Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 2 czerwca 2025 03:41
  • Data zakończenia: 2 czerwca 2025 03:54

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy

A. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
B. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
C. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
D. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 8

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnikamocy w układach napędów elektrycznych, o danych znamionowychzamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A

A. 230 V DC
B. 400 V DC
C. 230 V AC
D. 400 V AC
Odpowiedź "400 V AC" jest poprawna, ponieważ zgodnie z danymi znamionowymi mikroprocesorowego regulatora DCRK 12, wymagane napięcie zasilania wynosi 380...415 V w zakresie 50/60 Hz. Napięcie 400 V AC odpowiada standardowym wartościom w sieciach przemysłowych, co czyni je idealnym do zastosowań w układach napędów elektrycznych. W praktyce, regulator DCRK 12 jest często wykorzystywany w systemach kompensacji współczynnika mocy, co przyczynia się do poprawy efektywności energetycznej i stabilizacji napięcia w instalacjach przemysłowych. Przy niewłaściwym napięciu zasilania, można doświadczyć uszkodzenia sprzętu lub nieprawidłowego działania regulatora, co podkreśla znaczenie właściwego doboru napięcia. W branży energetycznej, stosowanie regulatorów z odpowiednimi parametrami zasilania jest kluczowe dla zapewnienia efektywności operacyjnej i minimalizacji strat energetycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Czasowy TON (o opóźnionym załączaniu)
B. Dzielnik częstotliwości
C. Czasowy TOF (o opóźnionym wyłączaniu)
D. Szybki licznika (HSC)
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W przypadku siłownika zasilanego powietrzem pod ciśnieniem równym 8 barów, który jest w stanie wykonać maksymalnie nmax = 50 cykli/min, a w trakcie jednego cyklu zużywa 1,4 litra powietrza, jakie powinny być parametry sprężarki do jego zasilania?

A. Wydajność 80 l/min, ciśnienie maksymalne 1,0 MPa
B. Wydajność 60 l/min, ciśnienie maksymalne 0,7 MPa
C. Wydajność 60 l/min, ciśnienie maksymalne 1,0 MPa
D. Wydajność 80 l/min, ciśnienie maksymalne 0,7 MPa
Wydajność sprężarki powinna wynosić 80 l/min, ponieważ siłownik zużywa 1,4 litra powietrza na jeden cykl pracy, a przy maksymalnej liczbie 50 cykli na minutę, całkowite zużycie powietrza wynosi 70 litrów na minutę (1,4 l/cykl * 50 cykli/min = 70 l/min). Dodatkowa wydajność jest zalecana, aby zapewnić stabilną pracę systemu i uwzględnić ewentualne straty ciśnienia w układzie. Ustalając ciśnienie maksymalne, należy wziąć pod uwagę, że 8 barów to równowartość 0,8 MPa. Dlatego sprężarka powinna być w stanie dostarczyć ciśnienie o 20% wyższe, aby zapewnić odpowiednią moc roboczą i uniknąć problemów z wydajnością. Ponadto, zgodnie z normami branżowymi, sprężarki z wyższym ciśnieniem roboczym są bardziej efektywne w zastosowaniach przemysłowych, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Przykładem zastosowania tego typu sprężarki jest zasilanie narzędzi pneumatycznych oraz systemów automatyzacji w zakładach produkcyjnych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaką wartość napięcia znamionowego umieszcza się na tabliczkach trójfazowych silników prądu przemiennego?

A. Skuteczną fazową
B. Średnią półokresową
C. Skuteczną międzyfazową
D. Średnią całookresową
Wybór odpowiedzi dotyczącej "Skutecznej fazowej" lub "Średniej półokresowej" czy "Średniej całookresowej" jest błędny, ponieważ te terminy odnoszą się do innych koncepcji związanych z napięciami w układach elektrycznych. Napięcie skuteczne fazowe odnosi się do wartości napięcia mierzonych w odniesieniu do jednego punktu odniesienia, np. punktu neutralnego, podczas gdy w silnikach trójfazowych mówimy o napięciach międzyfazowych, które są istotne dla ich działania. Wartości średnie półokresowe i całookresowe są używane w kontekście analizy sygnałów, jednak nie mają zastosowania w kontekście napięcia znamionowego silników trójfazowych. W praktyce, błędne zrozumienie różnicy między napięciem fazowym a międzyfazowym może prowadzić do niewłaściwego doboru komponentów w instalacjach elektrycznych oraz do potencjalnych uszkodzeń silników. To może również wpłynąć na efektywność energetyczną systemów oraz zwiększyć ryzyko awarii, co w konsekwencji prowadzi do wyższych kosztów eksploatacji. Dlatego kluczowe jest, aby w kontekście silników trójfazowych skupiać się na napięciu międzyfazowym, które jest podstawą do obliczeń związanych z mocą i bezpieczeństwem pracy tych urządzeń.

Pytanie 28

W planowanym systemie hydraulicznym kontrola energii czynnika roboczego powinna odbywać się na zasadzie objętościowej. Osiąga to

A. pompa hydrauliczna o stałej wydajności
B. pompa hydrauliczna o zmiennej wydajności
C. zawór bezpieczeństwa
D. zawór przelewowy
Wybór pompy hydraulicznej o stałej wydajności w kontekście objętościowego sterowania energią czynnika roboczego jest nieodpowiedni z wielu powodów. Tego rodzaju pompy dostarczają stałą ilość cieczy w danym czasie, co ogranicza ich elastyczność w dostosowywaniu się do zmiennych warunków pracy. W praktyce oznacza to, że w sytuacji, gdy zapotrzebowanie na przepływ zmienia się, pompa o stałej wydajności nie może efektywnie zareagować, co prowadzi do nieoptymalnego wykorzystania energii oraz potencjalnych problemów z ciśnieniem w systemie. Ponadto, niezdolność do regulacji wydajności może skutkować nadmiernym obciążeniem układu hydraulicznego, co w dłuższej perspektywie prowadzi do uszkodzeń komponentów oraz zwiększenia kosztów konserwacji. Zawory bezpieczeństwa i przelewowe również nie są odpowiednie dla tego zadania, ponieważ ich podstawową funkcją jest ochrona układu przed nadciśnieniem, a nie regulacja przepływu. Wybierając niewłaściwe rozwiązania, można łatwo popaść w pułapki myślowe związane z założeniem, że prostota konstrukcji zapewnia niezawodność. W rzeczywistości, brak możliwości regulacji przepływu w układzie hydraulicznym może prowadzić do poważnych awarii i zakłóceń operacyjnych, co jest niezgodne z aktualnymi standardami jakości i bezpieczeństwa w branży hydraulicznej.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby uzyskać możliwość regulacji prędkości posuwu napędu wałków, który jest zasilany silnikiem bocznikowym prądu stałego, należy zastosować

A. prostownik diodowy.
B. sterowany prostownik tyrystorowy.
C. falownik.
D. cyklokonwerter.
Użycie falownika, cyklokonwertera lub prostownika diodowego w kontekście zasilania silnika bocznikowego prądu stałego ma swoje ograniczenia, które mogą prowadzić do nieprawidłowej regulacji prędkości posuwu. Falowniki, choć efektywne w zastosowaniach z silnikami prądu przemiennego, nie są odpowiednie do silników prądu stałego, ponieważ nie dostarczają stałego napięcia, co jest kluczowe dla ich prawidłowego działania. Cyklokonwertery z kolei, mimo że mogą być używane do konwersji prądu stałego na prąd przemienny, są bardziej skomplikowane w implementacji i często nieefektywne w zastosowaniach wymagających regulacji prędkości silnika prądu stałego. Prostowniki diodowe, chociaż mogą zasilać silnik prądu stałego, nie umożliwiają regulacji napięcia w czasie rzeczywistym, co jest niezbędne dla precyzyjnego sterowania prędkością. Typowym błędem myślowym jest założenie, że jakiekolwiek urządzenie do konwersji mocy będzie odpowiednie do regulacji prędkości. W rzeczywistości, dla silników prądu stałego kluczowe jest dostarczenie odpowiednio przetworzonego napięcia, co zapewniają jedynie sterowane prostowniki tyrystorowe, zdolne do dynamicznej regulacji parametrów pracy silnika.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Sterownik PLC powinien zarządzać systemem nagrzewnicy, który składa się z wentylatora oraz zestawu grzałek. Jaką czynność należy podjąć, aby uniknąć przegrzania obudowy nagrzewnicy po jej dezaktywowaniu?

A. Zwiększyć moc grzałek
B. Opóźnić dezaktywację grzałek
C. Opóźnić dezaktywację wentylatora
D. Zmniejszyć prędkość obrotową silnika wentylatora
Opóźnienie wyłączenia wentylatora jest kluczowym działaniem mającym na celu ochronę obudowy nagrzewnicy przed przegrzewaniem się. Kiedy grzałki są wyłączone, obudowa nagrzewnicy wciąż emituje ciepło, a wentylator odgrywa istotną rolę w odprowadzaniu tego ciepła do otoczenia. Działający wentylator pomoże w utrzymaniu właściwej temperatury obudowy, zapobiegając jej uszkodzeniu oraz wydłużając żywotność urządzenia. W praktyce, opóźnienie wyłączenia wentylatora można zrealizować poprzez zaprogramowanie odpowiedniego czasu w sterowniku PLC, po którym wentylator będzie kontynuował pracę. Tego typu rozwiązania są zgodne z zasadami inżynierii automatyki, gdzie bezpieczeństwo i niezawodność systemu są priorytetem. Właściwe zarządzanie temperaturą nie tylko chroni urządzenie, ale również wpływa na efektywność energetyczną całego systemu grzewczego.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Alternatywę
B. Koniunkcję
C. Alternatywę wykluczającą
D. Równowartość
Alternatywa wykluczająca jest kluczowym elementem w kontekście projektowania systemów sterowania z wykorzystaniem sensorów. W sytuacji, gdy mamy do czynienia z trzema sensorami, których zadziałanie ma być zgłaszane w sposób jednoznaczny, zastosowanie alternatywy wykluczającej zapewnia, że tylko jeden z sensorów może być aktywny w danym momencie. Oznacza to, że jeśli jeden sensor zostanie aktywowany, pozostałe muszą pozostać nieaktywne, co jest istotne w wielu aplikacjach, takich jak automatyka przemysłowa, systemy alarmowe czy urządzenia zabezpieczające. Przykładowo, w systemie alarmowym, aktywacja jednego czujnika ruchu powinna wykluczać sygnalizację z innych czujników, aby uniknąć fałszywych alarmów. W praktyce, stosowanie tej logiki pozwala na uniknięcie konfliktów w sygnałach, co jest zgodne z zasadami projektowania opartego na standardzie IEC 61131-3, który opisuje metody programowania systemów sterowania. Zrozumienie i umiejętność implementacji alternatywy wykluczającej jest kluczowe dla inżynierów automatyki, a także dla efektywnego rozwiązywania problemów związanych z detekcją i sygnalizacją zdarzeń.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.