Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 maja 2025 18:34
  • Data zakończenia: 17 maja 2025 18:45

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. G9
B. E27
C. MR16
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 2

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 3

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania ciągłości połączeń w instalacji.
B. pomiaru parametrów oświetlenia.
C. lokalizacji przewodów w instalacji elektrycznej.
D. bezdotykowego pomiaru rezystancji przewodów.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 4

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 3 godziny
B. 1 godzinę
C. 4 godziny
D. 2 godziny
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 5

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wartości natężenia oświetlenia na stanowiskach pracy
B. wyboru i oznakowania przewodów
C. wyboru zabezpieczeń oraz urządzeń
D. rozmieszczenia tablic informacyjnych i ostrzegawczych
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 6

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Krzyżowy
B. Dwubiegunowy
C. Schodowy
D. Świecznikowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 7

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza imbusowego
B. Wkrętarki akumulatorowej z odpowiednim bitem
C. Klucza nasadowego
D. Wiertarki udarowej z wiertłem widiowym
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.

Pytanie 8

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TT
B. TN-S
C. TN-C
D. IT
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."

Pytanie 9

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 2 szt.
B. 6 szt.
C. 10 szt.
D. 12 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 10

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 A oraz napięcie znamionowe 40 V
B. 0,03 mA oraz znamionowy prąd ciągły 40 mA
C. 0,03 mA oraz napięcie znamionowe 40 V
D. 0,03 A oraz znamionowy prąd ciągły 40 A
Wielu użytkowników może pomylić wartości prądów oraz napięcia przy wyborze wyłączników różnicowoprądowych. Na przykład, odpowiedzi sugerujące wartość 0,03 mA są niepoprawne, ponieważ wyłączniki różnicowoprądowe działają na prądzie różnicowym wyrażanym w miliamperach, a ich wartość znamionowa wynosi zazwyczaj od 10 mA do 300 mA. Użycie jednostki mA zamiast A w kontekście prądu różnicowego może prowadzić do nieodpowiednich interpretacji, co w konsekwencji zagraża bezpieczeństwu. Ponadto, mylenie znamionowego prądu z napięciem znamionowym, jak w przypadku odpowiedzi, które wskazują na napięcie 40 V, jest również częstym błędem. Wyłącznik różnicowoprądowy powinien być dobierany w oparciu o parametry prądowe, a nie tylko napięciowe, które są istotne przy projektowaniu instalacji elektrycznych. Odpowiednie zrozumienie parametrów wyłączników oraz ich zastosowania w praktyce jest niezbędne dla zapewnienia maksymalnego poziomu bezpieczeństwa. Właściwy dobór urządzeń ochronnych zgodnie z normami oraz ich regularna kontrola są kluczowe dla działania instalacji elektrycznych i ochrony przed porażeniem prądem elektrycznym. Dlatego istotne jest, aby poświęcić czas na naukę oraz zrozumienie funkcji i zasad działania wyłączników różnicowoprądowych.

Pytanie 11

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie pracował w stanie jałowym
B. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
C. Silnik będzie zasilany prądem przeciwnym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 12

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
B. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 13

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Czujnik zaniku fazy
C. Odgromnik
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 14

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana jednej fazy z przewodem neutralnym
B. brak podłączenia dwóch faz
C. brak podłączenia jednej fazy
D. zamiana dwóch faz miejscami
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 15

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. podtynkowej.
B. natynkowej.
C. prowadzonej w tynku.
D. prefabrykowanej.
Wybór opcji dotyczącej instalacji natynkowej, prowadzonej w tynku lub prefabrykowanej może wynikać z błędnych założeń dotyczących charakterystyki tych typów instalacji. Instalacje natynkowe polegają na montażu przewodów na powierzchni ściany, co jest niezgodne z funkcją urządzenia przedstawionego na rysunku. Frezarka do rowków, jaką widać, służy do tworzenia bruzd, co jest typowe dla instalacji podtynkowej, a nie natynkowej. Wybór opcji prowadzonej w tynku także jest mylny, ponieważ odnosi się do sytuacji, gdzie kable są umieszczane w tynkach, ale nie w bruzdach, co również wymaga innego podejścia technologicznego. Prefabrykowane instalacje natomiast obejmują z góry przygotowane elementy, które są montowane w całości, co nie ma związku z używaniem narzędzi do frezowania. Kluczowym błędem myślowym jest zrozumienie, że każda z tych opcji ma inne zastosowania, a ich wybór oparty jest na konkretnych wymaganiach konstrukcyjnych. Zrozumienie różnic między tymi typami instalacji jest niezbędne do właściwego podejścia do prac elektrycznych i zapewnienia bezpieczeństwa oraz funkcjonalności w budownictwie.

Pytanie 16

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 17

Przewód oznaczony symbolem PEN to przewód

A. uziemiający
B. ochronny
C. wyrównawczy
D. ochronno-neutralny
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 18

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 1 000 V
B. 250 V
C. 500 V
D. 2 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 19

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
C. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
D. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 20

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 13 szt.
C. 3 szt.
D. 10 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 21

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję izolacji przewodów oraz rezystancję uziemienia
B. Rezystancję przewodów ochronnych i rezystancję uziemienia
C. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
D. Impedancję pętli zwarcia oraz pomiar prądu upływu
Rezystancja izolacji przewodów i rezystancja uziemienia, mimo że są ważnymi parametrami w analizie instalacji elektrycznych, nie są wystarczające do przeprowadzenia kompleksowego przeglądu w sieci TN-S. Zmierzona rezystancja izolacji informuje o stanie izolacji, ale nie dostarcza informacji o zabezpieczających mechanizmach w instalacji, które są kluczowe dla ochrony przed skutkami zwarcia. Ponadto, rezystancja uziemienia sama w sobie nie jest wystarczająca do zapewnienia bezpieczeństwa, ponieważ nie uwzględnia wymagań dotyczących szybkiego wyłączenia w przypadku awarii. Z kolei mierzona rezystancja przewodów ochronnych oraz rezystancja uziemienia, chociaż istotne, mogą prowadzić do mylnego wniosku o kompletnym bezpieczeństwie systemu, nie uwzględniając przy tym dynamiki systemu oraz potencjalnych zagrożeń związanych z zanikami uziemienia. Zastosowanie tylko pomiaru impedancji pętli zwarcia jest niewystarczające, ponieważ nie zapewnia pełnej oceny stanu instalacji, a brak pomiaru rezystancji izolacji może prowadzić do niedostrzegania uszkodzeń, które z czasem mogą stać się poważnym zagrożeniem. Z tego powodu, przeprowadzając przegląd instalacji elektrycznej, nie można pomijać żadnego z wymienionych parametrów, co jest zgodne z najlepszymi praktykami branżowymi i obowiązującymi normami.

Pytanie 22

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. urządzenia różnicowoprądowe ochronne
B. separację elektryczną
C. umiejscowienie poza zasięgiem dłoni
D. ogrodzenia oraz obudowy
Separacja elektryczna jest kluczowym środkiem ochrony przed dotykiem pośrednim, co oznacza, że ​​wszystkie elementy instalacji elektrycznej, które mogą mieć kontakt z użytkownikami, są oddzielone od przewodów pod napięciem. W praktyce oznacza to stosowanie transformatorów separacyjnych w obwodach niskonapięciowych oraz odpowiedniego projektowania instalacji, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Przykładem mogą być instalacje w obiektach medycznych, gdzie separacja elektryczna jest stosowana, aby zapewnić bezpieczeństwo pacjentów i personelu. Zgodnie z normą PN-EN 61140, separacja elektryczna jest jednym z podstawowych wymogów bezpieczeństwa, pozwalającym na zredukowanie ryzyka porażenia prądem w miejscach narażonych na dostęp osób. Warto również zaznaczyć, że separacja elektryczna może obejmować zastosowanie izolacji, dystansów oraz odpowiednich osłon, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 23

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Weryfikacja braku zwarć międzyzwojowych
B. Sprawdzenie kondycji wycinków komutatora
C. Pomiar rezystancji izolacji
D. Wyważanie
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 24

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DYc 750
B. DY 100
C. DYc 150
D. DY 700
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 25

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 2,5 kV
B. 6,0 kV
C. 4,0 kV
D. 1,5 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 26

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Sprawdzenie kierunku obrotów wału silnika
B. Mierzenie prędkości obrotowej
C. Weryfikacja symetrii napięcia zasilającego
D. Mierzenie temperatury stojana
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 27

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Tworzy nieruchome, stałe pole magnetyczne
B. Redukuje hałas podczas eksploatacji
C. Generuje moment magnetyczny o stałym kierunku
D. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 28

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω

A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Przerwa w uzwojeniu fazy V
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 29

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do transformatorów
B. Do wzmacniaczy maszynowych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do prądnic tachometrycznych
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.

Pytanie 30

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. cęgi do zdejmowania izolacji oraz wkrętak
C. prasę hydrauliczną
D. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 31

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 4 mm2
B. 2,5 mm2
C. 10 mm2
D. 1,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 32

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. jednotorowy bez styku kontrolnego
C. jednotorowy ze stykiem kontrolnym
D. trójtorowy ze stykiem kontrolnym
Wybór przekaźnika jednostorowego, niezależnie od tego, czy ma on styk sterujący, czy nie, jest niewłaściwy w kontekście zabezpieczania silnika trójfazowego. Przekaźnik jednostorowy monitoruje tylko jedną fazę, co nie zapewnia pełnej ochrony w przypadku przeciążenia, które może wystąpić w którejkolwiek z pozostałych faz. Silniki trójfazowe są zaprojektowane do pracy równomiernie w trzech fazach, dlatego ich zabezpieczenie wymaga kompleksowego podejścia. Zastosowanie przekaźnika trójtorowego jest kluczowe, ponieważ pozwala na równoczesne monitorowanie prądów w każdej fazie, co umożliwia szybkie wykrycie anomalii. W przypadku przekaźnika trójtorowego bez styku sterującego, brak integracji z systemami automatyki może prowadzić do opóźnień w reakcji na przeciążenie, co zwiększa ryzyko uszkodzenia silnika. Z kolei jednostorowy przekaźnik ze stykami sterującymi, mimo że może wydawać się użyteczny, również nie spełnia wymagań w kontekście monitorowania całego układu zasilania. W praktyce, profesjonalne podejście do zabezpieczeń wymaga zastosowania przekaźnika trójfazowego, który zapewnia nie tylko ochronę, ale i możliwość integracji z nowoczesnymi systemami zarządzania energetycznego.

Pytanie 33

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. upływ prądu
C. przeciążenie
D. przepięcie
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 34

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/300 V
B. 300/500 V
C. 100/100 V
D. 450/750 V
Izolacja przewodów w sieciach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i efektywność systemów zasilających. Wybór niewłaściwego napięcia znamionowego może prowadzić do poważnych konsekwencji, takich jak uszkodzenie przewodów, ryzyko porażenia prądem, a nawet pożarów. Odpowiedzi takie jak 300/300 V, 100/100 V czy 450/750 V mogą wydawać się atrakcyjne, jednak każda z nich ma swoje ograniczenia i nie spełnia wymagań dla instalacji niskonapięciowych. Na przykład, napięcie 300/300 V jest zbyt niskie w kontekście zastosowań niskonapięciowych, co może prowadzić do uszkodzenia izolacji w przypadku wystąpienia zwarcia. Natomiast 100/100 V jest zdecydowanie niewystarczające dla standardowych instalacji trójfazowych. Z kolei 450/750 V, mimo że może wyglądać na odpowiednie, jest zbyt wysokie dla nominalnych wartości napięcia 230/400 V, co może prowadzić do nieoptymalnego doboru komponentów w instalacji. Dlatego kluczowe jest stosowanie przewodów o odpowiednich dla danego zastosowania parametrach, jak 300/500 V, co zapewnia bezpieczeństwo oraz efektywność działania całego systemu elektrycznego. Zrozumienie norm i standardów, takich jak PN-EN 60228, jest niezbędne dla inżynierów i techników zajmujących się projektowaniem oraz instalowaniem systemów elektrycznych.

Pytanie 35

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Wykonując kontrolne doziemienie
B. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
C. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
D. Naciskając przycisk "TEST"
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 36

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Transformator bezpieczeństwa
B. Przekładnik prądowy
C. Transformator separacyjny
D. Przetwornicę napięcia
Przetwornica napięcia, transformator bezpieczeństwa oraz transformator separacyjny to urządzenia, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do pomiaru mocy czynnej w pośrednich układach pomiarowych. Przetwornice napięcia służą do zmiany poziomu napięcia w instalacjach elektrycznych, co jest istotne w kontekście zasilania różnorodnych urządzeń, ale nie pełnią roli w bezpośrednim pomiarze mocy. Z kolei transformatory bezpieczeństwa, które mają na celu zabezpieczenie osób przed porażeniem prądem, również nie są odpowiednie do zastosowań pomiarowych, ponieważ ich główną funkcją jest izolacja oraz obniżanie napięcia do bezpiecznego poziomu. Transformator separacyjny, używany w systemach elektronicznych dla ochrony przed zakłóceniami oraz dla zapewnienia bezpieczeństwa, nie dostarcza odpowiednich danych pomiarowych niezbędnych do analizy mocy czynnej. Typowym błędem myślowym jest utożsamianie tych urządzeń z funkcją pomiarową, podczas gdy ich zastosowania są zupełnie inne i nie spełniają wymaganych standardów pomiarowych, takich jak precyzja oraz odpowiednie przekształcenie sygnałów pomiarowych. W kontekście norm, ważne jest przestrzeganie standardów dotyczących pomiarów elektrycznych, aby zapewnić rzetelne i dokładne wyniki analizy energetycznej.

Pytanie 37

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,7 A
B. 11,1 A
C. 10,5 A
D. 12,2 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 38

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 5-10 krotności prądu znamionowego
B. 10-20 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 39

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Wyłącznik
B. Odłącznik
C. Rozłącznik
D. Stycznik
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 40

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Czasu działania wyłącznika RCD
B. Rezystancji izolacji
C. Prądu zadziałania wyłącznika RCD
D. Rezystancji uziemienia
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.