Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 13 maja 2025 17:05
  • Data zakończenia: 13 maja 2025 17:29

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wyznacz wysokość punktu 10, jeśli wysokość punktu RpA wynosi HRpA = 125,500 m. Odczyt na łacie tylniej to t = 1500, a z przodu p = 0500.

A. H10 = 123,500 m
B. H10 = 124,500 m
C. H10 = 142,500 m
D. H10 = 126,500 m
Poprawna odpowiedź to H10 = 126,500 m. Aby obliczyć wysokość punktu 10, musimy uwzględnić wysokość punktu RpA oraz odczyty dokonane na łacie. Wysokość punktu RpA wynosi 125,500 m. Odczyt wsteczny na łacie wynosi 1500, co oznacza, że musimy dodać tę wartość do wysokości RpA, ponieważ jest to odczyt z laty umieszczonej w wyższej pozycji. Następnie odczyt w przód na łacie wynosi 0500, co oznacza, że musimy odjąć tę wartość od wcześniejszego wyniku. Obliczenia przedstawiają się następująco: H10 = HRpA + t - p = 125,500 m + 1500 - 0500 = 126,500 m. Tego rodzaju obliczenia są powszechnie stosowane w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych oraz do pomiarów terenowych. Warto wiedzieć, że stosowanie łaty jest standardową praktyką w pomiarach geodezyjnych, co pozwala na uzyskiwanie dokładnych wyników. Zrozumienie tych zasad jest niezbędne dla każdego geodety.

Pytanie 2

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 5000
B. 1 : 500
C. 1 : 1000
D. 1 : 2000
Mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych nie są sporządzane w skali 1 : 2000, 1 : 500 ani 1 : 5000, ponieważ każda z tych skal nie odpowiada wymaganiom dokładności, jakie stawiane są tego typu dokumentacji. Skala 1 : 2000 jest zbyt mało szczegółowa dla obszarów, gdzie konieczna jest dokładna analiza urbanistyczna. Przykładowo, przy takiej skali, każdy centymetr na mapie odpowiada 20 metrów w rzeczywistości, co czyni mapę niepraktyczną do zadań takich jak planowanie nowych budynków czy infrastruktury. Z kolei skala 1 : 500 jest zbyt dużą szczegółowością dla mapy zasadniczej, co może prowadzić do nieprzydatności w codziennym użytkowaniu, ponieważ w takich przypadkach trudne staje się obejmowanie szerszych obszarów. Natomiast skala 1 : 5000, chociaż w niektórych sytuacjach może być użyteczna dla bardziej ogólnych analiz, nie dostarcza wystarczającej dokładności niezbędnej dla lokalnych planów zagospodarowania przestrzennego. Niezrozumienie zasadności doboru skali w kontekście potrzeby szczegółowości w dokumentacji przestrzennej prowadzi do powszechnych błędów w interpretacji danych geograficznych i urbanistycznych. W praktyce, wybór odpowiedniej skali powinien być oparty na analizie potrzeb użytkowych oraz zagadnień związanych z planowaniem przestrzennym, co pozwala zoptymalizować wykorzystanie przestrzeni oraz inwestycji.

Pytanie 3

Jakim kolorem na mapie zasadniczej przedstawia się przewód elektroenergetyczny?

A. pomarańczowym
B. niebieskim
C. żółtym
D. czerwonym
Kolory używane do oznaczania różnych elementów infrastruktury, w tym przewodów elektroenergetycznych, mają swoje specyficzne znaczenie i są ustalane na podstawie norm i regulacji. Odpowiedzi, które sugerują inne kolory, takie jak żółty, niebieski czy pomarańczowy, mogą prowadzić do nieporozumień i pomyłek podczas planowania oraz wykonywania prac związanych z infrastrukturą energetyczną. Na przykład, kolor żółty często oznacza przewody gazowe, co może wprowadzać w błąd, gdyż nieodpowiednia identyfikacja linii może prowadzić do niebezpiecznych sytuacji. Podobnie, kolor niebieski jest zazwyczaj używany do reprezentacji wody lub systemów hydraulicznych. Pomarańczowy z kolei jest często zarezerwowany dla telekomunikacji. Wskutek tego, użycie tych kolorów do oznaczania przewodów elektroenergetycznych może wprowadzać zamieszanie wśród pracowników, co zwiększa ryzyko wypadków, a także opóźnia realizację projektów. W branży energetycznej, gdzie bezpieczeństwo i precyzja są kluczowe, przyjęcie standardów dotyczących kolorystyki oznaczeń jest niezbędne do zapewnienia właściwej komunikacji między różnymi służbami. Właściwe zrozumienie i stosowanie tych konwencji jest zatem istotne dla skuteczności działań oraz bezpieczeństwa na placu budowy.

Pytanie 4

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 0 mm
B. f∆h = 8 mm
C. f∆h = -16 mm
D. f∆h = -8 mm
Odpowiedź f∆h = -8 mm jest prawidłowa, ponieważ odchyłka zamkniętego ciągu niwelacyjnego oblicza się na podstawie różnicy pomierzonych przewyższeń w stosunku do różnicy wysokości reperów. W przypadku, gdy wysokość reperu początkowego i końcowego jest taka sama, oczekiwalibyśmy, że suma różnic pomierzonych przewyższeń (∆hp) powinna wynosić zero. Jednak w tym przypadku mamy do czynienia z wartością ∆hp równą -8 mm, co oznacza, że pomiary wskazują na ujemne odchylenie. Aby uzyskać odchyłkę zamkniętego ciągu, weźmiemy pod uwagę tę wartość i podzielimy przez 2, co daje -8 mm. W praktyce oznacza to, że podczas pomiarów wystąpił błąd systematyczny, który może być spowodowany np. różnicami w poziomie terenu lub błędami instrumentu. Zrozumienie tego procesu jest kluczowe w geodezji, ponieważ pozwala na korekcję pomiarów i zwiększenie dokładności wyników, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 5

Osoba, która nie przekaże dokumentacji opracowanej w trakcie prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego oraz kartograficznego, może być ukarana

A. odebraniem uprawnień zawodowych
B. grzywną
C. pozbawieniem wolności
D. ograniczeniem wolności
Odpowiedź, że osoba, która nie przekaże materiałów powstałych w wyniku prac geodezyjnych lub kartograficznych do państwowego zasobu geodezyjnego i kartograficznego, może zostać ukarana grzywną, jest poprawna. Zgodnie z ustawą o geodezji i kartografii, każdy geodeta ma obowiązek dostarczenia wyników swoich prac do odpowiednich instytucji. Niezastosowanie się do tego obowiązku jest traktowane jako wykroczenie, które podlega karze grzywny. Przykładowo, jeśli geodeta wykonuje pomiary terenu i nie złoży dokumentacji w zasobie geodezyjnym, naraża się na konsekwencje prawne. Taka regulacja ma na celu zapewnienie, że dane geodezyjne będą dostępne dla innych użytkowników, co jest kluczowe dla planowania przestrzennego, ochrony środowiska oraz prowadzenia inwestycji budowlanych. Zgodność z tym obowiązkiem jest istotnym elementem dobrych praktyk w branży geodezyjnej oraz przyczynia się do transparentności i jakości danych w publicznym obiegu.

Pytanie 6

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 1,0 cm2
B. 10,0 cm2
C. 100,0 cm2
D. 0,1 cm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego podejścia do obliczeń związanych z polem powierzchni na mapie w określonej skali. Na przykład, odpowiedzi takie jak 0,1 cm2 i 10,0 cm2 mogą sugerować błędne obliczenia w przeliczeniach jednostek lub zrozumienia, jak skala wpływa na rzeczywiste wymiary. W przypadku 0,1 cm2, nieprawidłowość polega na tym, że ktoś mógł błędnie zinterpretować przeliczenie, zakładając, że powierzchnia na mapie jest znacznie mniejsza, niż jest w rzeczywistości, co prowadzi do zaniżenia wartości. Z kolei 10,0 cm2 może wydawać się uzasadnione, gdyż można by pomyśleć o jednostkowym przeliczeniu, ale pomija to kluczowy krok w rozumieniu skali, który polega na prawidłowym przeliczeniu całkowitego obszaru. Kluczowym błędem wielu uczniów jest niepełne zrozumienie, że pole powierzchni na mapie jest funkcją kwadratu długości boku, a nie jedynie przeliczeniem liniowym. Prawidłowe zrozumienie geometrii oraz równań powierzchni jest istotne, a także znajomość tego, jak współczesne metody pomiarowe i kartograficzne wymagają precyzyjnych obliczeń, aby uniknąć błędów w planowaniu przestrzennym czy inżynieryjnym.

Pytanie 7

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Wysokości punktów terenu
B. Domiary prostokątne
C. Numery obiektów budowlanych
D. Szczegóły terenowe sytuacyjne
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 8

W trakcie projektowania osnów geodezyjnych nie przeprowadza się

A. wywiadu z terenu
B. stabilizacji punktów geodezyjnych
C. inwentaryzacji już istniejących punktów geodezyjnych
D. ustalenia lokalizacji i zabudowy poszczególnych punktów sieci
Podczas projektowania osnów geodezyjnych ważne jest, żeby najpierw zrobić inwentaryzację istniejących punktów. Dzięki temu wiemy, które z nich można wykorzystać w nowym projekcie i jaki mają stan. Wywiad terenowy też jest istotny, bo zbiera się dzięki niemu info o lokalnych warunkach, co jest konieczne, żeby dobrze zaplanować sieć punktów. Jeśli nie ustalimy właściwie lokalizacji punktów, to można mieć później problemy z ich funkcjonalnością. Często spotykanym błędem jest pomijanie tych kroków w projekcie. Stabilizacja punktów geodezyjnych nie powinna być pierwsza w tym procesie, bo to coś, co robimy dopiero po zaplanowaniu osnowy. Wiedza o tym, w jakiej kolejności działać, jest kluczowa, żeby projekt się udał. Jeśli nie przemyślimy wywiadu terenowego, inwentaryzacji oraz lokalizacji punktów, to mogą się pojawić problemy później, jak trudności z pomiarami czy błędy w danych. Stabilizacja punktów geodezyjnych powinna być na końcu, żeby zapewnić trwałość całej osnowy.

Pytanie 9

Jakie jest zwiększenie współrzędnej ∆y1-2, jeśli zmierzona długość d1-2 = 100,00 m, a sinA1-2 = 0,8910 oraz cosA1-2 = 0,4540?

A. 89,10 m
B. 8,91 m
C. 45,40 m
D. 4,54 m
Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y1-2 można obliczyć, stosując wzór: ∆y = d1-2 * sin(A1-2), gdzie d1-2 to długość między dwoma punktami, a A1-2 to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d1-2 równą 100,00 m oraz sinA1-2 wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.

Pytanie 10

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. wywiadów terenowych
B. sprawozdań technicznych
C. obliczeń
D. szkiców polowych
Wywiady terenowe nie są częścią prac związanych z przetwarzaniem wyników pomiarów, ponieważ koncentrują się głównie na zbieraniu danych jakościowych i informacji bezpośrednich od osób lub społeczności. Podczas gdy prace przetwarzające wyniki pomiarów obejmują obliczenia, analizy statystyczne oraz sporządzanie szkiców polowych, wywiady terenowe mają na celu pozyskanie kontekstu oraz opinii, co jest zupełnie innym procesem. Na przykład w badaniach geologicznych, gdy zbierane są dane o składzie gleby, analiza wyników takich jak pH, zawartość wody czy skład chemiczny wymaga precyzyjnych obliczeń. Szkice polowe służą do wizualizacji i dokumentacji zbieranych danych, a sprawozdania techniczne podsumowują wyniki i konkluzje. Dlatego wywiady terenowe, choć cenne, nie są elementem przetwarzania wyników pomiarów, lecz częścią metodologii zbierania danych.

Pytanie 11

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. elementów terenowych z I kategorii dokładnościowej
B. sąsiednich funkcjonujących punktów osnowy
C. punktów określanych jako poboczniki
D. najbliższych elementów terenu
Odpowiedzi sugerujące korzystanie z sąsiednich istniejących punktów osnowy, najbliższych szczegółów terenowych lub szczegółów terenowych z I grupy dokładnościowej są mylące i mogą prowadzić do nieprecyzyjnych rezultatów w procesie odtwarzania zniszczonych punktów osnowy. Sąsiednie punkty osnowy, choć mogą wydawać się logicznym wyborem, często nie są dostatecznie bliskie, aby zapewnić odpowiednią dokładność geodezyjną. W przypadku, gdy punkty są usunięte lub zniszczone, opieranie się na ich sąsiedztwie może wprowadzać błędy wynikające z niepewności lokalizacji. Najbliższe szczegóły terenowe, chociaż mogą być użyteczne, nie mają często ustalonej geodezyjnej dokładności, co czyni je niewłaściwym odniesieniem. Ponadto, szczegóły terenowe z I grupy dokładnościowej mogą nie być przystosowane do precyzyjnego odtwarzania punktów osnowy, zwłaszcza jeśli nie są to punkty o stabilnej geodezyjnej charakterystyce. W praktyce, niepoprawne podejście do wyboru punktów odniesienia może prowadzić do znacznych błędów w pomiarach, co jest niezgodne z obowiązującymi standardami geodezyjnymi, które nakładają wymóg stosowania precyzyjnych i zweryfikowanych odniesień, takich jak poboczniki. Dlatego kluczowe jest zrozumienie, że odpowiednie punkty odniesienia są fundamentem dokładności w geodezji i powinny być starannie wybrane, aby zapewnić wiarygodność wyników pomiarowych.

Pytanie 12

Za zbieranie, zarządzanie i kontrolowanie przyjmowanych dokumentów do centralnego zasobu geodezyjnego i kartograficznego oraz udostępnianie jego informacji odpowiedzialny jest

A. Główny Geodeta Kraju
B. wojewódzki inspektor nadzoru geodezyjnego i kartograficznego
C. marszałek województwa
D. starosta
Wybór starosty jako organu odpowiedzialnego za gromadzenie i kontrolę zasobów geodezyjnych jest wynikiem nieporozumienia dotyczącego podziału kompetencji w polskim systemie administracyjnym. Starosta rzeczywiście pełni ważną rolę w zarządzaniu lokalnymi zasobami geodezyjnymi, jednak jego zadania są ograniczone do obszaru powiatu i nie obejmują centralnego zasobu geodezyjnego, który zarządzany jest na poziomie krajowym. Marszałek województwa również nie ma kompetencji w tym zakresie, jego odpowiedzialność dotyczy przede wszystkim strategii rozwoju regionów i koordynacji działań na poziomie wojewódzkim. Wojewódzki inspektor nadzoru geodezyjnego i kartograficznego ma z kolei za zadanie kontrolowanie działalności geodezyjnej na poziomie województwa, co również nie obejmuje zarządzania centralnymi zasobami. Warto zrozumieć, że każdy z wymienionych organów pełni specyficzne funkcje i nie można mylić ich kompetencji. Błędne zrozumienie podziału zadań i zakresu odpowiedzialności między różnymi szczeblami administracji może prowadzić do nieprawidłowego postrzegania roli Głównego Geodety Kraju oraz wpływać na efektywność działań w zakresie geodezji i kartografii.

Pytanie 13

Miary określające lokalizację mierzonej pikiety nazywają się

A. przecięciami
B. kątami wierzchołkowymi
C. domiarami prostokątnymi
D. domiarami biegunowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 14

Który z obiektów należy do I grupy dokładnościowej detali terenowych?

A. Słup telekomunikacyjny
B. Skarpa bez umocnień
C. Rura wodociągowa
D. Plac sportowy
Przewód wodociągowy nie łapie się do I grupy dokładnościowej, bo jego miejsce może się zmieniać i często jest schowany pod ziemią, co utrudnia jego lokalizację. W porównaniu do słupów telekomunikacyjnych, które są stałe, przewody potrzebują dodatkowych informacji, żeby je znaleźć. Zresztą skarpy, jako coś naturalnego, też nie pasują do tej grupy, bo ich położenie zmienia się przez erozję czy działania ludzi. Boisko sportowe, choć jest widoczne, ma zbyt dużą powierzchnię i różne kształty, przez co nie spełnia wymogów precyzyjnej lokalizacji. Widać, że to mylne podejście do oceny obiektów w geodezji. Wiele osób myśli, że widoczne rzeczy są bardziej precyzyjne, co prowadzi do złych wniosków i problemów przy planowaniu w inżynierii oraz urbanistyce. Ważne jest, żeby rozumieć różnice w dokładności obiektów, bo to jest kluczowe dla dobrego zarządzania danymi przestrzennymi.

Pytanie 15

Niwelacja geometryczna wymaga, aby pomiar na każdym stanowisku był wykonywany dwukrotnie z różną wysokością osi celowej. Jaka jest maksymalna dopuszczalna różnica pomiędzy tymi wynikami?

A. 0,001 m
B. 0,01 m
C. 0,04 m
D. 0,004 m
Wybór błędnych wartości maksymalnej różnicy między pomiarami niwelacyjnymi może prowadzić do znacznych problemów w praktyce geodezyjnej. Wartości takie jak 0,001 m, 0,04 m oraz 0,01 m nie odpowiadają standardom wymaganym w geodezji i mogą wskazywać na niezrozumienie kluczowych zasad dotyczących precyzji pomiarów. Zbyt mała dopuszczalna różnica, jak 0,001 m, nie uwzględnia naturalnych błędów pomiarowych, które mogą wynikać z różnych czynników, takich jak zmiany temperaturowe, niestabilność instrumentów czy błędy ludzkie. Z kolei zbyt duża różnica, jak 0,04 m, z pewnością przyczyniłaby się do istotnych nieścisłości, które mogą zagrażać dokładności wszystkich prac budowlanych, a także obniżyć jakość projektów inżynieryjnych. Typowe błędy myślowe obejmują brak zrozumienia, jak ważne jest odpowiednie dobieranie tolerancji w zależności od rodzaju terenu i specyfiki wykonywanych pomiarów. W praktyce, geodeci muszą nie tylko znać normy, ale także umieć je zastosować w odpowiednich kontekstach, co wymaga doświadczenia i wiedzy o instrumentach pomiarowych oraz metodach niwelacji. W związku z tym, zrozumienie i stosowanie odpowiednich wartości tolerancji jest kluczowe dla zapewnienia wysokiej jakości wyników oraz bezpieczeństwa projektów inżynieryjnych.

Pytanie 16

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:2000
B. 1:1000
C. 1:250
D. 1:500
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to DAB = 33,00 m (rzeczywista długość) oraz dAB = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako DAB / dAB, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 17

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks20
B. ks200
C. ksB20
D. ksP200
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 18

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. średnicę przewodu.
B. kąt nachylenia przewodu.
C. materiał, z którego wykonano przewód.
D. rysunek instalacji wewnętrznej w budynku.
Wybierając inne odpowiedzi, można wpaść w pułapkę i myśleć, że wie się, co jest naprawdę ważne w inwentaryzacji powykonawczej przyłącza kanalizacyjnego. Nachylenie przewodu, mimo że ważne, wcale nie jest kluczową sprawą na szkicu, bo bardziej chodzi o jego rozmieszczenie w terenie i efektywne odprowadzanie ścieków. Z kolei nazwa materiału, z którego zrobiony jest przewód, jest ważna przy ocenie jakości instalacji, ale nie ma wpływu na funkcjonalność czy przepustowość całego układu, więc w kontekście inwentaryzacji jest to raczej mało efektywna informacja. Co do szkicu instalacji wewnątrz budynku – mimo że daje przydatne info o rozkładzie systemu, to w etapie inwentaryzacji zewnętrznego przyłącza nie jest to potrzebne. Z doświadczenia wiem, że wybierając złe odpowiedzi, można mieć mylne pojęcie o tym, jak działa instalacja kanalizacyjna, co w przyszłości może prowadzić do błędnych wniosków podczas projektowania czy audytów. Trzeba zrozumieć, że każda wartość w dokumentacji ma swoje miejsce, ale nie wszystkie są kluczowe do polowego szkicu, co jest niezbędne, żeby utrzymać dobre standardy w branży budowlanej.

Pytanie 19

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Geodeta Powiatowy
B. Geodeta uprawniony
C. Starosta
D. Marszałek Województwa
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 20

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Obliczeniowym
B. Zawieszonym
C. Zamkniętym
D. Otwarty
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.

Pytanie 21

Jakie informacje są konieczne do zlokalizowania w terenie punktu geodezyjnego?

A. Opis topograficzny punktu
B. Godło odpowiedniego arkusza mapy zasadniczej
C. Szkic polowy wykonania osnowy
D. Zestawienie szkiców terenowych
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 22

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [α] = AK + AP - n × 200g
B. [β] = AP + AK - n × 200g
C. [β] = AP – AK + n × 200g
D. [α] = AK – AP + n × 200g
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 23

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n+2)∙200g
B. [β] = Ak − Ap + n∙200g
C. [β] = Ap − Ak + n∙200g
D. [β] = (n−2)∙200g
W odpowiedziach, które nie są prawidłowe, można dostrzec kilka kluczowych błędów koncepcyjnych. Przede wszystkim, niektóre wzory próbują modyfikować podstawowy związek z geometrią poligonów. Na przykład wzór [β] = Ak − Ap + n∙200g oraz [β] = Ap − Ak + n∙200g wprowadzają dodatkowe zmienne Ak i Ap, które nie mają zastosowania w kontekście obliczania sumy kątów wewnętrznych. Kąt wewnętrzny poligonu zależy jedynie od liczby jego boków, a nie od jakichkolwiek wartości zewnętrznych lub zmiennych, które mogłyby wprowadzać niepotrzebny chaos w obliczeniach. Ponadto, wzór [β] = (n+2)∙200g jest również błędny, ponieważ zakłada, że suma kątów rośnie w sposób nielinearny w stosunku do liczby boków, co jest sprzeczne z zasadami geometrii. Często popełnianym błędem jest nieprawidłowe rozumienie roli przelicznika 200g, który ma na celu dostosowanie jednostek, a nie modyfikację samego wzoru. Ważne jest, aby zrozumieć, że każdy poligon zamknięty, niezależnie od kształtu, podlega tym samym zasadom. Dlatego kluczowe jest stosowanie uznanych wzorów i zrozumienie ich podstawowych założeń, aby unikać błędów w obliczeniach i w praktycznych zastosowaniach inżynierskich.

Pytanie 24

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,10 m
B. 0,30 m
C. 0,50 m
D. 0,20 m
No, wydaje mi się, że wybierając większą dokładność, jak 0,20 m czy 0,50 m, myślisz, że to wystarczy. Ale w praktyce mogą z tego wyniknąć niezłe kłopoty. Przy inwentaryzacji włazu studzienki musisz być naprawdę dokładny, bo średnie błędy mogą sprawić, że dostęp do studzienek będzie utrudniony, a nawet mogą źle wpasować się w system kanalizacyjny. Ustalanie punktów referencyjnych z większymi tolerancjami to jak gra w ruletkę - studzienki mogą się nie zgadzać z drogami czy innymi budowlami. A w geodezji, jak już wiesz, nie można ignorować tych dokładności, bo może to zagrażać całym projektom budowlanym. Często ludzie niedoceniają, jak ważne są strategiczne lokalizacje, a potem mają problemy. W geodezji precyzja to podstawa, więc mniejsze błędy mają duże znaczenie, a trzeba się trzymać norm i wytycznych, żeby nie wpaść w tarapaty.

Pytanie 25

Jaką precyzję graficzną można osiągnąć dla mapy o skali 1:2000, jeśli średni błąd lokalizacji elementu terenowego na tej mapie wynosi ±0,1 mm w skali mapy?

A. ±0,002 m
B. ±2 m
C. ±0,02 m
D. ±0,2 m
Odpowiedź ±0,2 m jest prawidłowa, ponieważ w skali 1:2000, błąd średni położenia szczegółu terenowego wynoszący ±0,1 mm w skali mapy przekłada się na rzeczywiste wymiary w terenie. Aby obliczyć błąd w rzeczywistości, należy przeliczyć błąd w milimetrach na metry. W tym przypadku, przeliczenie polega na pomnożeniu wartości błędu na mapie przez odwrotność skali: ±0,1 mm * 2000 = ±200 mm, co w przeliczeniu na metry daje ±0,2 m. Zastosowanie precyzyjnych pomiarów i obliczeń jest kluczowe w geodezji, a ta wiedza jest niezbędna w praktycznych zastosowaniach, takich jak tworzenie map topograficznych czy planowanie przestrzenne. W geodezji obowiązują określone standardy dotyczące dokładności, a rozumienie skali i błędów pomiarowych to fundament, na którym opiera się cała dziedzina. Większość profesjonalnych projektów geodezyjnych uznaje dokładność na poziomie ±0,2 m jako akceptowalną dla map w tej skali, co podkreśla znaczenie precyzyjnych pomiarów i wiedzy w tej branży.

Pytanie 26

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:2000
B. 1:250
C. 1:500
D. 1:1000
Odpowiedź 1:2000 jest prawidłowa, ponieważ skala mapy jest wyrażona jako stosunek długości w terenie do długości na mapie. W tym przypadku długość odcinka w terenie wynosi 86,00 m, co przelicza się na 86000 mm, zaś na mapie długość tego odcinka wynosi 43,00 mm. Aby obliczyć skalę, należy podzielić długość w terenie przez długość na mapie: 86000 mm / 43 mm = 2000. Oznacza to, że 1 mm na mapie odpowiada 2000 mm (czyli 2 m) w terenie. Przykładowo, w praktyce skala 1:2000 jest często stosowana w planowaniu urbanistycznym oraz w szczegółowych mapach geodezyjnych, co pozwala na precyzyjne odwzorowanie obiektów i ich lokalizacji. Dobrą praktyką jest również uwzględnianie w dokumentacji mapowej aspektów takich jak dokładność pomiarów oraz zastosowanie odpowiednich symboli i oznaczeń, co zapewnia lepsze zrozumienie prezentowanych informacji.

Pytanie 27

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. hydrostatycznej
B. punktów rozproszonych
C. trygonometrycznej
D. siatkowej
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 28

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0030 mm
B. 3000 mm
C. 0300 mm
D. 1300 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 29

Cyfra 2 w symbolu 2/5, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. numer hektometra w konkretnym kilometrze
B. całkowitą liczbę metrów w jednym odcinku trasy
C. całkowitą liczbę kilometrów od początku trasy
D. liczbę hektometrów w danym kilometrze trasy
Zrozumienie symboliki używanej w dokumentacji geodezyjnej, takiej jak 2/5, jest kluczowe dla prawidłowej interpretacji danych dotyczących tras. Odpowiedzi sugerujące, że cyfra 2 oznacza numer hektometra w danym kilometrze, pełną liczbę metrów w jednym odcinku trasy, czy liczbę hektometrów w danym kilometrze, prowadzą do fundamentalnych błędów interpretacyjnych. Zapis 2/5 jasno wskazuje, że cyfra w liczniku odnosi się do pełnych kilometrów, a nie hektometrów czy metrów. Pojęcie hektometra odnosi się do jednostki długości, która jest równa 100 metrom, co stanowi znacznie bardziej szczegółowy podział trasy, jednak nie jest ono reprezentowane w tym konkretnym zapisie. Typowym błędem jest mylenie jednostek i nieodpowiednia interpretacja zapisów dotyczących odległości, co może prowadzić do poważnych nieporozumień na etapie planowania i realizacji projektów. Zgodnie z najlepszymi praktykami w geodezji, kluczowe jest rozróżnienie między poszczególnymi jednostkami miary oraz zrozumienie ich zastosowania w kontekście pomiarów terenowych. Ostatecznie, poprawne zrozumienie tych symboli jest niezbędne dla efektywnego zarządzania danymi geodezyjnymi i zapewnienia dokładności w analizach przestrzennych.

Pytanie 30

Wizury pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej powinny być przeprowadzone w trakcie

A. niwelacji punktów osnowy
B. pomiarów rzeźby terenu
C. wywiadu terenowego
D. sporządzania opisu topograficznego
Wybór niwelacji punktów osnowy jako odpowiedzi jest błędny, ponieważ niwelacja koncentruje się na pomiarach różnic wysokości, a nie na wizurach poziomych. W praktyce geodezyjnej niwelacja służy do ustalenia różnic wysokości pomiędzy punktami, co jest kluczowe w kontekście budownictwa czy inżynierii lądowej, ale nie ma bezpośredniego związku ze sprawdzaniem wizur. Ponadto, pomiary rzeźby terenu, choć ważne w kontekście analizy topograficznej, nie mają na celu weryfikacji widoczności pomiędzy punktami geodezyjnymi. Pomiary te koncentrują się na zbieraniu danych o ukształtowaniu terenu, co jest użyteczne w planowaniu przestrzennym, ale niekoniecznie odnosi się do analizy wizur geodezyjnych. Sporządzanie opisu topograficznego również nie jest związane z bezpośrednim sprawdzaniem wizur – opis ten ma na celu przedstawienie cech obszaru, ale nie jest techniką weryfikacji widoczności. Kluczowym błędem myślowym, który prowadzi do wyboru niepoprawnych odpowiedzi, jest mylenie rodzajów pomiarów i ich celów. Ważne jest zrozumienie, że każdy z wymienionych procesów ma swoje specyficzne zastosowanie i nie można je wymieniać zamiennie, co podkreśla znaczenie znajomości podstawowych pojęć i praktyk w geodezji.

Pytanie 31

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. systematyczne.
B. grube.
C. średnie.
D. pozorne.
Odpowiedzi "pozorne", "średnie" i "grube" są niepoprawne, ponieważ nie odnoszą się do właściwego rodzaju błędów w kontekście analizowania wyników pomiarów. Błędy pozorne to często błędy wynikające z subiektywnej interpretacji danych, a nie z rzeczywistych odchyleń w pomiarach. Takie błędy mogą prowadzić do mylnych konkluzji, ale nie są one stałe ani systematyczne, co czyni je mniej istotnymi w kontekście usprawnień w metodyce pomiarowej. Z kolei błędy średnie, choć mogą wskazywać na statystyczne odchylenia wyników, nie odnoszą się do korygowania wyników pomiarów, a raczej do obliczeń statystycznych, które mogą pomóc w interpretacji danych, lecz nie eliminują systematycznych odchyleń. Błędy grube, występujące sporadycznie, są wynikiem niefortunnych okoliczności, takich jak awaria sprzętu lub pomyłka w odczycie, które można wykryć i wyeliminować, ale nie są to systematyczne błędy. Zrozumienie różnicy między tymi kategoriami błędów jest kluczowe dla skutecznej analizy danych i uzyskiwania wiarygodnych wyników, a ignorowanie tego podziału może prowadzić do poważnych błędów w interpretacji rezultatów pomiarów. Merytoryczne podstawy tych koncepcji są fundamentalne w naukach ścisłych i inżynierii, gdzie dokładność pomiarów jest kluczowa dla sukcesu badań i aplikacji technologicznych.

Pytanie 32

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. palików drewnianych.
B. bolców.
C. znaków z kamienia.
D. trzpieni.
Wybór palików drewnianych jako materiału do trwałego zaznaczania punktów osnowy poziomej jest mylny, ponieważ nie zapewniają one odpowiedniej stabilności ani trwałości. Pomimo ich powszechnego użycia w pracach tymczasowych, drewno jest materiałem organicznym, który podlega procesom gnilnym, co prowadzi do zniekształcenia lub nawet całkowitego zniknięcia znaku w wyniku działania czynników atmosferycznych. Korozja, wilgoć oraz zmiany temperatury mogą osłabić strukturę palików, co sprawia, że stają się one niewiarygodne jako punkty odniesienia. W praktyce, geodeci muszą unikać korzystania z materiałów, które nie gwarantują długotrwałej stabilności, a wybór drewnianych palików w tym kontekście jest istotnym błędem. Z kolei trzpienie oraz znaki z kamienia są preferowanymi rozwiązaniami, ponieważ ich materiał charakteryzuje się dużą odpornością na uszkodzenia i długowiecznością. Trzpienie, zazwyczaj stalowe lub żelazne, osadza się na stałe w ziemi i są one mniej podatne na działanie warunków zewnętrznych. Natomiast znaki z kamienia, jako trwałe punkty odniesienia, mogą funkcjonować przez wiele lat bez potrzeby jakiejkolwiek konserwacji. Niezrozumienie tych podstawowych różnic między materiałami prowadzi do błędnego postrzegania ich użyteczności w geodezyjnych pomiarach, przez co mogą wystąpić niedokładności, które są nieakceptowalne w profesjonalnych praktykach geodezyjnych.

Pytanie 33

Południkiem centralnym odwzorowania Gaussa-Krügera w systemie współrzędnych PL-1992 jest południk

A. 19°
B. 21°
C. 15°
D. 17°
Odpowiedź 19° jest prawidłowa, ponieważ w układzie współrzędnych PL-1992, który jest polskim systemem odwzorowania kartograficznego, południkiem osiowym dla obszaru Polski jest właśnie południk 19°. To odwzorowanie jest oparte na elipsoidzie GRS80 i ma na celu precyzyjne przedstawienie geometrii powierzchni Ziemi na płaszczyźnie. W praktyce oznacza to, że wszelkie mapy i dane geograficzne w Polsce używają tego południka jako punktu odniesienia, co jest niezbędne dla nawigacji, planowania przestrzennego oraz analizy geograficznej. Współrzędne geograficzne, które są określane w tym systemie, mają zastosowanie w wielu dziedzinach, takich jak geodezja, kartografia, a także w inżynierii lądowej. Przykładem zastosowania jest wyznaczanie granic działek, które wymagają precyzyjnych pomiarów z użyciem współrzędnych geograficznych. Dodatkowo, znajomość południka osiowego jest kluczowa przy pracy z systemami informacji geograficznej (GIS), gdzie dokładne odwzorowanie terenu ma zasadnicze znaczenie dla podejmowania decyzji.

Pytanie 34

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/5000
B. 1/4000
C. 1/1000
D. 1/2000
Błąd względny jest miarą niepewności pomiaru, określającą jaką część pomiaru stanowi błąd. W tym przypadku mamy pomiar odległości wynoszący 120 m oraz średni błąd pomiaru wynoszący ±3 cm, co w przeliczeniu na metry daje ±0,03 m. Aby obliczyć błąd względny, należy podzielić błąd pomiaru przez wartość zmierzoną. Zatem: błąd względny = błąd / wartość zmierzona = 0,03 m / 120 m = 0,00025. W przeliczeniu na ułamek, błąd względny wynosi 1/4000. Tego rodzaju obliczenia są niezbędne w inżynierii oraz naukach przyrodniczych, gdzie precyzyjne pomiary mają kluczowe znaczenie, zwłaszcza w kontekście kalibracji urządzeń pomiarowych i zapewnienia jakości w procesach produkcyjnych. Należy pamiętać, że błąd względny pozwala na porównanie dokładności różnych pomiarów i jest szeroko stosowany w badaniach naukowych oraz w przemyśle.

Pytanie 35

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. obiektów topograficznych
B. szczegółowych osnów geodezyjnych
C. ewidencji gruntów i budynków
D. geodezyjnej ewidencji sieci uzbrojenia terenu
Niepoprawne odpowiedzi dotyczą różnych zbiorów danych, które mają inne cele i zastosowania w obszarze geodezji i kartografii. Ewidencja gruntów i budynków, na przykład, koncentruje się na rejestracji praw własności do nieruchomości oraz ich użytkowaniu, co nie jest bezpośrednio związane z obiektami topograficznymi. Z kolei szczegółowe osnowy geodezyjne zorientowane są na precyzyjne ustalanie położenia punktów w przestrzeni, co jest kluczowe dla prac inżynieryjnych, ale nie obejmuje zbioru danych dotyczących obiektów topograficznych. Geodezyjna ewidencja sieci uzbrojenia terenu skupia się na infrastrukturze technicznej, takiej jak wodociągi, kanalizacja czy energetyka, co również jest odrębne od BDOT500. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi mogą wynikać z mylenia różnych systemów ewidencyjnych lub zbiorów danych geograficznych, co podkreśla konieczność znajomości struktury i celu zbiorów danych, a także ich zastosowań w praktyce. Zrozumienie właściwego kontekstu zbiorów danych jest kluczowe dla efektywnego ich wykorzystania w projektach związanych z gospodarką przestrzenną.

Pytanie 36

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Szkic polowy osnowy
B. Opis topograficzny punktu
C. Dziennik pomiaru kątów osnowy
D. Dziennik pomiaru długości boków osnowy
Szkic polowy osnowy, dziennik pomiaru długości boków osnowy oraz dziennik pomiaru kątów osnowy są dokumentami, które mogą być użyteczne w różnych aspektach pracy geodezyjnej, jednak nie są one wystarczające do bezpośredniego odnalezienia punktu osnowy w terenie. Szkic polowy osnowy zazwyczaj przedstawia układ punktów oraz relacje między nimi, jednak nie dostarcza precyzyjnych informacji o ich lokalizacji, co czyni go niewystarczającym narzędziem w kontekście poszukiwania konkretnego punktu. Dzienniki pomiarowe, zarówno długości, jak i kątów, są narzędziami do rejestrowania wyników pomiarów, a nie do ich lokalizacji. Z założenia mają one na celu zbieranie danych, które następnie są wykorzystywane do obliczeń i tworzenia map, ale nie zawierają informacji, które pomogłyby w odnalezieniu punktów w rzeczywistości. Typowe błędy w myśleniu polegają na myleniu dokumentacji pomiarowej z dokumentacją lokalizacyjną, co prowadzi do nieporozumień w zakresie tego, co jest naprawdę potrzebne w terenie. W praktyce geodezyjnej kluczowe jest zrozumienie, że skuteczna lokalizacja punktu osnowy wymaga szczegółowych opisów, a nie tylko zapisu przeprowadzonych pomiarów.

Pytanie 37

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. wprost proporcjonalne do długości ciągów
B. odwrotnie proporcjonalne do różnic wysokości ciągów
C. odwrotnie proporcjonalne do długości ciągów
D. wprost proporcjonalne do różnic wysokości ciągów
Wagi stosowane w niwelacji geometrycznej nie są wprost proporcjonalne do różnic wysokości ciągów ani długości ciągów. Założenie, że wagi powinny być wprost proporcjonalne do różnic wysokości, prowadzi do nieporozumienia w kontekście pomiarów geodezyjnych. W rzeczywistości różnice wysokości są jedynie jednym z czynników wpływających na dokładność pomiaru, a ich wpływ nie jest bezpośrednio proporcjonalny do długości ciągu. Dłuższe ciągi mogą generować większe błędy systematyczne z powodu wpływu warunków atmosferycznych oraz nierówności terenu, co sprawia, że ich waga musi być mniejsza, aby zrekompensować potencjalne błędy. Ponadto, waga wprost proporcjonalna do długości ciągów wprowadzałaby niepotrzebne złożoności w obliczeniach, co mogłoby prowadzić do błędnych wyników. Należy pamiętać, że zasady stosowane w niwelacji geometrycznej mają na celu zapewnienie wysokiej precyzji i dokładności pomiarów, co jest kluczowe w praktyce inżynieryjnej i geodezyjnej. Kluczowe jest, aby stosować odpowiednie metody i normy branżowe, które uwzględniają wszystkie istotne czynniki, a nie tylko różnice wysokości czy długości ciągów, co pozwala na precyzyjne i wiarygodne wyniki.

Pytanie 38

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. ortogonalnej
B. biegunowej
C. przedłużeń
D. tachimetrycznej
Odpowiedzi tachimetryczna, ortogonalna oraz przedłużeń wskazują na różne podejścia w pomiarze i niwelacji, które nie są właściwe w kontekście określenia położenia punktów rozproszonych. Metoda tachimetryczna, choć użyteczna do pomiarów kątów i odległości, nie jest optymalna dla precyzyjnego określania lokalizacji punktów w rozproszonym terenie, ponieważ koncentruje się głównie na pomiarach punktów z jednego stanowiska oraz może prowadzić do błędów w przypadku przeszkód terenowych. Z kolei metoda ortogonalna, która zakłada stosowanie prostokątnych układów współrzędnych, jest bardziej odpowiednia dla zadań, gdzie punkty są poukładane w regularny sposób, a nie w sposób rozproszony. Przedłużenia, w swoim podstawowym sensie, polegają na wydłużaniu linii przez konkretne punkty, co nie odpowiada na potrzeby związane z niwelacją punktów rozproszonych. Wybór niewłaściwej metody może prowadzić do znaczących błędów w pomiarach, co jest szczególnie problematyczne w projektach budowlanych, gdzie precyzja jest kluczowa. Zrozumienie, kiedy i jak stosować konkretne techniki pomiarowe, jest kluczowe dla osiągnięcia sukcesu w obszarze geodezji i inżynierii lądowej.

Pytanie 39

Który z poniższych instrumentów geodezyjnych służy do pomiaru kątów poziomych i pionowych?

A. Inklinometr
B. Teodolit
C. Niwelator
D. Tachimetr
Niwelator jest instrumentem geodezyjnym, który służy głównie do wykonywania pomiarów wysokościowych. Używa się go przede wszystkim do określania różnic wysokości między punktami, co jest kluczowe przy niwelacji terenu. O ile niwelator jest nieoceniony przy pomiarach pionowych, nie jest narzędziem przeznaczonym do pomiaru kątów poziomych i pionowych, jak teodolit. Tachimetr to bardziej zaawansowane urządzenie, które łączy funkcje teodolitu i dalmierza, umożliwiając pomiary kątów oraz odległości. Choć tachimetry mogą również mierzyć kąty, ich głównym zastosowaniem jest szybkie i dokładne wykonywanie pomiarów terenowych, łącząc różne funkcje w jednym urządzeniu. Tachimetry są bardzo popularne, jednak nie są stricte przeznaczone tylko do pomiaru kątów, co różni je od teodolitów. Inklinometr, z kolei, to instrument używany do pomiaru nachylenia lub kąta w stosunku do poziomu odniesienia, ale nie do pomiaru kąta poziomego i pionowego. Może być stosowany w różnych dziedzinach, od geotechniki po przemysł naftowy, ale jego funkcja jest specyficzna i nie obejmuje pomiarów kątów w sposób, w jaki robi to teodolit. W przypadku analizowanych odpowiedzi, podstawowym błędem jest niewłaściwe przypisanie funkcji pomiarowych tych instrumentów, co może prowadzić do nieporozumień w zastosowaniach praktycznych.

Pytanie 40

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby ułatwić transport sprzętu na miejsce pomiaru.
B. Aby zapewnić dokładność i wiarygodność pomiarów.
C. Aby zredukować zużycie materiałów pomiarowych.
D. Aby przyspieszyć proces wykonywania pomiarów.
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.