędne do optymalizacji wydajności silnika. Utrzymanie tej samej pojemności układu pozwala na zapewnienie, że gazy spalinowe będą właściwie odprowadzane, co z kolei minimalizuje ryzyko ich cofania się do cylindra, co mogłoby prowadzić do zmniejszenia efektywności silnika oraz zwiększenia emisji zanieczyszczeń. Przykładowo, w samochodach wyścigowych modyfikacje układu wydechowego są często stosowane, ale inżynierowie dbają o to, aby pojemność układu pozostała w zgodzie z wymaganiami producenta silnika. W praktyce, zmiany w układzie wydechowym należy wprowadzać zgodnie z zasadami inżynierii, aby uniknąć negatywnego wpływu na osiągi oraz trwałość komponentów układu wydechowego.

Pytanie 11

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,01 mm
B. 0,02 mm
C. 0,05 mm
D. 0,10 mm
Noniusz mikrometra, znany z wysokiej precyzji pomiarów, wskazuje dokładność 0,01 mm. Taki poziom dokładności jest kluczowy w zastosowaniach inżynieryjnych oraz laboratoryjnych, gdzie wymagana jest precyzyjna obróbka materiałów czy też montaż elementów. Dzięki takiej rozdzielczości, użytkownicy mogą z łatwością określić niewielkie wymiary, co jest istotne w kontekście tolerancji produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, gdzie każdy milimetr ma znaczenie, pomiary realizowane z dokładnością do 0,01 mm umożliwiają osiągnięcie wysokiej jakości wykonania detali. Standardy branżowe, takie jak ISO 2768, nakładają obowiązek stosowania precyzyjnych narzędzi pomiarowych w procesie wytwarzania, co potwierdza znaczenie mikrometrów z noniuszem. Oprócz zastosowań przemysłowych, mikrometry są również stosowane w badaniach naukowych, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych wyników. To sprawia, że wiedza o dokładności mikrometrów jest istotnym elementem kształcenia inżynieryjnego.

Pytanie 12

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. ciśnienia tłoczenia
B. wydatku pompy
C. podciśnienia ssania
D. ciśnienia wtrysku
Podczas diagnostyki pompy paliwowej, niektórzy mogą pomyśleć, że pomiar ciśnienia wtrysku jest kluczowy, jednak takie podejście jest mylące. Ciśnienie wtrysku wiąże się z pracą układu wtryskowego, który jest niezależny od samej pompy paliwowej. Pompa ma za zadanie dostarczenie paliwa pod określonym ciśnieniem, a wtryskiwacze kontrolują, kiedy i jak dużo paliwa dostarczyć do komory spalania. Z tego powodu, pomiar ciśnienia wtrysku nie dostarcza informacji o efektywności pompy. Dodatkowo, pomiar ciśnienia tłoczenia jest kluczowy, ponieważ pozwala ocenić, czy pompa dostarcza odpowiednią ilość paliwa do silnika. Pomiar wydatku pompy, który określa, ile paliwa jest w stanie dostarczyć pompa w danym czasie, również jest niezbędny do oceny jej wydajności. Niewłaściwe zrozumienie roli poszczególnych elementów systemu paliwowego może prowadzić do błędnych diagnoz i niewłaściwych decyzji dotyczących naprawy. Użytkownicy często mylą funkcje pompy z funkcjami wtryskiwaczy, co może skutkować próbami diagnozowania problemu w niewłaściwy sposób. Dlatego ważne jest, aby w diagnostyce koncentrować się na pomiarach, które bezpośrednio odnoszą się do działania pompy, aby właściwie ocenić jej stan i uniknąć zbędnych napraw.

Pytanie 13

Zgodnie z klasyfikacją SAE (Society of Automotive Engineers) olej 10W to olej

A. specjalny
B. wielosezonowy
C. letni
D. zimowy
Wybór odpowiedzi niewłaściwej, takiej jak 'specjalny', 'wielosezonowy' lub 'letni', wskazuje na błędne zrozumienie klasyfikacji olejów silnikowych według SAE oraz ich właściwości. Olej oznaczony jako 'specjalny' nie ma formalnej klasyfikacji w ramach standardów SAE, co może prowadzić do nieprecyzyjnych wniosków na temat jego zastosowania. Oleje wielosezonowe, choć rzeczywiście posiadają oznaczenia z literą 'W', różnią się od olejów zimowych, ponieważ są zaprojektowane do pracy w szerokim zakresie temperatur, co nie odnosi się bezpośrednio do oleju 10W, który jest ściśle klasyfikowany jako olej zimowy. Z kolei olej 'letni' dotyczy wyłącznie oznaczeń, które nie zawierają litery 'W'; są one przeznaczone do użytkowania w wyższych temperaturach i nie są odpowiednie do pracy w mroźnych warunkach. Zrozumienie znaczenia oznaczeń lepkości i ich wpływu na wydajność silnika jest kluczowe, aby uniknąć nieodpowiednich wyborów, które mogą prowadzić do uszkodzeń silnika. Błędy w interpretacji mogą wynikać z braku wiedzy na temat wpływu temperatury na właściwości smarne oleju, co z kolei może wpłynąć na osiągi i żywotność jednostki napędowej. Właściwy dobór oleju to kluczowy element zapewnienia efektywności energetycznej i długowieczności silnika.

Pytanie 14

Aby zmierzyć zużycie gładzi cylindrowej w silniku spalinowym, powinno się zastosować

A. suwmiarkę
B. mikroskop warsztatowy
C. szczelinomierz
D. średnicówkę czujnikową
Średnicówka czujnikowa jest narzędziem pomiarowym, które zapewnia wysoką precyzję w pomiarach średnicy otworów oraz gładzi cylindrowej w silnikach spalinowych. Jest to kluczowe, gdyż precyzyjne określenie wymiarów gładzi cylindrowej ma bezpośredni wpływ na efektywność silnika oraz jego żywotność. Gładź cylindrowa musi być idealnie gładka i o odpowiednich wymiarach, aby zapewnić prawidłową współpracę z tłokiem oraz optymalne smarowanie. Użycie średnicówki czujnikowej pozwala na dokładne pomiary, które są istotne w kontekście diagnostyki oraz remontów silników. W praktyce, przy pomocy tego narzędzia można z łatwością określić, czy gładź cylindrowa wymaga regeneracji, czy też można pozostawić ją w jej obecnym stanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych i serwisowych, a średnicówki czujnikowe są doskonałym przykładem narzędzi, które spełniają te wymagania.

Pytanie 15

W silniku spalinowym z tłokiem luz zaworowy jest

A. niedopuszczalny, ponieważ powoduje wzrost ilości świeżego ładunku w cylindrze
B. zbędny, ponieważ prowadzi jedynie do szybszego zużycia elementów układu rozrządu
C. konieczny aby zapobiec kolizji zaworu z denkiem tłoka
D. konieczny w celu zrekompensowania rozszerzalności temperaturowej części układu rozrządu
Odpowiedź wskazująca, że luz zaworowy jest niezbędny w celu kompensacji rozszerzalności temperaturowej elementów układu rozrządu jest prawidłowa. Luz zaworowy odgrywa kluczową rolę w prawidłowym działaniu silników tłokowych, ponieważ różne materiały używane w układzie rozrządu mają różne współczynniki rozszerzalności cieplnej. W miarę nagrzewania się silnika, elementy te mogą się rozszerzać, co prowadzi do zmiany ich wymiarów. Bez odpowiedniego luzu, zawory mogą nie zamykać się prawidłowo, co może skutkować utratą ciśnienia kompresji, a w najgorszym przypadku kolizją między zaworem a tłokiem. W praktyce, regulacja luzu zaworowego jest standardową procedurą serwisową, która pozwala na zachowanie optymalnej wydajności silnika oraz jego trwałości. Wzmianka o luzie odnosi się również do standardów branżowych, które zalecają określone wartości luzu w zależności od typu silnika, co zapewnia długotrwałe i niezawodne działanie jednostki napędowej.

Pytanie 16

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. satelita
B. wałek napędowy
C. pas napędowy
D. element synchronizujący
Pas napędowy to naprawdę ważny element w bezstopniowej skrzyni biegów CVT, bo dzięki niemu moc z silnika płynnie przechodzi na koła. W tradycyjnych skrzyniach biegów mamy ustalone przełożenia, a CVT działa trochę inaczej, bo wykorzystuje pasy i stożki do zmiany przełożenia na bieżąco. Dzięki temu auto lepiej się prowadzi i bardziej oszczędza paliwo, co każdy kierowca na pewno doceni. W praktyce oznacza to, że jazda jest bardziej komfortowa, bo nie ma takiego szarpania. Widać, że CVT staje się coraz bardziej popularne, zwłaszcza w hybrydach, gdzie ekonomik to kluczowa sprawa. Pamiętaj też, żeby dbać o odpowiednie napięcie pasa i jego stan, bo to ma ogromne znaczenie dla wydajności i trwałości całego systemu.

Pytanie 17

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. wzmocnienie struktury cylindra, który jest chłodzony cieczą
B. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
C. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
D. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 18

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. multimetr
B. komputerowy zestaw diagnostyczny
C. klucz serwisowy
D. czytnik kodów błędów
Czytnik kodów błędów, multimetr oraz klucz serwisowy to narzędzia, które mogą być użyteczne w diagnostyce, ale nie zastępują pełnoprawnego komputerowego zestawu diagnostycznego. Czytnik kodów błędów to urządzenie, które pozwala jedynie na odczyt podstawowych kodów błędów zapisanych w pamięci sterownika. Niemniej jednak, nie oferuje on zaawansowanych funkcji, takich jak monitorowanie parametrów w czasie rzeczywistym, co jest kluczowe dla skutecznej analizy pracy silnika. Z kolei multimetr jest narzędziem do pomiaru napięcia, prądu i oporu, co czyni go przydatnym w diagnozowaniu problemów z elektryką pojazdu, ale nie jest on w stanie zidentyfikować wszystkich problemów związanych z elektroniką silnika. Klucz serwisowy, natomiast, jest używany głównie do resetowania systemów po dokonaniu napraw i nie ma zdolności do diagnostyki błędów. Przy korzystaniu z tych narzędzi często można napotkać problem z ograniczeniami ich funkcjonalności, co może prowadzić do nieprawidłowych diagnoz. Właściwa diagnostyka wymaga całościowego podejścia i wykorzystania odpowiednich narzędzi, co podkreśla znaczenie komputerowego zestawu diagnostycznego w praktyce.

Pytanie 19

Układ, który napełnia się płynem eksploatacyjnym oznaczonym jako R 134a, to

A. klimatyzacji
B. chłodzący
C. wspomagania
D. hamulcowy
Odpowiedź 'klimatyzacji' jest prawidłowa, ponieważ R 134a jest jednym z najpopularniejszych czynników chłodniczych stosowanych w systemach klimatyzacji w pojazdach. R 134a, chemicznie znany jako tetrafluoroetan, jest gazem o niskiej toksyczności i wpływie na środowisko, co czyni go odpowiednim wyborem w kontekście globalnych regulacji dotyczących ochrony atmosfery. W systemach klimatyzacji, R 134a jest wykorzystywany do transportu ciepła z wnętrza pojazdu na zewnątrz, umożliwiając schłodzenie kabiny. Proces ten polega na odparowaniu czynnika chłodniczego w parowniku, który absorbuje ciepło z wnętrza pojazdu, a następnie sprężeniu go w sprężarce, co powoduje wzrost temperatury i ciśnienia. Po skropleniu w skraplaczu, czynnik wraca do postaci cieczy i cykl się powtarza. Właściwe napełnienie układu czynnikiem R 134a i jego regularna konserwacja są kluczowe dla efektywności energetycznej systemu oraz komfortu użytkowników pojazdu.

Pytanie 20

Co oznacza kod SAE 80W-90?

A. oleju skrzyni biegów
B. oleju silnikowego
C. płynu hamulcowego
D. płynu chłodniczego
Olej SAE 80W-90 to coś, co stosuje się w skrzyniach biegów. Oznaczenie 'SAE' mówi nam, że przeszedł testy według norm stowarzyszenia inżynierów motoryzacyjnych, więc możemy być pewni, że jest ok. Te liczby '80W' mówią o tym, jak olej się zachowuje w zimie – im mniejsza liczba, tym lepiej się leje w chłodniejsze dni. Z kolei '90' to lepkość w wyższych temperaturach, co jest ważne, żeby skrzynia biegów dobrze działała, nawet gdy dostaje w kość. Używanie oleju SAE 80W-90 to dobry wybór, bo chroni mechanizmy i zmniejsza ich zużycie. Można go spotkać w manualnych skrzyniach biegów, zarówno w osobówkach, jak i autach dostawczych, gdzie ważne jest, żeby olej zachowywał odpowiednią lepkość, by wszystko działało jak należy.

Pytanie 21

Podczas naprawy układu hamulcowego pojazdu obowiązkowo należy

A. ustawić geometrię kół, jeśli to konieczne po naprawie zawieszenia
B. zawsze wymieniać klocki hamulcowe na nowe
C. odpowietrzyć układ po wymianie płynu hamulcowego
D. sprawdzić ciśnienie w oponach pod kątem bezpiecznej jazdy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowietrzanie układu hamulcowego po wymianie płynu hamulcowego jest kluczowym krokiem w procesie naprawy hamulców. Płyn hamulcowy jest nieściśliwy, co oznacza, że przenosi siłę z pedału hamulca na klocki hamulcowe bez strat energii. Powietrze w układzie działa inaczej, ponieważ jest ściśliwe, co prowadzi do utraty efektywności hamowania. Dlatego też, po każdej wymianie płynu, układ musi być odpowietrzony, aby usunąć wszelkie pęcherzyki powietrza. Jest to standardowa procedura zgodna z najlepszymi praktykami branżowymi, zapewniająca bezpieczeństwo na drodze. W praktyce oznacza to, że technik musi używać specjalistycznych narzędzi i przestrzegać procedur, aby skutecznie odpowietrzyć układ. Nieprawidłowe odpowietrzenie może prowadzić do sytuacji, w której pedał hamulca staje się miękki, co jest niebezpieczne podczas jazdy. Prawidłowe wykonanie tej czynności zapewnia, że układ hamulcowy działa z pełną efektywnością, co jest kluczowe dla bezpieczeństwa kierowcy i pasażerów.

Pytanie 22

Częstym symptomem wskazującym na poślizg sprzęgła jest

A. spadek prędkości pojazdu w trakcie jazdy pod górkę
B. nierównomierna praca silnika na biegu jałowym
C. drgania pojawiające się podczas hamowania
D. niemożność zmiany biegów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Spadek prędkości pojazdu podczas jazdy pod górkę jest typowym objawem poślizgu sprzęgła, ponieważ w momencie, gdy kierowca przyspiesza, silnik nie przekazuje odpowiedniej mocy na koła, co prowadzi do opóźnienia w ruchu pojazdu. W przypadku prawidłowej pracy sprzęgła, moc silnika powinna być efektywnie przenoszona na skrzynię biegów, co z kolei umożliwia pokonanie wzniesienia. W praktyce, jeżeli zauważamy, że pojazd traci prędkość, mimo że kierowca wciska pedał przyspieszenia, może to sugerować, że tarcze sprzęgła są zużyte lub uszkodzone. W branży motoryzacyjnej standardem jest regularne sprawdzanie stanu sprzęgła, co pozwala na wczesne wykrycie problemów i uniknięcie kosztownych napraw. Warto również pamiętać, że inne objawy, takie jak zwiększone obroty silnika przy niewielkim przyspieszeniu, mogą również wskazywać na poślizg sprzęgła, co dodatkowo podkreśla znaczenie regularnej konserwacji.

Pytanie 23

Przyczyną "strzelania" silnika do układu wydechowego nie jest

A. brak zapłonu w jednym z cylindrów
B. nieszczelność zaworu wydechowego
C. zbyt bogata mieszanka paliwowo-powietrzna
D. zapieczone wtryskiwacze paliwowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapieczenie wtryskiwaczy nie jest tym, co zazwyczaj powoduje strzelanie silnika w tłumik. Z mojego doświadczenia w motoryzacji, to zjawisko najczęściej bierze się z problemów w układzie zapłonowym lub wydechowym. Strzelanie w tłumik, czy jak niektórzy mówią, detonacja, zdarza się, gdy niespalone paliwo dostaje się do systemu wydechowego i tam się zapala, bo są odpowiednie warunki - na przykład wysoka temperatura. Wtryskiwacze w sumie powinny dostarczać paliwo do cylindrów, ale jak są zapieczone, to mogą powodować inne problemy z silnikiem, a niekoniecznie bezpośrednio strzelanie w tłumik. Żeby nie mieć takich kłopotów, dobrze jest regularnie sprawdzać wtryskiwacze i je czyścić. Przydałoby się też używać dodatków do paliwa, żeby jakoś temu zapieczeniu zapobiegać, co przekłada się na dłuższą żywotność silnika.

Pytanie 24

Jak wiele znaków zawiera numer VIN?

A. 17 znaków
B. 11 znaków
C. 13 znaków
D. 15 znaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Numer identyfikacyjny pojazdu, znany jako VIN (Vehicle Identification Number), składa się z 17 znaków, co czyni go unikalnym dla każdego pojazdu. VIN został wprowadzony, aby zapewnić jednoznaczną identyfikację pojazdów na całym świecie. Składa się z kombinacji liter i cyfr, które zawierają istotne informacje, takie jak producent, rok produkcji, miejsce produkcji oraz unikalny numer seryjny pojazdu. Przykładowo, pierwsze trzy znaki VIN to tzw. WMI (World Manufacturer Identifier), które identyfikują producenta. Wiedza na temat VIN jest kluczowa dla takich procesów jak rejestracja pojazdu, ubezpieczenia, a także przy transakcjach sprzedaży, ponieważ pozwala na szybkie sprawdzenie historii pojazdu oraz jego stanu prawnego. Zgodnie z międzynarodowymi standardami ISO 3779, długość VIN powinna być stała, co ułatwia zarówno producentom, jak i użytkownikom identyfikację i śledzenie pojazdów.

Pytanie 25

W systemie smarowania silnika najczęściej wykorzystuje się pompy

A. nurnikowe
B. tłoczkowe
C. zębate
D. membranowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompy zębate są najczęściej stosowanym typem pomp w układach smarowania silników, ponieważ zapewniają one stabilne ciśnienie i wysoką wydajność. Działają na zasadzie przesuwania oleju między zębami kół zębatych, co pozwala na efektywne pobieranie i tłoczenie smaru w obrębie silnika. Ich konstrukcja jest stosunkowo prosta, co wpływa na niskie koszty produkcji oraz łatwość w serwisowaniu. W praktyce, pompy zębate są powszechnie używane w silnikach spalinowych oraz w hydraulice, gdzie wymagane jest dostarczanie oleju pod odpowiednim ciśnieniem. Ponadto, ich działanie jest mało wrażliwe na zmiany lepkości oleju, co czyni je bardziej uniwersalnymi. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie efektywnego smarowania, co czyni pompy zębate kluczowym elementem zapewniającym długowieczność i sprawność silników. Dobre praktyki w inżynierii mechanicznej zalecają regularne kontrole i konserwację pomp zębatych, aby uniknąć awarii i zapewnić optymalną wydajność silnika.

Pytanie 26

W przykładowym oznaczeniu opony 195/65R15 91H litera R wskazuje na

A. średnicę opony
B. promień opony R
C. indeks prędkości
D. oponę radialną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Litera R w oznaczeniu opony 195/65R15 oznacza, że jest to opona radialna. Opony radialne są obecnie standardem w przemyśle motoryzacyjnym, co wynika z ich konstrukcji, która zapewnia lepszą stabilność, mniejsze opory toczenia oraz lepsze właściwości jezdne w porównaniu do opon diagonalnych. W konstrukcji radialnej włókna osnowy bieżnika są ułożone promieniowo w stosunku do osi opony, co pozwala na bardziej elastyczne boczne ściany, a tym samym poprawia komfort jazdy i osiągi. Opony radialne charakteryzują się także wyższą odpornością na zużycie oraz lepszymi właściwościami trakcyjnymi, co czyni je idealnym wyborem zarówno dla pojazdów osobowych, jak i dostawczych. Warto również zwrócić uwagę, że w przypadku opon o wysokich osiągach, ich konstrukcja wpływa na zachowanie na zakrętach oraz w trudnych warunkach pogodowych, co ma kluczowe znaczenie dla bezpieczeństwa na drodze.

Pytanie 27

Reperacja tarczy hamulcowej, której bicie osiowe przekracza dozwolone wartości, polega na

A. przetaczaniu
B. wyprostowaniu
C. frezowaniu
D. osiowaniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetaczanie tarczy hamulcowej to proces, który pozwala na przywrócenie jej prawidłowego kształtu i grubości, eliminując bicie osiowe, które może wpływać na jakość hamowania. W trakcie przetaczania, tarcza jest obrabiana na specjalnej maszynie, co pozwala na usunięcie materiału w miejscach, gdzie występują nierówności. To zyskuje szczególne znaczenie, gdy tarcza jest już zużyta, a jej wymiana na nową nie jest konieczna, co jest korzystne z perspektywy ekonomicznej i ekologicznej. Przetaczanie tarcz hamulcowych powinno być przeprowadzane zgodnie z normami przemysłowymi, które określają minimalne grubości tarcz oraz tolerancje bicia, co zapewnia nie tylko bezpieczeństwo, ale i komfort jazdy. Dobre praktyki branżowe sugerują, aby przetaczanie wykonywać w wyspecjalizowanych warsztatach, gdzie fachowcy mają odpowiedni sprzęt oraz doświadczenie. Dzięki temu można uniknąć błędów, które mogłyby prowadzić do dalszego zużycia układu hamulcowego oraz zagrożenia dla bezpieczeństwa pojazdu.

Pytanie 28

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. maksymalną prędkość jazdy
B. typ konstrukcji osnowy opony
C. średnicę opony
D. maksymalne dopuszczalne obciążenie (nośność opony)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 29

Kompletne oddzielenie współdziałających elementów za pomocą środka smarowego ma miejsce

A. w przypadku tarcia suchego
B. w sytuacji tarcia granicznego
C. w momencie tarcia płynnego
D. w trakcie docierania wstępnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tarcie płynne to coś, co dobrze znasz. W takim stanie wszystkie części są oddzielone smarem, co jest super ważne. Smar nie tylko zmniejsza tarcie, ale też tworzy warstwę ochronną, która chroni przed bezpośrednim kontaktem. To naprawdę kluczowe, żeby urządzenia działały długo i bez problemów. Na przykład w silnikach spalinowych olej silnikowy robi dokładnie to, tworzy film ochronny i zmniejsza zużycie części. Jak korzystasz z oleju, warto zwrócić uwagę na oznaczenia, takie jak API, bo to daje pewność, że wszystko działa jak należy. Regularna wymiana oleju i dobór smarów zgodnych z zaleceniami producenta jest mega istotne, żeby zminimalizować ryzyko awarii, które mogą się zdarzyć, jeśli tarcie będzie źle dobrane. W końcu, tarcie płynne to temat, który naprawdę ma znaczenie w inżynierii mechanicznej, bo wpływa na efektywność i trwałość maszyn.

Pytanie 30

Maksymalna dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych wyprodukowanych po 2004 roku, w czasie biegu jałowego, nie powinna być większa niż

A. 1,5% objętości spalin
B. 0,3% objętości spalin
C. 3,5% objętości spalin
D. 2,5% objętości spalin

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych, które zostały wyprodukowane po roku 2004, wynosi 0,3% objętości spalin na biegu jałowym. Takie normy wynikają z regulacji dotyczących ochrony środowiska oraz zmniejszania emisji zanieczyszczeń. Silniki nowoczesne są projektowane z myślą o maksymalnej efektywności spalania oraz minimalizacji emisji szkodliwych substancji. Przykładowe technologie, takie jak układy katalityczne i zaawansowane systemy wtryskowe, znacząco przyczyniają się do redukcji emisji tlenku węgla. W krajach Unii Europejskiej oraz w Stanach Zjednoczonych wprowadzono rygorystyczne normy emisji, takie jak Euro 5 oraz EPA Tier 2, które obligują producentów do wdrażania innowacyjnych rozwiązań technicznych, aby osiągnąć te standardy. Dlatego też, właściwa diagnostyka i monitorowanie emisji spalin w pojazdach stają się kluczowe dla zapewnienia ich zgodności z przepisami oraz ochrony zdrowia publicznego.

Pytanie 31

Jazda testowa przeprowadzona na odcinku drogi kamiennej umożliwi przede wszystkim

A. sprawdzenie działania układu rozruchu silnika.
B. ustalenie czasu ogrzewania się płynu chłodzącego silnik.
C. określenie siły hamowania pojazdu.
D. określenie stanu technicznego systemu zawieszenia pojazdu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jazda po drodze brukowanej to naprawdę ważny test dla zawieszenia samochodu. Ta nawierzchnia, z wszystkimi swoimi dołkami i drganiami, zmusza układ zawieszenia do działania w trudnych warunkach, co pomaga ocenić, jak to wszystko działa. Dla aut osobowych zawieszenie jest kluczowe, bo wpływa zarówno na komfort jazdy, jak i bezpieczeństwo. Gdy jedziesz po bruku, możesz zobaczyć, jak zawieszenie reaguje na różne nierówności – czy amortyzatory są ok, czy nie słychać dziwnych dźwięków, czy auto nie zjeżdża z toru. Fajnie jest pomyśleć, że na podstawie takich testów można dobrać lepsze amortyzatory czy sprężyny, co zwiększy bezpieczeństwo i komfort podróżowania. W motoryzacji zdarza się, że takie testy przeprowadza się regularnie, żeby mieć pewność, że wszystko działa tak, jak powinno i nie ma ryzyka dla kierowcy i pasażerów.

Pytanie 32

Układ przeniesienia napędu w klasycznej wersji składa się

A. z silnika, skrzyni biegów, mechanizmu różnicowego
B. ze skrzyni biegów, wału, piast
C. ze sprzęgła, skrzyni biegów, wału, przekładni głównej, mechanizmu różnicowego, półosi oraz piast kół
D. ze sprzęgła, skrzyni biegów, półosi oraz piast kół

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny układ przeniesienia napędu w autach to naprawdę ważny temat. W skrócie, to taki system, który przenosi moment obrotowy z silnika na koła. Składa się z paru kluczowych elementów, takich jak sprzęgło, skrzynia biegów, wał napędowy, przekładnia główna, mechanizm różnicowy, półosie i piasty kół. Sprzęgło to ten element, który pozwala na rozłączenie silnika, co jest szczególnie przydatne przy zmianie biegów. Skrzynia biegów z kolei dostosowuje prędkość silnika do prędkości jazdy, co jest mega ważne, żeby auto działało oszczędnie i miało dobre osiągi. Wał napędowy przenosi tę moc do kół – w autach z napędem tylnym do tylnych, a w 4x4 do wszystkich. Przekładnia główna i mechanizm różnicowy są kluczowe, żeby koła mogły obracać się w odpowiednich prędkościach, szczególnie w zakrętach. Półosie i piasty kół zamieniają ten moment obrotowy na ruch kół. W codziennej jeździe na pewno doceniasz, jak ważne jest, żeby każdy z tych elementów działał jak należy, bo to zapewnia bezpieczeństwo i komfort. Te układy są zgodne z normami ISO, co daje pewność ich niezawodności i efektywności.

Pytanie 33

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. oparzenia spalinami
B. porażenia prądem
C. urazów rąk
D. zatrucia spalinami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 34

Firma transportowa zleciła regulację luzów7 zaworowych w 10 pojazdach wyposażonych w silniki rzędowe 4-cylindrowe 8 zaworowe. Silniki mają jedną pokrywę zaworów. Posługując się danymi z tabeli oblicz całkowity czas wykonania zlecenia.

Nazwa operacjiCzas [min]
Wymiana świecy5
Demontaż pokrywy zaworów10
Regulacja luzu zaworów 1 cylindra(*)5*
Montaż pokrywy zaworów10
Wymiana filtra powietrza8

(*) – podany czas dotyczy wyłącznie regulacji luzu zaworowego

A. 20 minut
B. 228 minut
C. 400 minut
D. 40 minut

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 400 minut, co wynika z dokładnego przeliczenia czasu potrzebnego na regulację luzów zaworowych w 10 pojazdach. Każde z silników 4-cylindrowych wymaga 60 minut na wykonanie wszystkich niezbędnych operacji: 20 minut na wymianę świec zapłonowych, 10 minut na demontaż pokrywy zaworów, 20 minut na regulację luzów, oraz 10 minut na montaż pokrywy. Sumując te czasy, otrzymujemy 60 minut na jeden pojazd. Następnie, dla 10 pojazdów, czas ten mnożymy przez 10, co daje 600 minut. Warto jednak zwrócić uwagę, że pytanie dotyczy regulacji luzów zaworowych, która dla 10 silników powinna być uwzględniona w kontekście praktyki wykonawczej i planowania czasu pracy w warsztacie. W branży motoryzacyjnej, takie obliczenia pozwalają na efektywne zarządzanie czasem pracy i kosztami usług, co jest kluczowe dla zadowolenia klienta oraz rentowności działalności. Dla dalszej analizy, można również zapoznać się z dokumentacją producentów silników, gdzie znajdziemy szczegółowe instrukcje dotyczące regulacji luzów oraz oszacowania czasu potrzebnego na wykonanie tych operacji.

Pytanie 35

Jakie jest wykończenie powierzchni cylindrów w silnikach spalinowych?

A. szlifowanie
B. skrobanie
C. polerowanie
D. honowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Honowanie jest procesem obróbczo-wykończeniowym, który ma na celu poprawę jakości powierzchni cylindrów silników spalinowych poprzez usunięcie niewielkich nierówności i osiągnięcie odpowiedniego wzoru chropowatości. Umożliwia to lepsze smarowanie oraz zmniejszenie zużycia paliwa, co jest kluczowe dla efektywności silników. W honowaniu wykorzystuje się narzędzia z nasypem diamentowym lub węglika tungstenowego, co zapewnia wysoką precyzję oraz odporność na ścieranie. Przykładem zastosowania honowania jest proces obróbczy w silnikach o dużych obciążeniach, gdzie dokładność wymiarowa i jakość powierzchni są niezbędne do zapewnienia trwałości i niezawodności. W branży motoryzacyjnej honowanie cylindrów stało się standardem, który pozwala na spełnienie rygorystycznych norm emisji spalin oraz podniesienie ogólnej wydajności silników. Praktyki honowania są zgodne z normami ISO, które regulują jakość wykończenia powierzchni w elementach silników.

Pytanie 36

Kierowca ma problem z uruchomieniem pojazdu. Wał korbowy się obraca, jednak silnik nie startuje. Zanim przeprowadzisz diagnozę układu zapłonowego, powinieneś najpierw zbadać układ

A. napędowy
B. zasilania paliwem
C. wydechowy
D. elektryczny alternatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zdiagnozowanie układu zasilania paliwem jest kluczowym krokiem w procesie diagnostycznym silnika, szczególnie gdy wał korbowy się obraca, ale silnik nie zapala. Oznacza to, że mechanika silnika funkcjonuje, jednak brak odpowiedniego paliwa lub jego niewłaściwe dostarczenie do cylindrów uniemożliwia zapłon. W pierwszej kolejności należy sprawdzić, czy paliwo dociera do silnika w odpowiednich ilościach i ciśnieniu. Może to obejmować kontrolę pompy paliwowej, filtrów, a także wtryskiwaczy. Przykładowo, zablokowany filtr paliwa może ograniczać przepływ, a uszkodzona pompa paliwowa nie będzie w stanie dostarczyć odpowiedniego ciśnienia. Standardy diagnostyczne, takie jak te określone przez ASE (Automotive Service Excellence), podkreślają znaczenie systematycznego podejścia do diagnostyki, w którym układ zasilania paliwem jest diagnozowany przed układem zapłonowym, aby wykluczyć najczęstsze przyczyny problemów z uruchamianiem silnika.

Pytanie 37

Tuż po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym, należy

A. wykonać obowiązkowe odpowietrzanie całego układu
B. ustawić podstawowe parametry układu przy użyciu testera
C. sprawdzić i usunąć pamięć błędów sterownika ABS
D. zrealizować adaptację układu hamulcowego podczas jazdy próbnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wprowadzenie podstawowych nastaw układu hamulcowego przy pomocy testera jest kluczowym krokiem po wymianie klocków hamulcowych w pojazdach wyposażonych w elektromechaniczny hamulec postojowy. Ta procedura umożliwia prawidłowe ustawienie pozycji klocków względem tarczy hamulcowej, co jest niezbędne dla optymalnego działania systemu hamulcowego. Niewłaściwe ustawienie może prowadzić do zwiększonego zużycia klocków, obniżenia efektywności hamowania oraz uszkodzenia innych komponentów układu. Przykładowo, nieprawidłowe nastawy mogą skutkować przegrzewaniem się klocków, co może prowadzić do ich szybszego zużycia. Właściwe przeprowadzenie tej procedury, zgodnie z zaleceniami producenta pojazdu, jest kluczowe dla zapewnienia bezpieczeństwa jazdy oraz właściwego działania wszystkich funkcji związanych z hamowaniem. W branży motoryzacyjnej standardem jest korzystanie z odpowiednich narzędzi diagnostycznych, które umożliwiają wprowadzenie tych nastaw oraz ich weryfikację po zakończeniu prac serwisowych.

Pytanie 38

Rola stabilizatora w systemie zawieszenia samochodu

A. ogranicza obrót kół podczas jazdy po zakrętach
B. zmniejsza przechyły pojazdu w trakcie pokonywania zakrętów
C. łączy układ kierowniczy z karoserią
D. redukuje wibracje przenoszone z kół na nadwozie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizator w układzie zawieszenia pojazdu, znany również jako stabilizator przechyłów, odgrywa kluczową rolę w poprawie stabilności pojazdu podczas pokonywania zakrętów. Jego głównym zadaniem jest ograniczenie przechyłu nadwozia, co jest szczególnie istotne w przypadku pojazdów osobowych oraz sportowych, gdzie stabilność w zakręcie ma bezpośredni wpływ na bezpieczeństwo jazdy. Stabilizator działa na zasadzie połączenia dwóch wahaczy, które są przymocowane do nadwozia oraz do elementów zawieszenia kół. Kiedy pojazd pokonuje zakręt, stabilizator przenosi siły działające na zewnętrzne koła do kół wewnętrznych, co skutkuje zminimalizowaniem przechyłu nadwozia. W praktyce, efektywny stabilizator pozwala na bardziej przewidywalne prowadzenie pojazdu, co zwiększa komfort jazdy i bezpieczeństwo. Zgodnie z dobrymi praktykami branżowymi, odpowiedni dobór sprężystości stabilizatora jest kluczowy, ponieważ zbyt sztywny stabilizator może prowadzić do sztywności zawieszenia, co negatywnie wpływa na komfort jazdy. Współczesne pojazdy często wyposażane są w systemy elektroniczne wspierające działanie stabilizatorów, co dodatkowo podnosi ich skuteczność.

Pytanie 39

Pomiar grubości zębów kół zębatych można zrealizować przy użyciu

A. średnicówki czujnikowej
B. suwmiarki modułowej
C. głębokościomierza
D. mikrometru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Suwmiarka modułowa to narzędzie pomiarowe, które jest szczególnie przydatne do precyzyjnego pomiaru grubości zębów kół zębatych. Dzięki swojej konstrukcji, suwmiarka modułowa pozwala na dokładne pomiary z zastosowaniem odpowiednich przystawek, co zapewnia dużą precyzję i powtarzalność wyników. W praktyce inżynieryjnej, pomiar grubości zębów kół zębatych jest kluczowy dla zapewnienia ich prawidłowego działania i trwałości. Użycie suwmiarki modułowej, zgodnie z normami ISO 2768-1, zapewnia, że pomiary są wykonane z zachowaniem odpowiednich tolerancji. Dodatkowo, suwmiarki modułowe często mają możliwość kalibracji, co umożliwia dostosowanie ich do specyficznych wymagań pomiarowych w danym zastosowaniu. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary zębów w kołach zębatych przekładni są kluczowe dla ich efektywności i minimalizacji hałasu.

Pytanie 40

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. miernik wysokości.
B. szczelinomierz.
C. czujnik zegarowy.
D. suwmiarka.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.