Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 kwietnia 2025 20:03
  • Data zakończenia: 25 kwietnia 2025 20:15

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. symbolem kwadratu z określoną wartością napięcia
B. zielonym kolorem z żółtą obręczą
C. symbolem podwójnego trójkąta z określoną wartością napięcia
D. napisem "narzędzie bezpieczne"
Stosowanie narzędzi izolowanych w pracy z urządzeniami pod napięciem jest niezwykle istotne dla zapewnienia bezpieczeństwa, jednak nie wszystkie oznaczenia są równoznaczne z właściwym zabezpieczeniem. Odpowiedzi wskazujące na kolor zielony z żółtym pierścieniem, znak kwadratu z wartością napięcia czy napis "narzędzie bezpieczne" nie mają podstaw w powszechnie uznawanych standardach. Narzędzia oznaczone kolorem zielonym z żółtym pierścieniem mogą sugerować, że są one przeznaczone do użytku w określonych warunkach, ale nie dostarczają konkretnej informacji o ich odporności na napięcie, co jest kluczowe w pracy z elektrycznością. Z kolei oznaczenie kwadratu z wartością napięcia może być mylące, ponieważ nie określa ono, czy narzędzie jest rzeczywiście izolowane, a tylko wskazuje na parametry, które mogą być różne w zależności od zastosowania. Ponadto, napis "narzędzie bezpieczne" nie jest standardowym oznaczeniem w branży, co może prowadzić do fałszywego poczucia bezpieczeństwa u użytkowników. Wiele osób myśli, że wystarczy jedynie odpowiedni kolor lub napis, aby zapewnić sobie bezpieczeństwo. Takie myślenie jest błędne, ponieważ bezpieczeństwo w pracy z elektrycznością wymaga dokładnej znajomości specyfikacji narzędzi oraz ich zastosowania. Kluczowe jest, aby operatorzy sprzętu byli świadomi, że tylko narzędzia oznaczone z zachowaniem norm, takich jak podwójny trójkąt z określeniem wartości napięcia, mogą zagwarantować odpowiedni poziom ochrony przed porażeniem elektrycznym.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. piezoelektryczne
B. zwane efektem Dopplera
C. magnotorezystancji (Gaussa)
D. magnetooptyczne (Faradaya)
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Licznik impulsów rewersyjnych to urządzenie

A. które zapisuje w pamięci określoną liczbę impulsów
B. które dokonuje odejmowania impulsów
C. które zajmuje się dodawaniem impulsów
D. które wykonuje dodawanie i odejmowanie impulsów
Rewersyjny licznik impulsów to urządzenie, które ma zdolność zarówno dodawania, jak i odejmowania impulsów. W praktycznych zastosowaniach, takie liczniki znajdują zastosowanie w dokładnych systemach pomiarowych, gdzie istotne jest monitorowanie zmieniającej się wartości. Na przykład, w automatyce przemysłowej, rewersyjne liczniki impulsów mogą być używane do zliczania liczby jednostek produkcji, a także do korygowania błędów, które mogłyby wystąpić w wyniku problemów z maszyną, takich jak przesunięcia w liczniku. Takie liczniki są zgodne z normami IEEE i innymi standardami, które podkreślają znaczenie elastyczności w systemach automatyki. W przypadku błędnego zliczenia, możliwość odejmowania impulsów pozwala na precyzyjne dostosowanie do rzeczywistej produkcji, co z kolei wpływa na efektywność i jakość procesów produkcyjnych. Ważne jest, aby inżynierowie dobrze rozumieli działanie tych układów, aby skutecznie wdrażać je w praktyce.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg

A. 230 V
B. 240 V
C. 380V
D. 400 V
Poprawna odpowiedź to 400 V, co jest zgodne z danymi podanymi na tabliczce znamionowej silnika asynchronicznego. Znamionowe napięcie międzyfazowe dla silników trójfazowych standardowo wynosi 400 V w układzie Δ (delta). To napięcie jest kluczowe przy projektowaniu i użytkowaniu instalacji elektrycznych, ponieważ określa, jakie napięcie będzie występować pomiędzy poszczególnymi fazami. Znajomość tych wartości jest niezbędna dla inżynierów i techników zajmujących się instalacjami oraz konserwacją urządzeń elektrycznych. W praktyce, przy podłączeniu silnika do zasilania, napięcie międzyfazowe musi być zgodne z jego znamionowym napięciem, aby zapewnić prawidłowe działanie i wydajność silnika. Ponadto, znajomość tego napięcia jest istotna przy dobieraniu odpowiednich zabezpieczeń oraz urządzeń kontrolnych, co wpływa na bezpieczeństwo i efektywność systemu.

Pytanie 13

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. temperaturę.
B. bicie osiowe.
C. stan napięcia.
D. nawilżenie.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 14

Tensomer foliowy powinien być zamocowany do podłoża

A. zszywką
B. klejem
C. nitem
D. śrubą
Mocowanie tensomera foliowego za pomocą nitów, zszywek czy śrub to raczej kiepski pomysł. Nity i zszywki są popularne, ale nie dają tej elastyczności, jakiej potrzebuje folia. Jak zmieniają się temperatury i wilgotność, to folia się kurczy albo rozciąga, a sztywne mocowania mogą spowodować pęknięcia. A śruby to już w ogóle mogą przebić folię, co osłabia jej właściwości. W branży zaleca się, żeby mocowanie folii było wykonane w taki sposób, by zminimalizować ryzyko uszkodzeń. Lepiej iść w sprawdzone metody, jak klejenie, bo to nie tylko zwiększa efektywność, ale i przedłuża żywotność materiałów, a to jest istotne, jeśli chodzi o koszty użytkowania. Więc lepiej się trzymać tych lepszych rozwiązań, a nie wymyślać coś na szybko.

Pytanie 15

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. rozdzielacz czterodrogowy.
C. przełącznik obiegu.
D. zawór z popychaczem.
Wybór odpowiedzi innej niż zawór z popychaczem może wynikać z nieporozumienia dotyczącego funkcji i wyglądu różnych elementów pneumatycznych. Przełącznik obiegu jest elementem, który służy do kierowania przepływu powietrza, ale nie ma popychacza i działa na innych zasadach. Z kolei rozdzielacz czterodrogowy to bardziej skomplikowane urządzenie, które pozwala na kontrolę kierunku przepływu powietrza w czterech różnych kierunkach, również nie posiada typowego popychacza. Zawór zwrotno-dławiący, z drugiej strony, jest przeznaczony do regulacji przepływu i zapobiega cofaniu się medium, ale również nie jest odpowiedni w kontekście opisanego elementu. Typowym błędem jest mylenie funkcji różnych zaworów i elementów pneumatycznych oraz niedostateczne zwrócenie uwagi na ich specyfikę. W branży pneumatycznej kluczowe jest odpowiednie dobranie elementów do konkretnego zastosowania, co wymaga znajomości ich właściwości i zastosowań. W związku z tym, dokładne zrozumienie każdego z wymienionych elementów oraz ich różnic jest niezbędne, aby uniknąć nieporozumień i błędów w projektowaniu systemów pneumatycznych.

Pytanie 16

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. szczotek
B. łożysk
C. uzwojenia
D. komutatora
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 17

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 5 jednostek napędowych
B. 4 jednostki napędowe
C. 3 jednostki napędowe
D. 6 jednostek napędowych
Odpowiedź wskazująca na pięć napędów w manipulatorze jest prawidłowa, ponieważ wiele nowoczesnych manipulatorów wykorzystuje zaawansowane systemy napędowe, które pozwalają na precyzyjne sterowanie ruchem. W przypadku pięciu napędów, każdy z nich może odpowiadać za różne osie ruchu, co zapewnia większą elastyczność i dokładność podczas wykonywania zadań. Na przykład, w robotyce przemysłowej, manipulatory z pięcioma napędami są w stanie wykonać bardziej skomplikowane operacje, takie jak montaż, pakowanie czy manipulowanie delikatnymi przedmiotami. W praktyce, stosowanie pięciu napędów pozwala na uzyskanie większej liczby stopni swobody, co jest kluczowe w wielu aplikacjach. Dobre praktyki w projektowaniu manipulatorów sugerują również, że większa liczba napędów może poprawić zdolności adaptacyjne robota, umożliwiając mu lepsze dostosowanie się do zmiennych warunków pracy. Ponadto, zgodnie z normami ISO 10218 dotyczącymi bezpieczeństwa robotów przemysłowych, odpowiednia liczba napędów może wpłynąć na poprawę stabilności i bezpieczeństwa operacji, co jest kluczowe w środowisku przemysłowym.

Pytanie 18

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość obrotową
B. napięcie elektryczne
C. naprężenia mechaniczne
D. prędkość liniową
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. dynamometrycznego
B. nasadkowego
C. oczkowego
D. imbusowego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 24

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary napięcia zasilającego
B. kontroli kierunku obrotu wirnika
C. pomiary obrotów wirnika
D. kontroli temperatury uzwojenia
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przemiennika częstotliwości
B. Prostownika sterowanego trójpulsowego
C. Softstartu
D. Przełącznika gwiazda-trójkąt
Przemiennik częstotliwości jest urządzeniem, które pozwala na płynną regulację prędkości obrotowej silnika indukcyjnego klatkowego poprzez zmianę częstotliwości zasilania. Dzięki temu możliwe jest dostosowanie parametrów pracy silnika do wymagań konkretnej aplikacji, co jest szczególnie istotne w procesach wymagających precyzyjnego zarządzania prędkością. Przemienniki częstotliwości mogą również ograniczać prąd rozruchowy, co z kolei zmniejsza obciążenie elektryczne w momencie uruchomienia silnika. Takie rozwiązanie znajduje zastosowanie w wielu branżach, takich jak przemysł spożywczy, tekstylny czy w systemach HVAC. W przypadku standardów, stosowanie przemienników częstotliwości jest zgodne z normami IEC 61800, które definiują wymagania dotyczące napędów elektrycznych oraz ich aplikacji. Przykładem praktycznego zastosowania przemiennika częstotliwości może być układ napędowy pompy, gdzie precyzyjna regulacja prędkości pozwala na efektywne zarządzanie przepływem wody.

Pytanie 30

Do czego służy stabilizator napięcia?

A. do przekształcania napięcia przemiennego w napięcie stałe
B. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
C. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
D. do wygładzania napięcia po prostowaniu przez prostownik
Niektóre odpowiedzi mogą wydawać się atrakcyjne na pierwszy rzut oka, jednak nie odpowiadają one funkcji stabilizatora napięcia. Na przykład, wygładzanie napięcia wyprostowanego przez prostownik to proces, który przeprowadza kondensator, który eliminuje tętnienia napięcia po prostowaniu. Stabilizator nie działa w tym kontekście, a jego zadanie nie obejmuje prostowania napięcia, lecz jego stabilizację. Z kolei przetwarzanie napięcia przemiennego na napięcie przemienne o innej częstotliwości i innej wartości skutecznej jest funkcją falowników lub transformatorów, a nie stabilizatorów napięcia, które koncentrują się na utrzymaniu stałego poziomu napięcia. Dodatkowo, przetwarzanie napięcia przemiennego na napięcie stałe jest realizowane przez prostowniki, które również nie są związane z funkcją stabilizacji napięcia. Pomieszanie tych pojęć często wynika z niejasności w zrozumieniu zasad działania różnych elementów elektronicznych. Stabilizatory napięcia pełnią unikalną rolę w układach zasilających, a ich funkcja polega przede wszystkim na eliminacji fluktuacji napięcia, co jest kluczowe dla zapewnienia prawidłowego działania delikatnych urządzeń elektronicznych, które mogą być wrażliwe na zmiany napięcia. Stąd kluczowe jest precyzyjne rozumienie, jakie urządzenia i procesy są odpowiedzialne za różne aspekty zasilania w systemach elektrycznych.

Pytanie 31

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru kreskowego
B. przymiaru średnicowego
C. śruby mikrometrycznej
D. mikroskopu technicznego
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 460 ?
B. 2,3 ?
C. 23 k?
D. 529 ?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 34

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. SCADA
B. CAE
C. CAM
D. CAD
Wybór odpowiedzi CAM (Computer-Aided Manufacturing), CAE (Computer-Aided Engineering) lub CAD (Computer-Aided Design) nie jest właściwy w kontekście wizualizacji działania systemu mechatronicznego na panelu HMI. CAM odnosi się do technologii wspomagającej procesy produkcyjne, gdzie oprogramowanie używane jest do sterowania maszynami i urządzeniami w celu ich efektywnej obsługi w procesie wytwarzania. Choć CAM jest niezwykle istotny w produkcji, nie dostarcza narzędzi do wizualizacji i monitorowania procesów na poziomie systemowym, co jest kluczowe w kontekście SCADA. Podobnie, CAE koncentruje się na inżynieryjnej analizie i symulacji, co jest ważne w fazie projektowania i testowania, ale również nie zapewnia odpowiednich narzędzi do wizualizacji i monitorowania w czasie rzeczywistym. CAD natomiast, skupia się głównie na projektowaniu graficznym i tworzeniu dokumentacji technicznej, co, mimo że jest fundamentalne w inżynierii, nie zaspokaja potrzeby wizualizacji danych z systemów mechatronicznych. Powszechnym błędem jest mylenie funkcji tych narzędzi z funkcjami SCADA, co prowadzi do nieprawidłowego przypisania ich roli w zarządzaniu procesami. SCADA, jako system nadzoru, łączy wszystkie te podejścia, oferując nie tylko wizualizację, ale i aktywne zarządzanie danymi oraz procesami, co czyni go niezastąpionym w nowoczesnym przemyśle.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
C. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
D. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
Wszystkie zaproponowane odpowiedzi pomijają kluczowe aspekty bezpieczeństwa związane z wymianą zaworu elektropneumatycznego. Kluczowym elementem każdej procedury konserwacji jest zapewnienie, że system jest całkowicie wyłączony i nie może być przypadkowo uruchomiony. Odpowiedzi, które sugerują odłączenie przewodów zasilających lub pneumatycznych bez wcześniejszego wprowadzenia PLC w tryb STOP oraz wyłączenia zasilania, są niebezpieczne. Przykładowo, odłączenie przewodów zasilających bez wcześniejszego zablokowania programu sterującego może prowadzić do sytuacji, gdzie system się uruchomi, co stwarza ryzyko dla operatora. Ponadto, wiele z tych podejść nie uwzględnia konieczności całkowitego odcięcia zasilania pneumatycznego, co może prowadzić do niekontrolowanego wypływu sprężonego powietrza. Tego rodzaju pominięcia są typowe dla osób, które nie zaznajomiły się z obowiązującymi standardami bezpieczeństwa w automatyce przemysłowej, takimi jak normy ISO czy ANSI Z535, które mają na celu zapewnienie bezpiecznego środowiska pracy. Bezpośrednie podejście do serwisowania komponentów pneumatycznych powinno zatem zawsze zaczynać się od wyłączenia systemu i odpowiedniego zabezpieczenia przed jego przypadkowym włączeniem, co jest fundamentalne dla zachowania bezpieczeństwa w miejscu pracy.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.