Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 27 maja 2025 23:00
  • Data zakończenia: 27 maja 2025 23:08

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. wprowadzania regulacji
B. sprawdzania dokręcenia śrub zacisków
C. usuwania kurzu
D. analizy zużycia styków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 2

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm

A. Temperatura otwarcia -1°C, amplituda 18°C
B. Temperatura otwarcia 18°C, amplituda -1°C
C. Temperatura otwarcia 18°C, amplituda 19°C
D. Temperatura otwarcia 18°C, amplituda 17°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 3

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. skręcanego
B. przewlekanego
C. powierzchniowego
D. zaciskowego
Odpowiedzi, które wskazują na skręcanie, zaciskanie lub montaż powierzchniowy, są nieprawidłowe, ponieważ każda z tych metod różni się zasadniczo od technologii przewlekanego montażu. Skręcanie komponentów to technika, która znajduje zastosowanie w montażu mechanicznym, gdzie elementy są łączone za pomocą śrub lub nakrętek. W kontekście elektroniki, skręcanie może nie zapewniać wymaganej stabilności połączeń elektrycznych, a także jest mniej odpowiednie dla małych komponentów, które często wymagają niższej wagi oraz oszczędności miejsca. Zaciskowy montaż również nie odnosi się do THT; jest to technika używana w połączeniach takich jak złącza przewodowe, gdzie nie stosuje się lutowania. Montaż powierzchniowy (SMT) to nowocześniejsza technologia, w której komponenty są osadzane na powierzchni płytki, co powoduje zmniejszenie rozmiarów i zwiększenie gęstości montażu. Ta metoda ma swoje zastosowanie w wielu nowoczesnych urządzeniach, ale nie jest tożsama z przewlekanym montażem. Istotnym błędem myślowym jest mylenie tych technologii, co może prowadzić do nieprawidłowych założeń dotyczących trwałości, jakości i odpowiedniości technologii dla konkretnych zastosowań. Zrozumienie różnic pomiędzy tymi metodami jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i produkcją układów elektronicznych, aby zapewnić optymalizację procesu produkcji oraz jakości finalnych produktów.

Pytanie 4

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Zbierają energię w polu elektrycznym
B. Zbierają energię w polu magnetycznym
C. Tworzą przeszkodę elektryczną
D. Tworzą przeszkodę optyczną
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 5

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. sprawdzenia poziomu naprężenia
B. kontroli czystości paska
C. weryfikacji wymiarów
D. oceny stopnia zużycia
Sprawdzanie stopnia naprężenia paska klinowego nie jest częścią operacji przygotowawczych przed jego montażem, ponieważ to zadanie wykonuje się już po zainstalowaniu paska. W ery technicznych i mechanicznych, takie jak w przemyśle automotive czy produkcyjnym, prawidłowe napięcie paska jest kluczowe dla efektywnej pracy przekładni pasowej. Przed montażem należy przede wszystkim zająć się weryfikacją wymiarów nowych komponentów, ocenić stopień zużycia istniejących części oraz zapewnić, że wszystkie elementy są czyste. Na przykład, czysty pasek oraz odpowiednio przygotowane koła pasowe minimalizują ryzyko poślizgu i przedwczesnego zużycia. Dobrą praktyką jest także stosowanie specjalistycznych narzędzi do pomiaru wymiarów, co wpływa na precyzję montażu. Wiedza na temat różnych typów pasków klinowych i ich specyfikacji pozwala na podejmowanie świadomych decyzji w procesie wymiany lub montażu, co jest zgodne ze standardami branżowymi, takimi jak ISO 9001.

Pytanie 6

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. szumów
B. drgań
C. prędkości
D. temperatury
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 7

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po poinformowaniu osoby przełożonej
B. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
C. po wezwaniu pomocy medycznej
D. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 8

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Klejenia
B. Lutowania miękkiego
C. Zgrzewania
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 9

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Nitowanie
C. Spawanie
D. Zgrzewanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 10

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. dwukrotnie
C. trzykrotnie
D. dziewięciokrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 11

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Olej
B. Silikon
C. Pastę
D. Towot
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 12

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. pirometru
C. termistora
D. tensometru
Pirometr to urządzenie, które służy do bezkontaktowego pomiaru temperatury obiektów, co sprawia, że jest szczególnie przydatne w przypadku wirujących łopat sprężarek przepływowych. Wirujące elementy w sprężarkach osiągają wysokie prędkości oraz temperatury, co utrudnia zastosowanie tradycyjnych czujników temperatury, które wymagają fizycznego kontaktu z mierzonym obiektem. Pirometry działają na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na skuteczne mierzenie temperatury z zachowaniem bezpieczeństwa i dokładności. W zastosowaniach przemysłowych pirometry są szeroko stosowane w monitorowaniu procesów technologicznych, gdzie istotne jest ciągłe kontrolowanie temperatury, na przykład w turbinach gazowych czy silnikach odrzutowych. Dobre praktyki w zakresie pomiarów temperatury wskazują na konieczność kalibracji pirometrów oraz uwzględnienia warunków otoczenia, takich jak obecność dymu czy pary, które mogą wpływać na dokładność odczytów. Użycie pirometru w tym kontekście jest zgodne z normami branżowymi dotyczącymi monitorowania procesów i zapewnienia efektywności energetycznej maszyn.

Pytanie 13

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy trójpołożeniowy (5/3)
B. pięciodrogowy dwupołożeniowy (5/2)
C. trójdrogowy dwupołożeniowy (3/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 14

Do czego służy klucz dynamometryczny?

A. do ułatwienia odkręcania i dokręcania śrub
B. do dokręcania śrub z określonym momentem obrotowym
C. do dokręcania śrub w trudno dostępnych miejscach
D. do odkręcania zardzewiałych śrub
Stosowanie klucza dynamometrycznego do dokręcania śrub w miejscach trudnodostępnych może wydawać się logiczne, ale w rzeczywistości nie jest to jego główne przeznaczenie. Klucz dynamometryczny jest zaprojektowany do precyzyjnego dokręcania z zastosowaniem określonego momentu siły, co oznacza, że jego zastosowanie ma na celu zapewnienie odpowiedniej siły dokręcania, a nie ułatwienie dostępu do trudno dostępnych miejsc. W sytuacjach, gdzie dostęp do śrub jest ograniczony, może być konieczne użycie innych narzędzi, takich jak klucze nasadowe lub różnego rodzaju przedłużki, które pozwolą na efektywne dokręcanie lub odkręcanie. Kolejnym błędnym podejściem jest myślenie, że klucz dynamometryczny jest skuteczny w odkręcaniu skorodowanych śrub. W rzeczywistości używanie klucza dynamometrycznego do odkręcania może prowadzić do jego uszkodzenia oraz do niewłaściwego zastosowania, gdyż nie jest on przystosowany do pracy w takiej roli. Ostatnia nieprawidłowa koncepcja, że klucz ten ma na celu ułatwienie ogólnego procesu dokręcania i odkręcania, ignoruje kluczową funkcję precyzyjności wymaganą przy zastosowaniu tego narzędzia. Klucz dynamometryczny nie jest narzędziem uniwersalnym, lecz specjalistycznym, którego celem jest osiągnięcie konkretnego momentu siły, co ma kluczowe znaczenie w kontekście bezpieczeństwa i trwałości połączeń. Dlatego ważne jest, aby używać go zgodnie z jego przeznaczeniem, aby uniknąć typowych błędów myślowych i praktycznych w zastosowaniach mechanicznych.

Pytanie 15

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 2000 N
B. 200 N
C. 20 N
D. 2 N
Wybór odpowiedzi innej niż 200 N często wynika z nieprawidłowego zrozumienia podstawowych zasad działania układów hydraulicznych. Warto zauważyć, że siły w takich systemach są ze sobą powiązane poprzez zasadę Pascala, która mówi, że ciśnienie wywierane na ciecz w zamkniętym układzie rozkłada się równomiernie. Niepoprawne odpowiedzi mogą wynikać z błędnych obliczeń lub mylenia jednostek. Na przykład, odpowiedź 20 N sugeruje zbyt małą siłę, co nie odpowiada podniesionemu ciężarowi 20 kN. To zrozumienie jest kluczowe, ponieważ w praktyce oznaczałoby to, że podnośnik nie byłby w stanie podnieść zadanej masy. Odpowiedź 2 N jest wynikiem jeszcze większego niedoszacowania i może wskazywać na nieprawidłowe zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 2000 N również są błędne, ponieważ sugerują, że ciśnienie jest obliczane na podstawie zbyt dużej powierzchni tłoka, co prowadzi do mylnego wyobrażenia o działaniu układu. Kluczowym błędem jest nieuwzględnienie różnicy w powierzchniach tłoków; to właśnie dzięki małemu tłoczkowi pompy uzyskujemy dużą siłę na tłoku roboczym. Dobrą praktyką jest zawsze staranne przeliczenie wszystkich danych, aby upewnić się, że wyniki są zgodne z rzeczywistością oraz przepisami dotyczącymi bezpieczeństwa i skuteczności urządzeń hydraulicznych.

Pytanie 16

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Manometr, reduktor, smarownica, filtr powietrza
B. Filtr powietrza, manometr, reduktor, smarownica
C. Reduktor, manometr, filtr powietrza, smarownica
D. Smarownica, manometr, reduktor, filtr powietrza
Odpowiedź, która wskazuje na kolejność smarownica, manometr, reduktor, filtr powietrza, jest poprawna, ponieważ odzwierciedla właściwą konfigurację montażu elementów w układzie przygotowania sprężonego powietrza. Smarownica jest pierwszym elementem, który powinien być zainstalowany bezpośrednio po źródle sprężonego powietrza. Jej zadaniem jest dostarczanie odpowiedniej ilości oleju do narzędzi i urządzeń pneumatycznych, co znacząco wpływa na ich żywotność i efektywność pracy. Następnie manometr, który monitoruje ciśnienie w układzie, powinien być zamontowany, aby umożliwić użytkownikowi bieżącą kontrolę ciśnienia roboczego. Reduktor, który reguluje ciśnienie, powinien być umieszczony w dalszej kolejności, co pozwala na dostosowanie ciśnienia do wymagań urządzeń zasilanych sprężonym powietrzem. Na końcu, filtr powietrza powinien oczyszczać powietrze przed jego dostarczeniem do urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Taka kolejność montażu jest zgodna z najlepszymi praktykami w dziedzinie pneumatyki, co gwarantuje niezawodność oraz efektywność całego układu.

Pytanie 17

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. przymiaru kreskowego
C. śruby mikrometrycznej
D. mikroskopu technicznego
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 18

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. oczko
B. zapadkowe
C. płaskie
D. uniwersalne
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 19

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 2,3 ?
B. 23 k?
C. 529 ?
D. 460 ?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 20

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. termometru
B. pirometru
C. tensometru
D. tachometru
Pirometr, termometr i tachometr to urządzenia, które służą do pomiaru różnych parametrów, ale nie mają zastosowania w pomiarach naprężeń normalnych. Pirometr jest używany do pomiaru temperatury, a jego działanie opiera się na pomiarze promieniowania cieplnego emitowanego przez obiekt. W kontekście naprężeń, temperatura wpływa na właściwości materiałów, ale sama w sobie nie jest miarą naprężeń. Termometr również mierzy temperaturę, co jest istotne w wielu dziedzinach, ale nie dostarcza informacji o naprężeniach. Z kolei tachometr to urządzenie służące do pomiaru prędkości obrotowej, co ma zastosowanie w mechanice, ale nie w ocenie naprężeń. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często wynikają z mylenia różnych rodzajów pomiarów oraz ich zastosowań. W inżynierii i materiałoznawstwie kluczowe jest zrozumienie, jakie urządzenia i metody pomiarowe są odpowiednie do konkretnych zadań. Pomiar naprężeń wymaga zastosowania urządzeń, które są w stanie ocenić deformacje materiału w odpowiedzi na zastosowane obciążenia, co w praktyce najlepiej realizują tensometry. Użycie niewłaściwych narzędzi do pomiaru może prowadzić do błędnych interpretacji wyników i w konsekwencji do niewłaściwych decyzji inżynieryjnych.

Pytanie 21

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Spadek temperatury oleju za filtrem
B. Spadek temperatury oleju przed filtrem
C. Wzrost ciśnienia oleju przed filtrem
D. Wzrost ciśnienia oleju za filtrem
Zrozumienie objawów zanieczyszczenia filtra hydraulicznego wymaga analizy mechanizmów, które rządzą przepływem oleju w systemie. Wzrost ciśnienia oleju za filtrem nie świadczy o zanieczyszczeniu, ponieważ w zdrowym układzie ciśnienie za filtrem powinno być niższe niż przed filtrem, co wynika z oporu, jaki filtr stawia przepływającemu olejowi. Zjawisko to może być mylnie interpretowane jako wskaźnik problemu. Również spadek temperatury oleju przed filtrem nie jest związany z zanieczyszczeniem, ponieważ temperatura oleju może być wpływana przez inne czynniki, takie jak warunki atmosferyczne czy obciążenie pracy. Spadek temperatury za filtrem również nie jest wskaźnikiem zanieczyszczenia, ponieważ filtr działa jako element, który może obniżać temperaturę oleju, usuwając z niego zanieczyszczenia, które mogą prowadzić do wzrostu temperatury. Chociaż na pierwszy rzut oka te objawy mogą wydawać się logiczne, są one przykładem nieprawidłowego rozumienia procesów hydraulicznych, które wymaga gruntownej wiedzy na temat działania systemów hydraulicznych oraz ich komponentów. W praktyce, monitorowanie ciśnienia i temperatury oleju w systemie to kluczowe aspekty utrzymania sprawności hydrauliki, które powinny być ściśle powiązane z regularną konserwacją i kontrolą filtrów.

Pytanie 22

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7 obr/min
B. 7500 obr/min
C. 750 obr/min
D. 75 obr/min
W przypadku błędnych odpowiedzi, można zauważyć, że niektórzy mogą błędnie interpretować zależność między napięciem a prędkością obrotową. Odpowiedzi takie jak 75 obr/min, 7500 obr/min i 7 obr/min wynikają z niepoprawnego rozumienia proporcji. W szczególności, odpowiedź 75 obr/min mogłaby wynikać z pomyłki przy dzieleniu lub niewłaściwego zastosowania jednostek, co prowadzi do zaniżenia wartości prędkości. W przypadku 7500 obr/min, użytkownicy mogą mylnie zakładać, że napięcie 7,5 V jest równoważne w pełni do maksymalnej wartości prędkości obrotowej, co nie jest zgodne z zasadami proporcjonalności. Z kolei odpowiedź 7 obr/min jest całkowicie nieadekwatna, ponieważ nie uwzględnia podstawowych właściwości prądnic tachometrycznych oraz ich charakterystyki działania. Takie błędne wnioski mogą prowadzić do poważnych problemów w praktycznych zastosowaniach, jak na przykład w systemach regulacji prędkości obrotowej. Dlatego kluczowe jest zrozumienie, że każda zmiana napięcia wskazuje na proporcjonalną zmianę prędkości obrotowej, co jest fundamentem dla prawidłowego pomiaru i analizy w różnych dziedzinach inżynierii.

Pytanie 23

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. kontroli temperatury uzwojenia
C. kontroli kierunku obrotu wirnika
D. pomiary napięcia zasilającego
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 24

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Robot przemysłowy
B. Sterownik PLC
C. Panel operatorski HMI
D. Przekaźnik programowalny
Sterownik PLC, robot przemysłowy i przekaźnik programowalny to urządzenia, które pełnią różne funkcje w systemach automatyki, ale nie służą jako bezpośredni interfejs komunikacyjny pomiędzy operatorem a maszyną. Sterownik PLC (Programmable Logic Controller) jest używany do automatyzacji procesów i zarządzania urządzeniami w zakładach produkcyjnych. Jego główną rolą jest monitorowanie sygnałów wejściowych z czujników i wykonywanie odpowiednich działań na wyjściu, jednak nie jest zaprojektowany do bezpośredniego interakcji z operatorem. Robot przemysłowy z kolei wykonuje precyzyjnie zaprogramowane ruchy i operacje, ale również nie komunikuje się bezpośrednio z użytkownikiem w sposób interaktywny. Przekaźnik programowalny działa na zasadzie przełączania sygnałów elektrycznych, co czyni go przydatnym w prostych aplikacjach, ale również nie spełnia roli interfejsu operatora. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów mechatronicznych. Często mylnie zakłada się, że te urządzenia mogą pełnić rolę interfejsu, co prowadzi do nieefektywności w obsłudze i nadzoru nad procesami technologicznymi. Odpowiednie zastosowanie technologii HMI pozwala na lepsze zarządzanie systemami oraz poprawę wydajności pracy operatorów poprzez dostarczenie im narzędzi do efektywnej interakcji z maszynami.

Pytanie 25

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. adsorpcją
B. desorpcją
C. konwekcją
D. absorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 26

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Regulacyjny
C. Zwrotny
D. Dławiący
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 27

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Zastępować przewody pneumatyczne
B. Dostosowywać ciśnienie powietrza
C. Wymieniać szybkozłączki
D. Usuwać kondensat
Wymiana przewodów pneumatycznych, regulacja ciśnienia powietrza oraz wymiana szybkozłączek to czynności, które mogą być przeprowadzane w ramach konserwacji układu pneumatycznego, ale nie mają one tak kluczowego znaczenia, jak regularne usuwanie kondensatu. W przypadku wymiany przewodów, choć jest to istotne, nie jest to procedura, którą należy wykonywać cyklicznie, chyba że przewody są uszkodzone lub zużyte. Regulacja ciśnienia powietrza jest z kolei bardziej związana z dostosowaniem parametrów pracy urządzenia do specyfikacji, a nie z utrzymywaniem systemu w dobrym stanie. Wiele osób może błędnie sądzić, że kontrolowanie ciśnienia jest najważniejsze, jednak to właśnie kondensat, jeśli nie jest odpowiednio usuwany, może prowadzić do awarii całego układu. Ponadto, wymiana szybkozłączek, choć również istotna, jest operacją doraźną, a nie cykliczną. W praktyce, ignorowanie kondensatu w układzie pneumatycznym może prowadzić do poważnych problemów, dlatego kluczowe jest zrozumienie, że to właśnie regularne jego usuwanie jest najważniejszym elementem dbałości o sprawność systemu. Prawidłowe zrozumienie tych aspektów konserwacji pozwala na unikanie kosztownych napraw oraz przestojów w produkcji.

Pytanie 28

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. wyjęcie tranzystora z gniazda
B. wycięcie tranzystora
C. wylutowanie tranzystora
D. odkręcenie tranzystora
Wylutowanie tranzystora jest poprawną metodą jego wymiany, ponieważ pozwala na usunięcie uszkodzonego komponentu z płytki PCB w sposób bezpieczny i skuteczny. Proces ten polega na podgrzaniu lutów łączących tranzystor z płytą za pomocą lutownicy lub stacji lutowniczej, co umożliwia jego wydobycie bez uszkodzenia otaczających elementów. Praktyka ta jest zgodna z normami IPC, które definiują wysokie standardy jakości w lutowaniu. W przypadkach, gdy tranzystor jest uszkodzony, wylutowanie jest często jedyną sensowną opcją, aby wymienić go na nowy. Należy również pamiętać o podjęciu odpowiednich środków ostrożności, takich jak użycie odpowiednich narzędzi i okularów ochronnych, aby uniknąć oparzeń czy uszkodzeń komponentów. Ponadto, w przypadku profesjonalnych napraw, warto stosować metody takie jak podgrzewanie całej płytki w piecu lutowniczym, co minimalizuje ryzyko uszkodzenia pozostałych elementów. Oprócz tego, znajomość technik wylutowywania i lutowania jest niezbędna dla osób zajmujących się elektroniką, aby zapewnić trwałość i niezawodność naprawionych urządzeń.

Pytanie 29

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. zmiany w układzie kostnym
B. porażenie prądem elektrycznym
C. uszkodzenie narządu słuchu
D. uszkodzenie skóry dłoni
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 30

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRT - dwie osie obrotowe i jedną oś prostoliniową
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. TTT - trzy osie prostoliniowe
D. RRR - trzy osie obrotowe
Wybrałeś odpowiedź TTT, czyli trzy osie prostoliniowe, i to jest całkiem dobre! Manipulator, który ma prostopadłościanową przestrzeń roboczą, naprawdę daje radę poruszać się w trzech osiach: X, Y i Z. To ważne, bo w przemyśle, gdzie trzeba robić różne rzeczy, jak automatyzacja produkcji czy montaż, precyzyjne ruchy są kluczowe. Manipulatory z trzema osiami prostoliniowymi są mocno wykorzystywane w robotyce, na przykład do pakowania, paletowania, czy transportu materiałów. Z mojego doświadczenia, taki układ TTT daje dużą elastyczność przy układaniu przestrzeni roboczej i można go dostosować do różnych zastosowań. Wiesz, są też standardy, takie jak ISO 9283, które pokazują, jak ocenia się wydajność manipulatorów, a to wszystko podkreśla, jak ważny jest odpowiedni wybór kinematyki, żeby naprawdę osiągnąć dobre rezultaty.

Pytanie 31

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 5,77 A
B. 7,70 A
C. 10,00 A
D. 13,33 A
Błędne odpowiedzi w tym pytaniu wskazują na typowe nieporozumienia dotyczące obliczeń prądu pobieranego przez silnik trójfazowy. Wiele osób może skupić się na niewłaściwych założeniach, takich jak zaniedbanie wpływu współczynnika mocy na całkowitą moc silnika. Na przykład, odpowiedzi takie jak 5,77 A czy 10,00 A mogą sugerować, że obliczenia zostały wykonane bez uwzględnienia istotnych parametrów, takich jak napięcie zasilania czy współczynnik mocy. Często błędne odpowiedzi wynikają z uproszczenia wzoru na moc lub przyjęcia niewłaściwych wartości. Kluczowe jest zrozumienie, że moc czynna, napięcie oraz prąd są ze sobą silnie powiązane i każda zmiana jednego z parametrów wpływa na pozostałe. W praktyce, jeżeli silnik ma niższy współczynnik mocy, to prąd pobierany z sieci będzie wyższy, co nie zostało uwzględnione w niepoprawnych odpowiedziach. Warto pamiętać, że w przypadku obliczeń związanych z energią elektryczną należy zawsze korzystać z odpowiednich wzorów oraz uwzględniać wszelkie istotne zmienne, aby uniknąć błędów, które mogą prowadzić do nieprawidłowego doboru sprzętu czy nieefektywnego działania instalacji elektrycznych. Dlatego tak ważne jest, aby dokładnie analizować wszystkie parametry przed dokonaniem obliczeń.

Pytanie 32

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku.
B. Najwyższa prędkość ruchu dla poszczególnych osi.
C. Liczba wrzecion.
D. Dokładność pozycjonowania.
Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to kluczowe parametry, które w znacznym stopniu wpływają na wydajność i jakość obróbki w frezarkach numerycznych. Liczba wrzecion odnosi się do ilości narzędzi, które mogą być zainstalowane w danej maszynie jednocześnie, co pozwala na realizację różnych operacji jednocześnie, zmniejszając czas przestoju i zwiększając wydajność produkcji. Powtarzalność pozycjonowania jest miarą precyzji, z jaką maszyna może powtórzyć te same ruchy, co jest kluczowe w kontekście produkcji części o ścisłych tolerancjach. Im wyższa powtarzalność, tym mniejsze ryzyko błędów produkcyjnych i mniejsze straty materiałowe. Z kolei maksymalna prędkość ruchu dla poszczególnych osi jest istotna dla ogólnego czasu cyklu obróbczej, co jest niezwykle ważne w kontekście konkurencyjności na rynku. Wybierając frezarkę numeryczną, inżynierowie muszą brać pod uwagę te parametry, aby dostosować wybór maszyny do specyficznych potrzeb produkcyjnych. Błędne rozumienie, że gramatura wtrysku jest istotna dla frezarek, może prowadzić do pominięcia kluczowych aspektów przy wyborze odpowiedniego sprzętu, co w konsekwencji może skutkować nieefektywnością produkcji oraz wyższymi kosztami operacyjnymi.

Pytanie 33

Podczas użytkowania urządzenia laserowego do obróbki metali, ryzyko dla zdrowia pracownika może wynikać między innymi z

A. zanieczyszczenia powietrza wdychanego oparami metalu
B. hałasu generowanego w trakcie obróbki
C. odprysków cząsteczek metalu
D. zanieczyszczenia pyłem wdychanego powietrza
Odpowiedź wskazująca na zanieczyszczenia wdychanego powietrza oparami metalu jest poprawna, ponieważ w czasie eksploatacji urządzenia laserowego do cięcia metali, proces cięcia generuje wysokotemperaturowe opary metali, które mogą być szkodliwe dla zdrowia pracowników. Opary te mogą prowadzić do poważnych problemów zdrowotnych, w tym chorób układu oddechowego i neurologicznych. Właściwe zarządzanie jakością powietrza w miejscu pracy jest kluczowe i powinno obejmować stosowanie odpowiednich systemów wentylacyjnych oraz filtrów, które redukują stężenie tych szkodliwych substancji. Przykładem dobrych praktyk w tej dziedzinie jest wdrażanie technik ochrony zdrowia, takich jak regularne monitorowanie jakości powietrza, szkolenia dla pracowników oraz stosowanie środków ochrony osobistej, takich jak maski filtracyjne. Zgodnie z normami ISO 45001, organizacje powinny dążyć do minimalizacji ryzyka związanego z ekspozycją na szkodliwe substancje, co przekłada się na bezpieczeństwo i zdrowie pracowników na stanowiskach związanych z obróbką metali.

Pytanie 34

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
C. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 35

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Zamienić łożyska
B. Obtoczyć oraz przeszlifować komutator
C. Znormalizować nacisk szczotek
D. Ustawić szczotki w strefie neutralnej
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 36

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termoelement
B. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
C. termostat
D. czujnik termiczny
Termoelement to naprawdę fajne urządzenie do pomiaru temperatury. Działa na zasadzie efektu Seebecka, co oznacza, że generuje napięcie, gdy są różnice temperatur między dwoma różnymi przewodnikami. Jest super dokładny i szybko reaguje na zmiany temperatury, co czyni go idealnym w różnych branżach, takich jak chemia czy przemysł spożywczy. Można go też spotkać w laboratoriach badawczych. Na przykład, w przemyśle monitoruje się dzięki niemu temperaturę, co jest kluczowe, żeby produkt był dobrej jakości. Co ciekawe, w zależności od użytych materiałów, termoelementy mogą działać w różnych zakresach temperatur, a ich właściwości spełniają międzynarodowe standardy, jak na przykład IEC 60584. Dzięki tym cechom są bardzo popularne w systemach automatyki oraz kontroli procesów.

Pytanie 37

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Ultradźwiękowy wykrywacz nieszczelności
B. Optyczny detektor nieszczelności
C. Detektor z lampą UV
D. Detektor gazów
Ultradźwiękowy wykrywacz nieszczelności jest narzędziem szczególnie efektywnym w diagnozowaniu wycieków w instalacjach pneumatycznych. Działa na zasadzie analizy dźwięku, który generowany jest przez przepływ powietrza przez nieszczelności. W porównaniu do innych metod, wykrywacze ultradźwiękowe mają tę przewagę, że mogą wykrywać nieszczelności w trudnodostępnych miejscach, gdzie inne urządzenia mogą nie być w stanie zidentyfikować problemu. Przykładami ich zastosowania są inspekcje w zakładach produkcyjnych, gdzie utrzymanie ciśnienia w instalacjach pneumatycznych jest kluczowe dla efektywności operacyjnej. W branży przemysłowej standardy, takie jak ISO 50001, podkreślają znaczenie monitorowania i optymalizacji systemów pneumatycznych w celu zmniejszenia strat energii, co czyni ultradźwiękowe wykrywacze nieszczelności narzędziem zgodnym z najlepszymi praktykami w tym zakresie. Dodatkowo, użycie tego typu detektora pozwala na wczesne wykrycie problemów, co może prowadzić do znacznych oszczędności kosztów związanych z utrzymaniem i naprawą uszkodzeń.

Pytanie 38

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. drewnianej
B. polwinitowej
C. z żywicy epoksydowej
D. metalowej
Ekranowanie urządzeń mechatronicznych ma kluczowe znaczenie w zarządzaniu wpływem silnych fal elektromagnetycznych. Obudowy metalowe są najskuteczniejszym rozwiązaniem, ponieważ metale wykazują właściwości pochłaniające oraz odbijające fale elektromagnetyczne, co skutecznie minimalizuje ich przenikanie do wnętrza obudowy. Przykładem zastosowania metalowych obudów są urządzenia telekomunikacyjne, które muszą spełniać normy EMC (electromagnetic compatibility), co zapewnia ich prawidłowe funkcjonowanie w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych. Standardy takie jak EN 55032 określają wymagania dotyczące emisji elektromagnetycznej, a obudowy metalowe są kluczowym elementem w ich spełnianiu. Dodatkowo, metalowe ekranowanie jest stosowane w wielu aplikacjach przemysłowych, takich jak maszyny CNC, gdzie zakłócenia mogą prowadzić do błędów w obróbce. Warto również wspomnieć, że odpowiednia konstrukcja obudowy, uwzględniająca różne czynniki, takie jak grubość materiału czy typ metalu, ma znaczący wpływ na efektywność ekranowania. Dlatego wybór metalowej obudowy jest najlepszym rozwiązaniem w kontekście ochrony przed niekorzystnymi skutkami fal elektromagnetycznych.

Pytanie 39

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. wprowadzić płynne spoiwo pomiędzy te elementy.
B. stopić je w miejscu zetknięcia bez użycia spoiwa.
C. stopić je w miejscu styku z użyciem spoiwa.
D. docisnąć je podczas podgrzewania miejsca łączenia.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 40

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę osiową
B. Sprężarkę promieniową
C. Turbosprężarkę
D. Sprężarkę śrubową
Sprężarki promieniowe, osiowe i turbosprężarki to przykłady sprężarek dynamicznych, które działają na zupełnie innych zasadach niż sprężarki wyporowe. Sprężarki promieniowe wprowadzają powietrze w kierunku promieniowym, a energia kinetyczna jest przekazywana na sprężany gaz, co prowadzi do wzrostu ciśnienia. Natomiast sprężarki osiowe wykorzystują wirnik, który poprzez obrót generuje siłę odśrodkową, sprężając gaz wzdłuż osi wirnika. Turbosprężarki z kolei, będące specyficznym rodzajem sprężarek, są często używane w silnikach spalinowych do zwiększenia mocy, jednak ich zasada działania opiera się głównie na odzyskiwaniu energii ze spalin. Typowe błędy myślowe, które prowadzą do mylenia tych typów sprężarek ze sprężarkami wyporowymi, obejmują nieznajomość podstawowych różnic w mechanizmach działania. Warto podkreślić, że sprężarki wyporowe są bardziej efektywne w aplikacjach wymagających stałego ciśnienia, podczas gdy sprężarki dynamiczne są bardziej odpowiednie w zastosowaniach, gdzie kluczowe znaczenie ma wysoka prędkość i wydajność przepływu, jak na przykład w systemach wentylacyjnych czy chłodziarek. Zrozumienie tych różnic jest istotne dla prawidłowego doboru sprężarki do określonej aplikacji przemysłowej.