Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 6 czerwca 2025 17:54
  • Data zakończenia: 6 czerwca 2025 18:04

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie umożliwia testowanie strukturalnego okablowania światłowodowego?

A. stacja lutownicza
B. sonda logiczna
C. odsysacz próżniowy
D. reflektometr optyczny
Reflektometr optyczny jest kluczowym narzędziem do testowania okablowania strukturalnego światłowodowego. Działa na zasadzie wysyłania impulsów światła wzdłuż włókna i analizowania odbicia tych impulsów, co pozwala na identyfikację ewentualnych problemów, takich jak utraty sygnału, refleksje czy uszkodzenia. Dzięki tej technologii technicy mogą dokładnie ocenić jakość instalacji, wykrywać miejsca o dużych stratach, a także oceniać długość włókna. Reflektometr optyczny jest niezbędny w zgodności z normami branżowymi, takimi jak ANSI/TIA-568, które określają wymagania dla instalacji okablowania. Przykładowo, w przypadku nowej instalacji w budynku biurowym, zastosowanie reflektometru optycznego pozwala na potwierdzenie, że włókna są wolne od uszkodzeń i spełniają wymogi wydajności. Technologia ta jest nie tylko standardem w branży, ale także istotnym elementem zapewniającym niezawodność sieci telekomunikacyjnych.

Pytanie 2

Jakie urządzenie jest przedstawione na rysunku?

Ilustracja do pytania
A. Hub.
B. Bridge.
C. Access Point.
D. Switch.
Przełącznik to urządzenie sieciowe, które działa na poziomie drugiej warstwy modelu OSI i zarządza przepływem danych w sieci lokalnej poprzez segmentację ruchu. W odróżnieniu od punktu dostępowego, przełącznik nie obsługuje komunikacji bezprzewodowej, a jego podstawową funkcją jest przekazywanie danych pomiędzy urządzeniami w sieci przewodowej. Koncentrator, choć podobny do przełącznika, działa nieco inaczej. Jest to urządzenie, które rozsyła przychodzące sygnały do wszystkich portów, co powoduje większe obciążenie sieci i jest mniej efektywne w porównaniu z inteligentnym przełączaniem. Most sieciowy, z kolei, łączy segmenty sieci, działając na warstwie drugiej modelu OSI. Jego zadaniem jest filtrowanie ruchu, przepuszczając jedynie ramki przeznaczone dla konkretnego segmentu sieci. Mosty nie obsługują komunikacji bezprzewodowej, co czyni je nieodpowiednimi w kontekście pytania o urządzenie bezprzewodowe. Typowe błędy myślowe w tym kontekście to mylenie funkcji przełącznika z punktem dostępowym ze względu na ich podobieństwo w kontekście zarządzania ruchem sieciowym oraz ignorowanie faktu, że koncentratory i mosty nie obsługują urządzeń bezprzewodowych. Przy analizie takich pytań warto zrozumieć specyficzne funkcje i zastosowania każdego z wymienionych urządzeń, co pozwala na prawidłowe przypisanie ich do danego kontekstu technologicznego.

Pytanie 3

Zakres adresów IPv4 od 224.0.0.0 do 239.255.255.255 jest przeznaczony do jakiego rodzaju transmisji?

A. multicast
B. broadcast
C. anycast
D. unicast
Wybór odpowiedzi związanej z innymi typami transmisji, takimi jak anycast, broadcast czy unicast, oparty jest na niewłaściwym zrozumieniu zasad funkcjonowania sieci komputerowych. Anycast to metoda, w której dane są przesyłane do najbliższego węzła w grupie serwerów, co w praktyce oznacza, że wysyłanie danych do jednej z wielu lokalizacji jest zależne od najlepszej trasy w danym momencie. W przypadku broadcastu dane są wysyłane do wszystkich urządzeń w danej sieci lokalnej, co nie tylko marnuje pasmo, ale także może prowadzić do problemów z wydajnością, gdyż każde urządzenie odbiera te same dane, niezależnie od potrzeby. Unicast natomiast to metoda, w której dane są przesyłane do pojedynczego, konkretnego odbiorcy. Podejścia te mają swoje zastosowania, ale w kontekście podanego zakresu adresów IPv4 nie są odpowiednie, ponieważ nie pozwalają na efektywne przesyłanie informacji do wielu użytkowników jednocześnie. Wybierając inną odpowiedź, można przeoczyć kluczowe cechy multicastu, takie jak efektywność w komunikacji grupowej oraz zastosowanie protokołów, które umożliwiają dynamiczne zarządzanie uczestnikami grupy. Rozumienie tych różnic jest istotne dla projektowania wydajnych systemów komunikacyjnych i sieciowych.

Pytanie 4

Po zainstalowaniu aplikacji VNC, używanej do obserwacji pulpitu konkretnego komputera, oprócz numeru portu należy wskazać jego

A. adres MAC
B. bramę domyślną
C. adres IP
D. adres rozgłoszeniowy
Każda z pozostałych odpowiedzi, takich jak adres rozgłoszeniowy, brama domyślna czy adres MAC, wprowadza w błąd, ponieważ nie są one odpowiednie do konfiguracji VNC. Adres rozgłoszeniowy (broadcast address) jest używany do przesyłania wiadomości do wszystkich urządzeń w danej podsieci, a nie do indywidualnych połączeń. Z tego powodu nie jest on przydatny w kontekście zdalnego dostępu do konkretnego komputera z wykorzystaniem VNC, gdzie kluczowe jest nawiązanie bezpośredniego połączenia z określonym urządzeniem. Brama domyślna, będąca interfejsem, za pośrednictwem którego urządzenie łączy się z innymi sieciami, również nie jest odpowiednia. Nie ma zastosowania, ponieważ VNC wymaga bezpośredniego adresu IP docelowego komputera, a nie bramy. Adres MAC, z kolei, jest unikalnym identyfikatorem sprzętowym przypisanym do interfejsów sieciowych, używanym do komunikacji w warstwie łącza danych. Choć adres MAC jest istotny dla lokalnej komunikacji w sieci, nie jest on używany w kontekście protokołów wyższego poziomu, takich jak VNC, które operują na adresach IP. W efekcie, pomylenie adresu IP z innymi elementami sieciowymi może prowadzić do niepowodzeń w nawiązywaniu połączeń i problemów z dostępem do zdalnych systemów.

Pytanie 5

Jaki system operacyjny funkcjonuje w trybie tekstowym i umożliwia uruchomienie środowiska graficznego KDE?

A. Linux
B. Windows 95
C. DOS
D. Windows XP
Linux to naprawdę ciekawy system operacyjny. Działa głównie w trybie tekstowym, ale możesz też ściągnąć różne środowiska graficzne, z których jedno z najpopularniejszych to KDE. To, co czyni Linuxa fajnym, to jego otwarta architektura, więc każdy może sobie dostosować to środowisko według własnych potrzeb. W praktyce często spotyka się Linuxa na serwerach, gdzie administratorzy wolą korzystać z terminala, a dopiero później dodają coś graficznego, żeby łatwiej zarządzać systemem. Co więcej, Linux ma super poziom bezpieczeństwa i jest stabilny, dlatego wielu programistów i firm wybiera właśnie ten system. Moim zdaniem, korzystanie z Linuxa to świetny sposób, żeby rozwinąć umiejętności związane z administrowaniem systemami i programowaniem. Umożliwia to lepsze zrozumienie tego, jak działają komputery i sieci. Na dodatek, masz dostęp do masy oprogramowania open source, co sprzyja innowacjom w programowaniu i współpracy między użytkownikami.

Pytanie 6

Które z urządzeń sieciowych jest przedstawione na grafice?

Ilustracja do pytania
A. Router
B. Hub
C. Access Point
D. Switch
Symbol graficzny, który widzisz, to router. To bardzo ważne urządzenie w sieciach komputerowych. Router działa jak pośrednik między różnymi częściami sieci i przekazuje dane w taki sposób, żeby było to jak najbardziej efektywne. Korzysta z tablic routingu, które są na bieżąco aktualizowane, więc potrafi kierować pakiety tam, gdzie powinny trafić. Co ciekawe, routery mogą łączyć różne typy sieci, na przykład lokalne sieci LAN z rozległymi WAN, czego inne urządzenia sieciowe nie potrafią. Dzisiaj routery obsługują różne protokoły, jak OSPF, RIPv2 czy BGP, co naprawdę pozwala na lepsze zarządzanie ruchem sieciowym. Mają też różne funkcje zabezpieczeń, na przykład firewalle i VPN, co znacznie poprawia bezpieczeństwo i prywatność użytkowników. W domach często pełnią dodatkowo rolę punktu dostępowego Wi-Fi, co pozwala nam bezprzewodowo połączyć się z siecią. Myślę, że bez routerów dzisiaj nie wyobrazimy sobie nowoczesnych sieci, zarówno w domach, jak i w firmach. Kiedy korzystasz z routerów zgodnie z ich przeznaczeniem, możesz nie tylko lepiej zarządzać ruchem, ale też poprawić bezpieczeństwo oraz stabilność sieci.

Pytanie 7

Częścią zestawu komputerowego, która zajmuje się zarówno przetwarzaniem danych wejściowych, jak i wyjściowych, jest

A. skaner
B. głośnik
C. modem
D. ploter
Modem jest urządzeniem, które przetwarza zarówno dane wejściowe, jak i wyjściowe, co czyni go kluczowym elementem w komunikacji sieciowej. Działa na zasadzie modulacji i demodulacji sygnałów, co pozwala na przesyłanie danych przez różne media, takie jak linie telefoniczne czy kable światłowodowe. W praktyce, modem przekształca sygnały cyfrowe z komputera na analogowe, które mogą być przesyłane przez linię telefoniczną, a następnie odbierane z powrotem i konwertowane z powrotem na cyfrowe przez drugi modem. Dzięki temu użytkownicy mogą korzystać z Internetu, przesyłać e-maile, korzystać z aplikacji chmurowych, czy realizować wideokonferencje. Modemy są zgodne z różnymi standardami, takimi jak ADSL, VDSL czy DOCSIS, co zapewnia ich interoperacyjność w różnych sieciach. Dzięki tym właściwościom, modem jest niezbędnym elementem w strukturach komunikacyjnych, które wymagają zarówno przesyłania, jak i odbierania danych.

Pytanie 8

W schemacie logicznym struktury okablowania, zgodnie z polską terminologią zawartą w normie PN-EN 50174, cechą kondygnacyjnego punktu dystrybucyjnego jest to, że

A. łączy okablowanie obiektu i centralny punkt dystrybucji.
B. obejmuje zasięgiem cały obiekt.
C. obejmuje zasięgiem całe piętro obiektu.
D. łączy okablowanie pionowe i międzylokalowe.
Jeśli chodzi o kondygnacyjne punkty dystrybucyjne, niektóre odpowiedzi mogą być mylące. W sumie, właściwością takiego punktu jest to, że jest on ograniczony do piętra budynku, a nie do całego budynku, tak jak sugeruje jedna z opcji. Cały budynek to raczej sprawa centralnych punktów dystrybucyjnych, które łączą różne piętra. Odpowiedzi związane z łączeniem okablowania pionowego i między budynkami są trochę na bocznym torze, bo punkty dystrybucyjne nie zajmują się łączeniem okablowania między budynkami. Moim zdaniem, to może prowadzić do błędnego zrozumienia, że kondygnacyjne punkty dystrybucyjne mają większy zasięg, co jest nieprawda. Mówiąc, że kondygnacyjny punkt dystrybucyjny łączy okablowanie budynku z centralnym punktem dystrybucyjnym, też może wprowadzać w błąd, bo taką rolę pełnią raczej inne elementy infrastruktury, jak serwerownie czy szafy dystrybucyjne. Dlatego ważne jest, żeby dobrze rozumieć, co tak naprawdę robią te punkty dystrybucyjne, bo ma to znaczenie przy projektowaniu i wdrażaniu efektywnych systemów okablowania.

Pytanie 9

Czym jest NAS?

A. dynamiczny protokół przydzielania adresów DNS
B. protokół używany do tworzenia połączenia VPN
C. serwer do synchronizacji czasu
D. technologia pozwalająca na podłączenie zasobów dyskowych do sieci komputerowej
Widzę, że jest kilka nieporozumień odnośnie technologii NAS. Po pierwsze, nazywanie NAS dynamicznym protokołem przyznawania adresów DNS to spory błąd. DNS, czyli Domain Name System, zajmuje się tłumaczeniem nazw domen na adresy IP, a to nie ma nic wspólnego z przechowywaniem danych. Kolejna sprawa to pomylenie NAS z serwerem synchronizacji czasu. Czas w sieciach najczęściej synchronizuje się dzięki protokołowi NTP, a nie przez technologię przechowywania danych. Czasem ludzie myślą, że NAS może zestawiać połączenie VPN, ale to też nie jest prawda. VPN to coś zupełnie innego, co zapewnia bezpieczne połączenia w Internecie. Nieporozumienia w tej kwestii biorą się z mylenia różnorodnych protokołów i technologii. Ważne, żeby zrozumieć, że NAS to architektura, która umożliwia współdzielenie przestrzeni dyskowej w sieci. Jeśli tego nie zrozumiesz, możesz podjąć złe decyzje przy wyborze rozwiązań IT.

Pytanie 10

Transmisja danych typu półduplex to transmisja

A. jednokierunkowa z trybem bezpołączeniowym
B. dwukierunkowa równoczesna
C. jednokierunkowa z kontrolą parzystości
D. dwukierunkowa naprzemienna
Wybór odpowiedzi, która wskazuje na transmisję dwukierunkową jednoczesną, jest błędny, ponieważ taki typ komunikacji określany jest jako full-duplex. W systemach full-duplex oba urządzenia mogą jednocześnie wysyłać i odbierać dane, co prowadzi do efektywniejszej komunikacji, ale nie odpowiada to charakterystyce półduplexu. W przypadku półduplexu jedno z urządzeń zawsze musi czekać na zakończenie transmisji drugiego. Z kolei odpowiedź wskazująca na jednokierunkową transmisję z kontrolą parzystości również jest myląca. Kontrola parzystości to technika wykrywania błędów w danych, ale nie ma związku z kierunkiem transmisji, który w przypadku półduplexu jest dwukierunkowy. Kolejnym błędem jest wskazanie na jednokierunkową transmisję z trybem bezpołączeniowym, która sugeruje, że dane mogą być przesyłane w jednym kierunku bez ustalania połączenia, co również nie odnosi się do półduplexu. Półduplex wymaga pewnej formy synchronizacji między urządzeniami, co oznacza, że nie jest to ani jednokierunkowy, ani bezpołączeniowy tryb komunikacji. W praktyce, aby poprawnie zrozumieć pojęcie półduplexu, ważne jest, by rozróżniać go od innych form transmisji, takich jak full-duplex i simplex, co jest kluczowe w projektowaniu i implementacji systemów komunikacyjnych.

Pytanie 11

Jakie narzędzie w wierszu poleceń służy do testowania oraz diagnostyki serwerów DNS?

A. CMD
B. DHCP
C. CHKDSK
D. NSLOOKUP
Wybór odpowiedzi, która nie odnosi się właściwie do narzędzia administracyjnego do diagnostyki DNS, może prowadzić do poważnych nieporozumień związanych z zarządzaniem sieciami. DHCP (Dynamic Host Configuration Protocol) jest protokołem, który automatycznie przypisuje adresy IP urządzeniom w sieci, ale nie ma żadnych funkcji związanych z testowaniem lub diagnozowaniem serwerów DNS. Użycie DHCP w kontekście diagnostyki DNS jest zatem mylne, ponieważ ten protokół nie obsługuje zapytań DNS, co jest kluczowe dla rozwiązywania problemów z nazwami domen. CMD (Command Prompt) to interfejs użytkownika, który umożliwia korzystanie z różnych poleceń systemowych, ale nie jest dedykowanym narzędziem do testowania DNS. Choć można w nim uruchomić NSLOOKUP, CMD sam w sobie nie ma funkcji diagnostycznych w kontekście DNS. CHKDSK (Check Disk) jest narzędziem służącym do analizy i naprawy błędów na dyskach twardych, i nie ma nic wspólnego z systemem DNS. Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących funkcji poszczególnych narzędzi. Użytkownicy mogą mylnie sądzić, że każde narzędzie dostępne w wierszu polecenia ma zdolności diagnostyczne, co jest niezgodne z rzeczywistością. Rozumienie specyfiki i przeznaczenia każdego narzędzia w administracji systemami informatycznymi jest kluczowe dla efektywnej pracy w tej dziedzinie.

Pytanie 12

W systemie Windows przy użyciu polecenia assoc można

A. sprawdzić zawartość dwóch plików
B. zmieniać powiązania z rozszerzeniami plików
C. zobaczyć atrybuty plików
D. zmienić listę kontroli dostępu do plików
Pomimo tego, że zarządzanie plikami w systemie Windows jest kluczowym aspektem, polecenia opisane w odpowiedziach nie są związane z funkcją 'assoc'. Nie jest prawdą, że 'assoc' pozwala na porównanie zawartości dwóch plików, ponieważ do tego celu służą inne narzędzia, takie jak 'fc' (file compare). Użycie 'fc' umożliwia użytkownikom analizę różnic między plikami tekstowymi, co jest przydatne w kontekście programowania i analizy danych. Z kolei modyfikacja listy kontroli dostępu do plików (ACL) jest realizowana za pomocą innych narzędzi, takich jak 'icacls'. ACL pozwala na precyzyjne zarządzanie uprawnieniami dostępu do plików, co jest istotne dla bezpieczeństwa danych. Zmiana atrybutów plików, na przykład ich ukrycie czy oznaczenie jako tylko do odczytu, również nie jest funkcją 'assoc', lecz można to zrobić za pomocą polecenia 'attrib'. Warto zrozumieć, że każde z tych narzędzi ma swoją specyfikę i jest przeznaczone do konkretnych zadań. Ignorowanie tego faktu może prowadzić do błędów w zarządzaniu systemem oraz nieefektywności w pracy z danymi. Dlatego kluczowe jest zrozumienie różnic i zastosowań poszczególnych poleceń w systemie Windows.

Pytanie 13

Jakiego rodzaju fizycznej topologii sieci komputerowej dotyczy przedstawiony obrazek?

Ilustracja do pytania
A. Pełnej siatki
B. Częściowej siatki
C. Połączenia punkt-punkt
D. Wzór gwiazdy
Topologia pełnej siatki to aranżacja sieci, w której każdy węzeł jest bezpośrednio połączony z każdym innym węzłem. Taka struktura zapewnia wysoką redundancję i niezawodność, ponieważ awaria jednego połączenia nie wpływa na inne, a dane mogą być przesyłane różnymi ścieżkami. Jest to idealne rozwiązanie w sytuacjach, gdzie niezawodność i dostępność są kluczowe, na przykład w systemach finansowych czy komunikacji wojskowej. Koszty wdrożenia i utrzymania są jednak wysokie ze względu na dużą liczbę połączeń potrzebnych do pełnego pokrycia sieci. W praktyce, pełna siatka jest rzadko stosowana w fizycznej formie, ale jej koncepcja jest wykorzystywana w wirtualnych sieciach komputerowych, w których połączenia są realizowane za pomocą odpowiednich protokołów. Implementacja takiej topologii zgodna jest z dobrymi praktykami przemysłowymi w zakresie zapewnienia ciągłości działania i bezpieczeństwa transmisji danych.

Pytanie 14

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. antyspamowy
B. antywirusowy
C. typu recovery
D. typu firewall
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 15

W standardzie Ethernet 100BaseTX konieczne jest użycie kabli skręconych

A. kategorii 1
B. kategorii 3
C. kategorii 5
D. kategorii 2
Wybór skrętki kategorii 1, 2 lub 3 dla technologii 100BaseTX jest błędny z kilku istotnych powodów. Skrętka kategorii 1 nie jest przeznaczona do przesyłania danych cyfrowych; wykorzystywana była głównie w tradycyjnych liniach telefonicznych, co czyni ją niewłaściwą dla nowoczesnych sieci komputerowych. Kategoria 2, chociaż pozwalała na przesyłanie danych do 4 Mbps, jest zbyt ograniczona dla zastosowań wymagających prędkości 100 Mbps, co jest standardem dla 100BaseTX. Kategoria 3, zdolna do przesyłu do 10 Mbps, również nie spełnia wymogów dotyczących nowoczesnych aplikacji sieciowych i nie wspiera tak dużych prędkości transmisji. Skrętki te, będąc przestarzałymi, mogą prowadzić do znacznych strat jakości sygnału oraz zwiększonej liczby błędów w transmisji, co negatywnie wpływa na wydajność i stabilność sieci. W praktyce opieranie się na tych starszych standardach może spowodować poważne problemy w środowisku biurowym lub przemysłowym, gdzie wymagana jest niezawodność i wysoka szybkość przesyłu danych. Dlatego kluczowe jest stosowanie aktualnych technologii, takich jak skrętka kategorii 5, która była specjalnie zaprojektowana do pracy z nowoczesnymi standardami Ethernet, jak 100BaseTX, zapewniając nie tylko odpowiednią wydajność, ale również zgodność z obowiązującymi standardami branżowymi.

Pytanie 16

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 3, 4
B. 4, 5, 6, 7
C. 1, 2, 5, 6
D. 1, 2, 3, 6
Sieć Ethernet 100BaseTX, znana również jako Fast Ethernet, wykorzystuje kabel UTP (Unshielded Twisted Pair) kategorii 5 lub wyższej. W standardzie tym do transmisji danych wykorzystywane są pary przewodów połączone z pinami 1, 2, 3 i 6 w złączu RJ-45. Piny 1 i 2 są używane do transmisji danych z urządzenia, podczas gdy piny 3 i 6 służą do odbioru danych. Zarówno standard EIA/TIA-568A, jak i 568B definiują te same piny dla 100BaseTX, co zapewnia zgodność i łatwość instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w konfiguracji domowych i biurowych sieci komputerowych, gdzie odpowiednie podłączenie kabli jest kluczowe dla zapewnienia właściwego działania sieci. Warto również zaznaczyć, że prawidłowe zakończenie kabli UTP zgodnie z jednym z tych standardów jest istotne dla minimalizacji przesłuchów i utraty sygnału, co wpływa na jakość i stabilność połączenia. Zrozumienie tego standardu jest kluczowe dla każdego specjalisty IT zajmującego się sieciami komputerowymi, ponieważ nieprawidłowe okablowanie może prowadzić do problemów z łącznością i wydajnością.

Pytanie 17

Jakie polecenie w systemie Linux jest używane do sprawdzania wielkości katalogu?

A. du
B. ps
C. rm
D. cp
Polecenie 'du' (disk usage) w systemie Linux jest narzędziem służącym do oceny rozmiaru katalogów i plików. Umożliwia użytkownikom monitorowanie wykorzystania przestrzeni dyskowej, co jest kluczowe w kontekście zarządzania zasobami systemowymi. Dzięki 'du' można szybko zidentyfikować, które katalogi zajmują najwięcej miejsca, co może być szczególnie przydatne przy optymalizacji przestrzeni na serwerach. Na przykład, używając polecenia 'du -sh /ścieżka/do/katalogu', otrzymujemy zwięzłe podsumowanie rozmiaru wskazanego katalogu. Dodając opcję '-h', zyskujemy wynik wyrażony w bardziej przystępnych jednostkach, takich jak KB, MB czy GB. Ważne jest, aby regularnie monitorować wykorzystanie dysku, aby unikać sytuacji, w których przestrzeń dyskowa staje się krytyczna, co mogłoby prowadzić do problemów z wydajnością systemu lub jego funkcjonalnością.

Pytanie 18

Jakie napięcie zasilające mają moduły pamięci DDR3 SDRAM?

Ilustracja do pytania
A. 1,8 V
B. 1,5 V
C. 3 V
D. 2,5 V
Kości pamięci DDR3 SDRAM zasila się napięciem 1,5 V co jest istotnym parametrem odróżniającym je od starszych generacji pamięci takich jak DDR2 czy DDR. Zmniejszenie napięcia zasilania w DDR3 w porównaniu do DDR2 (które wymagało 1,8 V) było kluczowym krokiem w rozwoju technologii RAM ponieważ pozwalało na zmniejszenie zużycia energii oraz generowanego ciepła co jest szczególnie ważne w przypadku urządzeń mobilnych i centrów danych. Niższe napięcie przyczynia się do wydłużenia żywotności baterii w laptopach oraz mniejszego obciążenia systemów chłodzenia. Warto również zauważyć że niższe napięcie poprawia stabilność pracy i redukuje ryzyko uszkodzeń związanych z przepięciami. Zgodnie ze standardem JEDEC dla pamięci DDR3 ustalono napięcie 1,5 V jako optymalne co stało się powszechnie przyjętym standardem w branży. Dzięki temu użytkownicy mogą być pewni że moduły DDR3 są kompatybilne z większością płyt głównych co ułatwia modernizację i serwisowanie komputerów. To napięcie pozwala także na osiągnięcie wyższych częstotliwości pracy bez znacznego wzrostu poboru mocy co czyni pamięci DDR3 atrakcyjnym wyborem dla wielu zastosowań.

Pytanie 19

Gdy użytkownik wykonuje w wierszu poleceń komendę ping www.onet.pl, otrzymuje komunikat: "Żądanie polecenia ping nie może znaleźć hosta www.onet.pl Sprawdź nazwę i ponów próbę". Z kolei, po wpisaniu w wierszu poleceń komendy ping 213.180.141.140 (adres IP serwera www.onet.pl), użytkownik otrzymuje odpowiedź z serwera. Jakie mogą być przyczyny tej sytuacji?

A. błędnie ustawiona maska podsieci
B. błędnie skonfigurowana brama domyślna
C. błędny adres IP hosta
D. błędny adres IP serwera DNS
Odpowiedź o niepoprawnym adresie IP serwera DNS jest prawidłowa, ponieważ to właśnie serwer DNS odpowiada za tłumaczenie nazw domen na odpowiednie adresy IP. Kiedy użytkownik wpisuje polecenie 'ping www.onet.pl', system operacyjny wysyła zapytanie do serwera DNS, aby uzyskać adres IP przypisany do tej nazwy. Jeśli serwer DNS nie może odnaleźć odpowiedniej informacji, użytkownik otrzymuje komunikat o błędzie, mówiący o tym, że host nie może zostać znaleziony. W takiej sytuacji, nawet jeśli adres IP serwera (213.180.141.140) jest poprawny i odpowiada, to brak możliwości przetłumaczenia nazwy domeny skutkuje brakiem odpowiedzi na polecenie ping. Warto zainwestować czas w skonfigurowanie stabilnych i niezawodnych serwerów DNS, takich jak Google Public DNS (8.8.8.8) lub Cloudflare DNS (1.1.1.1), co może znacznie poprawić dostępność usług sieciowych oraz zredukować czas odpowiedzi. Dobrą praktyką jest także regularne sprawdzanie i aktualizowanie konfiguracji DNS, aby zapewnić ciągłość działania systemów sieciowych.

Pytanie 20

W dokumentacji powykonawczej dotyczącej fizycznej oraz logicznej struktury sieci lokalnej powinny być zawarte

A. umowa pomiędzy zlecającym a wykonawcą
B. plan prac realizacyjnych
C. schemat sieci z wyróżnionymi punktami dystrybucji i gniazdami
D. wstępny kosztorys materiałów oraz robocizny
Dokumentacja powykonawcza sieci lokalnej powinna być kompleksowa i dokładna, jednak niektóre z wymienionych elementów są nieadekwatne w kontekście specyfikacji, które powinny znaleźć się w takim dokumencie. Harmonogram prac wykonawczych, mimo że istotny dla zarządzania projektem, nie jest elementem, który powinien być częścią dokumentacji powykonawczej sieci. Jego rolą jest wyłącznie planowanie i organizacja prac, a nie szczegółowe przedstawienie struktury sieci. Podobnie umowa zlecającego pracę z wykonawcą, choć ma znaczenie prawne i organizacyjne, nie dostarcza informacji niezbędnych do zrozumienia i zarządzania siecią. W kontekście sieci lokalnych, istotniejsze jest posiadanie precyzyjnych danych dotyczących samej infrastruktury. Wstępny kosztorys materiałów i robocizny jest również mało przydatnym elementem w dokumentacji powykonawczej, gdyż ma głównie charakter szacunkowy, a nie operacyjny. Kluczowe w dokumentacji powykonawczej jest zrozumienie, że schemat sieci z oznaczeniem punktów dystrybucyjnych i gniazd jest niezbędny do przyszłego zarządzania i konserwacji infrastruktury. Brak tego elementu może prowadzić do trudności w diagnozowaniu problemów, co w dłuższym czasie może generować znaczne koszty operacyjne dla organizacji. Użytkownicy często popełniają błąd, myląc dokumentację projektową z dokumentacją powykonawczą, co podkreśla znaczenie zrozumienia ich różnicy w kontekście zarządzania siecią.

Pytanie 21

Wynikiem poprawnego pomnożenia dwóch liczb binarnych 111001102 oraz 000111102 jest wartość

A. 690010
B. 6900H
C. 64400O
D. 0110 1001 0000 00002
Odpowiedź 690010 jest jak najbardziej trafna. Wynik mnożenia tych dwóch liczb binarnych, czyli 11100110 (to 228 w dziesiętnym) i 00011110 (30 w dziesiętnym), daje 6840, co w systemie szesnastkowym przekłada się na 690010. Mnożenie w binarnym działa podobnie jak w dziesiętnym, musisz tylko pamiętać o dodawaniu i przenoszeniu. W informatyce fajne jest to, że konwersja między systemami liczbowymi to podstawa. Na przykład, system szesnastkowy jest bardziej zwarty, bo każda cyfra to 4 bity, co jest super przy dużych liczbach. Umiejętność zmiany liczby z jednego systemu na inny jest mega ważna, zwłaszcza w programowaniu niskopoziomowym czy tworzeniu algorytmów, więc warto się tego nauczyć.

Pytanie 22

W jakiej usłudze wykorzystywany jest protokół RDP?

A. poczty elektronicznej w systemie Linux
B. SCP w systemie Windows
C. terminalowej w systemie Linux
D. pulpitu zdalnego w systemie Windows
Patrząc na opcje, które podałeś, warto zrozumieć, jak działa RDP w Windowsie, bo można łatwo pomylić to z innymi technologiami. Na przykład, opcja terminalowa w Linuxie dotyczy protokołu SSH, który służy do zdalnego dostępu do powłok, a nie do interfejsu graficznego. Z kolei SCP to protokół do transferu plików, też powiązany z SSH, ale nie ma tam możliwości interaktywnej sesji graficznej jak w RDP. No i jeszcze ta opcja o e-mailu – tutaj RDP zupełnie nie pasuje, bo do komunikacji mailowej używa się innych protokołów, jak SMTP do wysyłania wiadomości czy IMAP do ich odbierania. Można się łatwo pogubić w tym wszystkim, dlatego ważne jest, żeby dobrze rozumieć te różnice, bo niewłaściwe wybory w IT mogą prowadzić do problemów.

Pytanie 23

Zastosowanie programu w różnych celach, badanie jego działania oraz wprowadzanie modyfikacji, a także możliwość publicznego udostępniania tych zmian, to charakterystyka licencji typu

A. FREEWARE
B. ADWARE
C. MOLP
D. GNU GPL
MOLP (Managed Online Licensing Programs) nie jest licencją open source; jest to typ licencji, która skupia się na zarządzaniu dostępem do oprogramowania w modelu subskrypcyjnym. Użytkownicy zazwyczaj nie mają prawa do modyfikacji ani rozpowszechniania programu, co sprzeciwia się zasadom otwartości i współpracy. ADWARE to model monetizacji oprogramowania, w którym użytkownik jest bombardowany reklamami, co nie ma nic wspólnego z licencjonowaniem w kontekście modyfikacji czy rozpowszechniania. Freeware natomiast odnosi się do oprogramowania, które jest dostępne bezpłatnie, ale niekoniecznie pozwala na modyfikacje czy dostęp do kodu źródłowego. Często użytkownicy mylą te terminy, co prowadzi do błędnych wniosków o prawach, jakie posiadają wobec oprogramowania. Pamiętaj, że otwarte licencje, takie jak GPL, nie tylko promują swobodę użytkowania, ale także odpowiedzialność za dzielenie się poprawkami i ulepszeniami, co nie jest cechą innych modeli licencyjnych, które ograniczają lub uniemożliwiają te działania. Dlatego ważne jest zrozumienie różnic między tymi licencjami oraz ich wpływu na rozwój oprogramowania i społeczności programistycznej.

Pytanie 24

Który protokół zajmuje się konwersją adresów IP na adresy MAC (kontroli dostępu do nośnika)?

A. SNMP
B. SMTP
C. RARP
D. ARP
Wybór innych protokołów, takich jak SMTP, SNMP czy RARP, nie odzwierciedla ich funkcji i zastosowania w kontekście zamiany adresów IP na adresy MAC. Protokół SMTP (Simple Mail Transfer Protocol) jest stosowany do przesyłania wiadomości e-mail w internecie. Chociaż jest kluczowy w komunikacji elektronicznej, nie ma żadnego związku z konwersją adresów w sieciach lokalnych. W przypadku SNMP (Simple Network Management Protocol), jest to protokół używany do monitorowania i zarządzania urządzeniami w sieciach IP, co również nie ma związku z konwersją adresów. RARP (Reverse Address Resolution Protocol) z kolei działa w odwrotnym kierunku, zamieniając adresy MAC na adresy IP, co jest procesem odwrotnym do tego, co wykonuje ARP. Typowym błędem myślowym jest mylenie tych protokołów ze względu na ich podobieństwa w nazwach i zastosowaniach w sieciach. Właściwe zrozumienie funkcji każdego z tych protokołów jest kluczowe dla efektywnego zarządzania sieciami. Ignorowanie tego może prowadzić do problemów w diagnozowaniu błędów i nieefektywnego projektowania sieci.

Pytanie 25

Jaki wynik działania którego z poleceń w systemie Windows jest zaprezentowany na rysunku?

Ilustracja do pytania
A. netstat www.onet.pl
B. traceroute www.onet.pl
C. ping www.onet.pl
D. tracert www.onet.pl
Polecenie tracert jest używane do śledzenia trasy pakietów sieciowych w sieciach komputerowych opartych na protokole IP. Działa poprzez wysyłanie pakietów z rosnącą wartością pola TTL (Time To Live), co pozwala na identyfikację każdego węzła na ścieżce od źródła do miejsca docelowego. Wynik polecenia zawiera listę ruterów, przez które przechodzą pakiety, wraz z czasami odpowiedzi. Dzięki temu można zdiagnozować miejsca, gdzie występują opóźnienia lub problemy w przesyłaniu pakietów. Jest to szczególnie przydatne w zarządzaniu siecią i rozwiązywaniu problemów z łącznością. Użycie tracert w diagnostyce sieci to dobra praktyka, gdyż pozwala na szybkie zlokalizowanie awarii w sieci. Warto zaznaczyć, że polecenie to działa inaczej w systemach Windows i Unix/Linux, gdzie często używa się traceroute. Znajomość różnic w implementacji może być istotna w pracy administratora sieci. Regularne monitorowanie trasy pakietów pozwala także na optymalizację ruchu sieciowego i zapewnienie jakości usług (QoS). Jest to standardowe narzędzie używane w wielu firmach do analizy i monitorowania stanu sieci.

Pytanie 26

Pamięć podręczna Intel Smart Cache, która znajduje się w procesorach wielordzeniowych, takich jak Intel Core Duo, to pamięć

A. Cache L1 współdzielona pomiędzy wszystkie rdzenie
B. Cache L2 lub Cache L3, równo podzielona pomiędzy rdzenie
C. Cache L1 równo dzielona pomiędzy rdzenie
D. Cache L2 lub Cache L3, współdzielona przez wszystkie rdzenie
Błędy w niepoprawnych odpowiedziach często wynikają z nieporozumienia dotyczącego struktury pamięci podręcznej w architekturze procesorów. Pojęcie pamięci L1, L2 i L3 odnosi się do różnych poziomów pamięci podręcznej, których zadaniem jest zmniejszenie czasu dostępu do danych. Pamięć L1 jest najszybsza, ale również najmniejsza, zazwyczaj dedykowana dla pojedynczego rdzenia. W sytuacji, gdy pamięć L1 jest podzielona pomiędzy rdzenie, jak sugerują niektóre odpowiedzi, nie bierze się pod uwagę, że L1 działa jako pamięć lokalna, co oznacza, że każda jednostka przetwarzająca ma swoją własną, niezależną pamięć L1. Podobnie, błędne jest twierdzenie, że pamięć L2 czy L3 jest podzielona równo pomiędzy rdzenie. W rzeczywistości, pamięci L2 i L3 są często projektowane jako pamięci współdzielone, co zmniejsza opóźnienia związane z dostępem do danych, zapewniając lepsze wykorzystanie zasobów. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków obejmują mylenie lokalizacji pamięci i zrozumienia, że każda jednostka przetwarzająca wymaga swojego własnego zasobu pamięci podręcznej L1, podczas gdy L2 i L3 mogą być używane w sposób współdzielony. Takie zrozumienie jest kluczowe dla prawidłowego projektowania systemów komputerowych oraz efektywnego wykorzystania architektur wielordzeniowych.

Pytanie 27

Jakie urządzenie sieciowe reprezentuje ten symbol graficzny?

Ilustracja do pytania
A. Router
B. Hub
C. Switch
D. Access Point
Router to coś w rodzaju przewodnika w sieci, który kieruje pakiety z jednego miejsca do drugiego. W sumie to jego zadanie jest mega ważne, bo bez niego trudno by było przesyłać dane między naszą lokalną siecią a internetem. Jak działa? Sprawdza adresy IP w pakietach i wybiera najfajniejszą trasę, żeby dane dotarły tam, gdzie trzeba. Używa do tego różnych protokołów, jak OSPF czy BGP, które pomagają mu ustalać optymalne ścieżki. W domowych warunkach często pełni też funkcję firewalla, co zwiększa nasze bezpieczeństwo i pozwala na bezprzewodowy dostęp do netu. W korporacjach to z kolei kluczowe urządzenie do zarządzania siecią i ruchem danych między oddziałami firmy. Co ważne, przy konfiguracji routera warto pomyśleć o zabezpieczeniach jak filtrowanie adresów IP czy szyfrowanie, żeby nikt nieproszony się nie włamał. Generalnie, routery to podstawa w dużych firmach i centrach danych, bez nich nie byłoby tak łatwo zarządzać całym ruchem.

Pytanie 28

Jaką kwotę trzeba będzie przeznaczyć na zakup kabla UTP kat.5e do zbudowania sieci komputerowej składającej się z 6 stanowisk, gdzie średnia odległość każdego stanowiska od przełącznika wynosi 9 m? Należy uwzględnić 1 m zapasu dla każdej linii kablowej, a cena za 1 metr kabla to 1,50 zł?

A. 120,00 zł
B. 150,00 zł
C. 90,00 zł
D. 60,00 zł
Koszt zakupu kabla UTP kat.5e może być mylony z innymi wartościami, co często wynika z niepoprawnych obliczeń dotyczących długości potrzebnego kabla. Niektórzy mogą błędnie uznać, że wystarczy pomnożyć długość jednego kabla przez liczbę stanowisk bez uwzględnienia zapasu, co prowadzi do zaniżenia całkowitego kosztu. Na przykład, jeśli ktoś pomyśli, że wystarczy 9 m na każde stanowisko, mogą obliczyć 54 m (6 x 9 m), a następnie mnożąc przez cenę 1,50 zł, otrzymają tylko 81,00 zł, co jest również błędne. Innym powszechnym błędem jest nieuwzględnienie zapasu, co w przypadku kabli sieciowych jest standardową praktyką. Każda instalacja powinna przewidywać pewien margines bezpieczeństwa, aby umożliwić późniejsze poprawki lub zmiany w konfiguracji. Dodatkowo, można spotkać się z przekonaniem, że cena 1,50 zł za metr może dotyczyć innego typu kabla, co prowadzi do pomylenia rodzaju materiału i jego kosztów. Takie niedopatrzenia mogą prowadzić do nieprawidłowych decyzji zakupowych oraz nieefektywnego wykorzystania budżetu. Dlatego istotne jest, aby przy obliczeniach kosztów inwestycji w sieci komputerowe dokładnie analizować wszystkie parametry oraz stosować się do dobrych praktyk branżowych, co przyczyni się do osiągnięcia optymalnej efektywności oraz stabilności sieci.

Pytanie 29

W pierwszym oktecie adresów IPv4 klasy B znajdują się liczby mieszczące się w przedziale

A. od 32 do 63
B. od 128 do 191
C. od 192 do 223
D. od 64 do 127
Adresy IPv4 klasy B są definiowane na podstawie wartości pierwszego oktetu w adresie IP. W przypadku klasy B, pierwszy oktet mieści się w zakresie od 128 do 191. Klasa ta jest stosowana głównie w dużych sieciach, gdzie potrzebne jest więcej adresów niż w klasie A, ale mniej niż w klasie C. Przykładowo, adresy takie jak 128.0.0.1 czy 190.255.255.255 są typowymi adresami klasy B. W praktyce, organizacje korzystające z tej klasy mogą przydzielać do 65,536 adresów IP w obrębie jednej sieci, co czyni ją idealną do zastosowań takich jak duże przedsiębiorstwa, które potrzebują wielu urządzeń w jednej sieci lokalnej. Warto również zauważyć, że klasy adresów IP są częścią starszego podejścia do routingu, a obecnie coraz częściej stosuje się CIDR (Classless Inter-Domain Routing), który umożliwia bardziej elastyczne przydzielanie adresów IP.

Pytanie 30

W celu poprawy efektywności procesora Intel można wykorzystać procesor oznaczony literą

A. Y
B. U
C. K
D. B
Procesory Intel oznaczone literą K są dedykowane do podkręcania, co oznacza, że mają odblokowane mnożniki. Dzięki temu użytkownicy mogą zwiększać częstotliwość pracy procesora ponad wartości fabryczne, co prowadzi do wzrostu wydajności. Przykładem takich procesorów są Intel Core i7-10700K czy i9-10900K, które oferują znaczną elastyczność w overclockingu. Przy odpowiednim chłodzeniu oraz zasilaniu, użytkownicy mogą uzyskać znaczący wzrost wydajności w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak gry komputerowe czy obróbka wideo. Warto zauważyć, że Intel zapewnia specjalne narzędzia, takie jak Intel Extreme Tuning Utility, które ułatwiają proces podkręcania oraz monitorowania wydajności procesora. Standardy branżowe wskazują, że podkręcanie powinno być przeprowadzane z zachowaniem ostrożności, aby unikać przegrzewania i uszkodzenia komponentów. Dlatego przed przystąpieniem do overclockingu warto zainwestować w wydajne systemy chłodzenia oraz solidne zasilacze, które mogą znieść wyższe obciążenia.

Pytanie 31

Urządzenie używane do zestawienia 6 komputerów w sieci lokalnej to:

A. przełącznik
B. most
C. transceiver
D. serwer
Transceiver to urządzenie, które ma za zadanie konwertować sygnały między różnymi typami kabli, ale nie zajmuje się routowaniem danych w sieci lokalnej. To coś, co najczęściej spotyka się przy łączeniu kabli albo w komunikacji optycznej. A serwer? To komputer, który udostępnia różne usługi innym urządzeniom, ale nie jest jakimś łącznikiem między nimi. W lokalnej sieci server może przechowywać dane lub uruchamiać aplikacje, ale głównie zajmuje się zarządzaniem danymi, nie komunikacją. Most to kolejne urządzenie, które łączy dwa segmenty sieci, ale też nie jest najlepszym wyborem do łączenia komputerów w lokalnej sieci. Działa na drugiej warstwie modelu OSI, ale w odróżnieniu od przełącznika, przesyła pakiety między segmentami, co może wprowadzać dodatkowe opóźnienia i problemy z wydajnością. Często ludzie mylą te urządzenia i ich funkcje, co może prowadzić do kłopotów przy projektowaniu sieci. Dlatego tak ważne jest, żeby dobrze wybierać urządzenia do budowy lokalnej sieci.

Pytanie 32

Wirusy polimorficzne mają jedną charakterystyczną cechę, którą jest

A. zarażanie wszystkich komputerów w sieci lokalnej
B. atak na tablicę FAT
C. atak na rekord startowy dysku
D. zdolność do modyfikowania swojego kodu
Wirusy polimorficzne charakteryzują się zdolnością do modyfikowania swojego kodu, co pozwala im unikać wykrycia przez oprogramowanie antywirusowe. Ta cecha jest szczególnie istotna w kontekście cyberbezpieczeństwa, ponieważ wirusy te mogą przyjmować różne formy, co utrudnia ich identyfikację przez programy skanujące. Przykładem może być wirus, który w trakcie replikacji zmienia fragmenty swojego kodu, przez co każdy zainfekowany plik może wyglądać inaczej. Standardy branżowe, takie jak ISO/IEC 27001 dotyczące systemów zarządzania bezpieczeństwem informacji, podkreślają znaczenie ciągłego monitorowania zagrożeń oraz aktualizacji zabezpieczeń w odpowiedzi na zmieniające się techniki ataków. W praktyce, stosowanie oprogramowania do analizy i wykrywania polimorficznych wirusów wymaga zaawansowanych algorytmów heurystycznych i analizy zachowania, co pozwala na skuteczniejsze zabezpieczenie systemów przed nieznanymi zagrożeniami. W obliczu rosnącej liczby cyberataków, wiedza na temat wirusów polimorficznych jest kluczowa dla specjalistów zajmujących się bezpieczeństwem IT.

Pytanie 33

Jaką funkcję serwera z grupy Windows Server trzeba dodać, aby serwer mógł realizować usługi rutingu?

A. Usługi zarządzania dostępu w usłudze Active Directory
B. Usługi zasad i dostępu sieciowego
C. Usługi domenowe w usłudze Active Directory
D. Serwer sieci Web (IIS)
Wybór serwerów jak IIS, Usługi domenowe w Active Directory czy Usługi zarządzania dostępem w Active Directory, moim zdaniem, nie pasuje do tematu rutingu. IIS służy do hostowania stron i aplikacji, ale nie ma to nic wspólnego z rutingiem. Jego zadanie to dostarczanie treści, a nie zarządzanie ruchem w sieci. Tak samo, Usługi domenowe w Active Directory pomagają w zarządzaniu tożsamością i dostępem, ale nie zajmują się bezpośrednio routingiem. To one pozwalają nam centralnie zarządzać użytkownikami, ale nie mają nic wspólnego z kierowaniem ruchem. Usługi zarządzania dostępem też skupiają się raczej na autoryzacji i kontroli dostępu do zasobów. Często mylimy te pojęcia i to prowadzi do błędnych wyborów, bo nie mamy pełnej jasności, jakie funkcje są odpowiedzialne za konkretne zadania w IT.

Pytanie 34

Komputer posiada mysz bezprzewodową, ale kursor nie porusza się gładko, tylko "skacze" na ekranie. Możliwą przyczyną problemu z urządzeniem może być

A. wyczerpywanie się baterii zasilającej.
B. uszkodzenie prawego przycisku.
C. brak zasilania.
D. awaria mikroprzełącznika.
Wyczerpywanie się baterii zasilającej może być kluczowym czynnikiem wpływającym na nieprawidłowe działanie myszy bezprzewodowej. Gdy poziom naładowania baterii spada, sygnał wysyłany przez mysz do odbiornika staje się niestabilny, co prowadzi do 'skakania' kursora na ekranie. W takich sytuacjach warto zastosować baterie alkaliczne lub litowe, które charakteryzują się dłuższą żywotnością w porównaniu do standardowych baterii. Dobre praktyki obejmują regularne monitorowanie stanu naładowania baterii oraz wymianę ich w regularnych odstępach czasu, aby uniknąć takich problemów. Dodatkowo, korzystanie z energii słonecznej lub akumulatorów o dużej pojemności, które można ładować, to rozwiązania sprzyjające wydajności i zrównoważonemu rozwojowi. Warto także pamiętać, że niektóre modele myszy oferują funkcje oszczędzania energii, które mogą pomóc w przedłużeniu czasu pracy na jednym naładowaniu.

Pytanie 35

Do weryfikacji funkcjonowania serwera DNS na systemach Windows Server można zastosować narzędzie nslookup. Jeżeli w poleceniu jako argument zostanie podana nazwa komputera, np. nslookup host.domena.com, to system sprawdzi

A. aliasu zdefiniowanego dla rekordu adresu domeny.
B. strefy przeszukiwania do przodu.
C. obie strefy przeszukiwania, najpierw wstecz, a potem do przodu.
D. strefy przeszukiwania wstecz.
Odpowiedź wskazująca na strefę przeszukiwania do przodu jest prawidłowa, ponieważ polecenie nslookup, używane w systemach Windows Server, domyślnie wykonuje zapytanie DNS w celu uzyskania adresu IP na podstawie podanej nazwy hosta. Strefa przeszukiwania do przodu to mechanizm, w którym serwer DNS przekształca nazwy domen na odpowiadające im adresy IP. Przykładowo, jeśli wprowadzisz polecenie nslookup host.domena.com, serwer DNS przeszuka swoją bazę danych rekordów, aby znaleźć odpowiadający adres IP dla tej nazwy. W praktyce, narzędzie to jest nieocenione dla administratorów IT w diagnozowaniu problemów z rozwiązywaniem nazw, umożliwiając weryfikację, czy odpowiednie rekordy DNS są dostępne i poprawne. Zgodnie z najlepszymi praktykami, regularne testowanie i monitorowanie DNS przy użyciu takich narzędzi, jak nslookup, jest kluczowe dla zapewnienia niezawodności i dostępności usług sieciowych.

Pytanie 36

Komputer A, który potrzebuje przesłać dane do komputera B działającego w sieci z innym adresem IP, najpierw wysyła pakiety do adresu IP

A. serwera DNS
B. bramy domyślnej
C. komputera docelowego
D. alternatywnego serwera DNS
Wiesz, wskazanie serwera DNS jako sposobu na przesłanie pakietów, gdy chcemy wysłać coś do innego adresu IP, to nie do końca dobry pomysł. Serwery DNS zajmują się tłumaczeniem nazw domen na adresy IP, i to jest mega ważne, bo ułatwia nam poruszanie się po Internecie. Ale one nie przesyłają danych. Często ludzie mylą, czym tak naprawdę zajmuje się serwer DNS, a czym brama domyślna, co prowadzi do nieporozumień. Gdy komputer A chce się skomunikować z komputerem B, serwer DNS tylko pomaga ustalić, jaki adres IP ma dana domena. To nie on przesyła pakiety. Nawet inny serwer DNS nie zmieni faktu, że jego zadanie to raczej praca z nazwami, a nie z danymi. A jeśli myślisz o komputerze docelowym, pamiętaj, że nie możemy wysłać pakietów bezpośrednio do komputera w innej sieci; najpierw muszą one trafić do bramy. Takie myślenie może wynikać z tego, że nie do końca rozumiesz, jak działa komunikacja w sieciach, która opiera się na przekazywaniu danych przez odpowiednie urządzenia. To jest naprawdę kluczowe, żeby ogarnąć, jak działa Internet i lokalne sieci.

Pytanie 37

Na stabilność obrazu w monitorach CRT istotny wpływ ma

A. odwzorowanie kolorów
B. czas reakcji
C. częstotliwość odświeżania
D. wieloczęstotliwość
Częstotliwość odświeżania jest kluczowym parametrem wpływającym na stabilność obrazu w monitorach CRT. Oznacza ona, jak często obraz na ekranie jest aktualizowany w ciągu jednej sekundy, wyrażając się w hercach (Hz). Wyższa częstotliwość odświeżania pozwala na wygładzenie ruchu i eliminację zjawiska migotania, co jest szczególnie istotne podczas długotrwałego użytkowania monitora, gdyż zmniejsza zmęczenie oczu. W praktyce, standardowe wartości częstotliwości odświeżania dla monitorów CRT wynoszą 60 Hz, 75 Hz, a nawet 85 Hz, co znacząco poprawia komfort wizualny. Ponadto, stosowanie wyższej częstotliwości odświeżania jest zgodne z normami ergonomii i zaleceniami zdrowotnymi, które sugerują, że minimalna wartość powinna wynosić co najmniej 75 Hz dla efektywnej pracy z komputerem. Zrozumienie tego parametru może być również kluczowe przy wyborze monitora do zastosowań profesjonalnych, takich jak projektowanie graficzne czy gry komputerowe, gdzie jakość obrazu ma fundamentalne znaczenie.

Pytanie 38

Symbol umieszczony na obudowie komputera stacjonarnego wskazuje na ostrzeżenie dotyczące

Ilustracja do pytania
A. możliwości zagrożenia radiacyjnego
B. promieniowania niejonizującego
C. porażenia prądem elektrycznym
D. możliwego urazu mechanicznego
Symbol przedstawiony na obudowie komputera stacjonarnego to powszechnie znany znak ostrzegawczy przed porażeniem prądem elektrycznym. Jest to żółty trójkąt z czarną obwódką i czarnym symbolem błyskawicy wewnątrz, zgodnie z normami międzynarodowymi, takimi jak ISO 7010 oraz IEC 60417. Tego rodzaju oznaczenie ma na celu zwrócenie uwagi użytkownika na potencjalne zagrożenie wynikające z obecności napięcia elektrycznego, które może być niebezpieczne dla zdrowia lub nawet życia ludzkiego. W kontekście sprzętu komputerowego, porażenie prądem może wystąpić w wyniku usterki wewnętrznych komponentów zasilania, niepoprawnego uziemienia lub kontaktu z przewodami pod napięciem. Stosowanie tego typu oznaczeń jest kluczową praktyką w branży elektronicznej i elektrycznej, mającą na celu zwiększenie bezpieczeństwa pracy oraz ochronę użytkowników przed niebezpiecznymi sytuacjami. Jest to również ważny element edukacyjny, przypominający o konieczności przestrzegania zasad bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, a także o znaczeniu regularnych przeglądów technicznych sprzętu.

Pytanie 39

Norma EN 50167 odnosi się do rodzaju okablowania

A. szkieletowego
B. kampusowego
C. pionowego
D. poziomego
Norma EN 50167 dotyczy okablowania poziomego, które jest kluczowym elementem w infrastrukturze sieciowej budynków. Okablowanie poziome jest odpowiedzialne za przesyłanie sygnałów między punktami dostępowymi, takimi jak gniazda sieciowe, a urządzeniami końcowymi, na przykład komputerami czy telefonami. W praktyce, odpowiednie zastosowanie standardów dotyczących okablowania poziomego zapewnia wysoką jakość sygnału, minimalizując straty oraz zakłócenia. Norma ta precyzuje wymagania dotyczące instalacji, typów kabli, ich długości oraz sposobów prowadzenia, co jest kluczowe dla zapewnienia sprawności i niezawodności całego systemu. Dzięki wdrożeniu normy EN 50167, można zrealizować efektywne i bezpieczne instalacje sieciowe, które spełniają wymogi zarówno użytkowników, jak i regulacji prawnych. Przykładem zastosowania może być biuro, w którym okablowanie poziome łączy różne strefy robocze, umożliwiając pracownikom swobodny dostęp do zasobów sieciowych.

Pytanie 40

Sygnatura (ciąg bitów) 55AA (w systemie szesnastkowym) kończy tablicę partycji. Jaka jest odpowiadająca jej wartość w systemie binarnym?

A. 101101001011010
B. 1,0101010010101E+015
C. 1,0100101101001E+015
D. 101010110101010
Odpowiedź 101010110101010 jest jak najbardziej trafna, bo odpowiada szesnastkowej wartości 55AA w binarnym zapisie. Wiesz, każda cyfra szesnastkowa to cztery bity w systemie binarnym. Jak to przeliczyć? Po prostu zamieniamy każdą z cyfr szesnastkowych: 5 to w systemie binarnym 0101, a A, czyli 10, to 1010. Z tego wynika, że 55AA to 0101 0101 1010 1010, a po pozbyciu się tych początkowych zer zostaje 101010110101010. Wiedza o tym, jak działają te systemy, jest bardzo ważna w informatyce, szczególnie jak się zajmujesz programowaniem na niskim poziomie czy analizą systemów operacyjnych, gdzie często trzeba pracować z danymi w formacie szesnastkowym. Dobrze umieć te konwersje, bo naprawdę przyspiesza to analizę pamięci i struktur danych.