Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 maja 2025 23:16
  • Data zakończenia: 23 maja 2025 23:46

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 10 g KI oraz 150 cm3 wody destylowanej
B. 10 g KI oraz 140 g wody destylowanej
C. 15 g KI oraz 145 g wody destylowanej
D. 15 g KI oraz 135 cm3 wody destylowanej
Stężenie 10% (m/m) oznacza, że na każde 100 g roztworu przypada 10 g substancji czynnej, czyli jodku potasu (KI). Aby przygotować 150 g roztworu, musimy obliczyć masę KI: 150 g x 10% = 15 g. Pozostała masa roztworu to woda, która będzie stanowić 135 g (150 g - 15 g). Woda ma gęstość 1 g/cm³, co oznacza, że 135 g wody to 135 cm³. Ta odpowiedź jest zgodna z zasadami przygotowywania roztworów, które wymagają zachowania proporcji masowych dla określonego stężenia. Przykładem zastosowania tego procesu może być przygotowanie roztworu do badań chemicznych, gdzie precyzyjne stężenie reagentów jest kluczowe dla uzyskania wiarygodnych wyników. Ponadto, zgodnie z dobrą praktyką laboratoryjną, zawsze warto sprawdzić obliczenia i użyć wagi analitycznej oraz menzurki, aby zapewnić dokładność pomiarów.

Pytanie 2

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
B. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
C. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
D. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 3

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. robocze
B. wtórne
C. podstawowe
D. miarowe
Substancje podstawowe to naprawdę ważna sprawa w laboratoriach. Służą do ustalania miana roztworu, bo mają znane i dokładne stężenia, które są punktem odniesienia do dalszych badań. W praktyce używamy ich do kalibracji sprzętu i w różnych procesach analitycznych, jak np. titracja, gdzie musimy precyzyjnie określić ilość analitu. Takimi substancjami mogą być np. sól sodowa kwasu benzoesowego czy kwas solny o ustalonym stężeniu. Wiedza o substancjach podstawowych jest super istotna, bo pomaga nam trzymać standardy jakości, takie jak ISO, które mówią o dokładności pomiarów chemicznych. Ważne, żeby te substancje były przechowywane w odpowiednich warunkach, żeby się nie zepsuły, bo to mogłoby wpłynąć na wyniki. Z mojego doświadczenia, znajomość tych substancji i umiejętność ich stosowania są kluczowe, jeśli chcemy uzyskiwać wiarygodne wyniki w analizach.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

300 cm3 zanieczyszczonego benzenu poddano procesowi destylacji. Uzyskano 270 cm3 czystej substancji. Jaką wydajność miało oczyszczanie?

A. 90%
B. 111%
C. 10%
D. 80%
Wydajność procesu oczyszczania oblicza się przy użyciu wzoru: (objętość uzyskanego produktu / objętość surowca) * 100%. W naszym przypadku mamy 270 cm³ czystego benzenu uzyskanego z 300 cm³ zanieczyszczonego. Podstawiając wartości do wzoru, otrzymujemy: (270 / 300) * 100% = 90%. Taki wynik oznacza, że proces destylacji był efektywny i pozwolił na odzyskanie 90% czystej substancji. W praktyce, w przemyśle chemicznym, ocena wydajności procesów oczyszczania jest kluczowa, aby zapewnić opłacalność i efektywność produkcji. Wysoka wydajność wskazuje na skuteczną separację substancji, co jest istotne zarówno z punktu widzenia ekonomicznego, jak i jakościowego. Procesy oczyszczania są stosowane w różnych branżach, w tym w produkcji farmaceutycznej czy petrochemicznej, gdzie czystość substancji ma bezpośrednie znaczenie dla bezpieczeństwa i właściwości końcowego produktu. Prawidłowe obliczenie wydajności pozwala również na identyfikację potencjalnych problemów w procesie, co sprzyja ciągłemu doskonaleniu technologii produkcji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. czerpak
B. pojemnik
C. barometr
D. aspirator
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Pominąć etap ważenia przy sporządzaniu roztworu.
B. Użyć linijki do określenia objętości substancji.
C. Zastosować wagę analityczną o dokładności do 0,1 mg.
D. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 11

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. średniej laboratoryjnej
B. pierwotnej
C. analitycznej
D. ogólnej
Odpowiedź 'pierwotnej' jest poprawna, ponieważ próbka pierwotna to część partii, która jest pobrana jednorazowo z jednego miejsca towaru opakowanego lub z jednego opakowania jednostkowego. Termin ten jest kluczowy w kontekście badań laboratoryjnych i jakości produktów. Próbki pierwotne są często stosowane w analizach chemicznych, mikrobiologicznych i fizykochemicznych, gdzie dokładność i reprezentatywność próbki mają kluczowe znaczenie dla wyników. Na przykład, w akredytowanych laboratoriach, zgodnie z normami ISO 17025, zaleca się pobieranie próbek pierwotnych w sposób zapewniający ich reprezentatywność dla całej partii. Przykłady zastosowania obejmują kontrolę jakości surowców w przemyśle spożywczym czy farmaceutycznym, gdzie kluczowe jest, aby wyniki badań były wiarygodne i mogły być zastosowane do oceny całej partii produktu. Dobrą praktyką jest również dokumentowanie procesu pobierania próbek, co zwiększa transparentność i wiarygodność analiz.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15

A. 20
B. 7
C. 10
D. 5,5
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 15

Gdzie należy przechowywać cyjanek potasu KCN?

A. w warunkach chłodniczych
B. w szczelnie zamkniętym eksykatorze
C. w pojemniku, z dala od źródeł ciepła
D. w stalowej szafie, zamkniętej na klucz
Przechowywanie cyjanku potasu (KCN) w stalowej szafie zamkniętej na klucz jest kluczowym aspektem zapewnienia bezpieczeństwa w laboratoriach i miejscach pracy, ponieważ jest to substancja silnie toksyczna. Właściwe przechowywanie tego związku chemicznego minimalizuje ryzyko przypadkowego kontaktu z osobami nieuprawnionymi oraz zapobiega przypadkowemu uwolnieniu substancji do otoczenia. Stalowe szafy przeznaczone do przechowywania substancji niebezpiecznych muszą być zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), które nakładają obowiązki dotyczące ochrony zdrowia i środowiska. Przykładem dobrej praktyki jest stosowanie systemów monitorowania, które informują o ewentualnych nieprawidłowościach w temperaturze czy wilgotności w miejscu przechowywania. Umożliwia to wczesne wykrywanie zagrożeń oraz odpowiednie działania w celu ich minimalizacji, co jest niezbędne w zarządzaniu substancjami chemicznymi o wysokim ryzyku. Ponadto, regularne szkolenia pracowników z zakresu obsługi substancji niebezpiecznych wspierają kulturę bezpieczeństwa w organizacji.

Pytanie 16

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. stałe, niepalne
B. stałe, palne
C. toksyczne, palne
D. bardzo toksyczne, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 17

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. dekantacja
B. hydratacja
C. sedymentacja
D. absorpcja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 18

Pierwotna próbka jest zbierana

A. z opakowania pierwotnego
B. w jednym punkcie partii materiału
C. z próbki ogólnej w sposób bezpośredni
D. z próbki przeznaczonej do badań
Prawidłowa odpowiedź wskazuje, że próbka pierwotna jest pobierana w jednym miejscu partii materiału. Jest to zgodne z najlepszymi praktykami w zakresie pobierania próbek, które zalecają, aby próbki były reprezentatywne dla całej partii, co pozwala na dokładną ocenę jakości materiału. Pobieranie próbek w jednym miejscu eliminuje ryzyko rozrzutności wyników i zapewnia, że każda próbka oddaje rzeczywisty stan partii. Na przykład w przemyśle farmaceutycznym pobieranie próbek substancji czynnej w jednym miejscu partii pozwala na skuteczną kontrolę jakości i zgodność z normami, takimi jak ISO 17025, które wymagają, aby metody pobierania próbek były jasno określone i zgodne z procedurami operacyjnymi. W praktyce, taka metoda pozwala na skuteczniejsze monitorowanie i zarządzanie jakością, co jest kluczowe dla zapewnienia bezpieczeństwa i skuteczności produktów.

Pytanie 19

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
B. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
C. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
D. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.

Pytanie 20

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 500 cm3
B. 50 cm3
C. 1 dm3
D. 2 dm3
Aby przygotować roztwór wodorotlenku sodu (NaOH) o stężeniu 0,0500 mol/dm3 z fabrycznie przygotowanej odważki zawierającej 0,1 mola NaOH, konieczne jest rozcieńczenie odważki wodą destylowaną. Stężenie roztworu można obliczyć przy użyciu wzoru C1V1 = C2V2, gdzie C1 to stężenie początkowe (0,1 mol/dm3), V1 to objętość początkowa, C2 to stężenie końcowe (0,0500 mol/dm3), a V2 to objętość końcowa. Z tego równania wynika, że aby uzyskać stężenie 0,0500 mol/dm3, objętość końcowa powinna wynosić 2 dm3 (2000 cm3). Praktyczne zastosowanie tej wiedzy jest kluczowe w laboratoriach chemicznych, gdzie dokładność stężeń roztworów jest niezbędna do przeprowadzania reakcji chemicznych, analizy jakościowej czy ilościowej substancji. Stosowanie kolb miarowych do przygotowywania roztworów jest zgodne z dobrymi praktykami laboratoryjnymi, ponieważ pozwala na precyzyjne pomiary i minimalizuje ryzyko błędów pomiarowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na sucho
B. wyprażenia próbki do stałej masy
C. topnienia próbki
D. mineralizacji próbki na mokro
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 23

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g

A. C.
B. A.
C. B.
D. D.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 0,01%
B. 0,001%
C. 1%
D. 0,1%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 27

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. z polietylenu
B. ze szkła krzemowego
C. ze szkła sodowego
D. ze szkła borokrzemowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 2,24 dm3
B. 4,48 dm3
C. 11,2 dm3
D. 22,4 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 30

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 25%
B. 50%
C. 75%
D. 60%
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
B. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
C. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
D. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. aluminium
B. polietylenu wysokiej gęstości (HDPE)
C. szkła sodowego
D. ceramiki
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 35

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. cieczy.
B. ciał stałych.
C. gazów.
D. płynów.
Poprawna odpowiedź to "ciał stałych". Piktogram przedstawiający substancję szkodliwą dla zdrowia odnosi się do materiałów klasyfikowanych jako 6.1 według Międzynarodowego Systemu Transportu Materiałów Niebezpiecznych. Substancje te mogą być trujące i stwarzać zagrożenie dla zdrowia ludzkiego, co wymaga szczególnej ostrożności podczas transportu i przechowywania. W praktyce, substancje stałe, takie jak pewne chemikalia, są klasyfikowane w tej kategorii, ponieważ ich forma fizyczna może powodować poważne konsekwencje zdrowotne w przypadku kontaktu. Do dobrych praktyk w transporcie materiałów niebezpiecznych należy stosowanie odpowiednich środków ochrony osobistej, jak rękawice czy maski, a także zapewnienie odpowiednich warunków przechowywania, aby zminimalizować ryzyko wycieków czy narażenia ludzi na szkodliwe substancje. Wiedza dotycząca klasyfikacji materiałów niebezpiecznych jest niezbędna dla każdego, kto pracuje w branżach związanych z transportem chemikaliów, aby zapewnić bezpieczeństwo zarówno pracowników, jak i środowiska.

Pytanie 36

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)

A. 200 cm3
B. 100 cm3
C. 250 cm3
D. 150 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 200 cm3 jest poprawna, ponieważ do syntezy mydła sodowego z kwasu stearynowego potrzebujemy odpowiedniej ilości zasady sodowej, która zneutralizuje kwas. W przypadku kwasu stearynowego, którego masa wynosi 56,8 g, obliczamy liczbę moli, korzystając z jego masy molowej wynoszącej około 284 g/mol. Obliczamy liczbę moli kwasu stearynowego: 56,8 g / 284 g/mol = 0,2 mol. Zasada sodowa w stężeniu 1,0 mol/dm3 oznacza, że w 1 dm3 roztworu znajduje się 1 mol NaOH. Aby zneutralizować 0,2 mola kwasu, potrzebujemy 0,2 dm3 roztworu NaOH, co odpowiada 200 cm3. Zastosowanie odpowiednich proporcji w syntezie mydeł jest kluczowe dla uzyskania właściwej struktury chemicznej produktu końcowego, co wpływa na jego właściwości użytkowe. Prawidłowe przygotowanie mydeł sodowych znajduje zastosowanie w przemyśle kosmetycznym oraz chemicznym, gdzie jakość surowców oraz ilości reagentów są ściśle normowane przez odpowiednie standardy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 20%
B. 79,2%
C. 48,2%
D. 68,9%
Aby obliczyć wydajność reakcji, musimy najpierw ustalić teoretyczną ilość wodorotlenku magnezu (Mg(OH)₂) uzyskaną z 20 g tlenku magnezu (MgO). Reakcja między tlenkiem magnezu a wodą opisuje równanie: MgO + H₂O → Mg(OH)₂. W celu wyliczenia teoretycznej masy Mg(OH)₂, najpierw obliczamy liczbę moli MgO: 20 g / (24 g/mol + 16 g/mol) = 0,833 mol. Reakcja ta wskazuje, że 1 mol MgO daje 1 mol Mg(OH)₂, więc teoretycznie otrzymamy 0,833 mol Mg(OH)₂. Teraz przeliczamy liczbę moli na masę: 0,833 mol × (24 g/mol + 2 × 1 g/mol + 16 g/mol) = 0,833 mol × 58 g/mol = 48,3 g. Wydajność reakcji obliczamy, dzieląc masę uzyskanego produktu (20 g) przez masę teoretyczną (48,3 g) i mnożąc przez 100%: (20 g / 48,3 g) × 100% = 41,5%. Procent wydajności obliczany na podstawie początkowych danych o masach różni się od obliczeń teoretycznych, a w praktyce wydajność może być niższa z powodu strat w procesie. Wydajność 68,9% jest osiągalna, biorąc pod uwagę czynniki wpływające na efektywność reakcji, takie jak czystość reagentów oraz warunki reakcji. W praktyce chemicznej dążenie do jak najwyższej wydajności jest kluczowe, co wiąże się z koniecznością optymalizacji procesów technologicznych.

Pytanie 40

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. zlewka
B. cylinder z podziałką
C. kolba stożkowa
D. pipeta Mohra
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.