Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 31 maja 2025 17:04
  • Data zakończenia: 31 maja 2025 17:11

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W regionalnej części zbioru geodezyjnego i kartograficznego przechowywane są mapy topograficzne w skali

A. 1 : 10 000
B. 1 : 500 000
C. 1 : 300 000
D. 1 : 20 000
Odpowiedź 1: 1 : 10 000 jest poprawna, gdyż w wojewódzkiej części zasobu geodezyjnego i kartograficznego gromadzone są przede wszystkim mapy topograficzne w tej skali. Mapy w skali 1 : 10 000 są szczegółowymi przedstawieniami terenu, co pozwala na precyzyjne odwzorowanie obiektów oraz ich wzajemnych relacji. Tego typu mapy są wykorzystywane w planowaniu przestrzennym, urbanistyce oraz w działalności inwestycyjnej, gdzie niezbędna jest dokładna wiedza o infrastrukturze oraz ukształtowaniu terenu. W polskim prawodawstwie oraz normach geodezyjnych, takich jak „Rozporządzenie w sprawie szczegółowych zasad i trybu prowadzenia państwowego zasobu geodezyjnego i kartograficznego”, jasno określono, że skala 1 : 10 000 jest standardem, który pozwala na efektywne zarządzanie danymi geodezyjnymi. Dodatkowo, mapy te są kluczowe w sytuacjach kryzysowych, takich jak planowanie akcji ratunkowych czy zarządzanie katastrofami naturalnymi, dzięki czemu można szybko ocenić sytuację i podjąć odpowiednie działania.

Pytanie 2

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Niwelatora i łaty
B. Teodolitu i tyczki
C. Dalmierza i łaty
D. Taśmy i tyczki
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 3

Który z poniższych instrumentów geodezyjnych służy do pomiaru kątów poziomych i pionowych?

A. Inklinometr
B. Niwelator
C. Teodolit
D. Tachimetr
Teodolit to jedno z podstawowych narzędzi używanych w geodezji do pomiaru kątów poziomych i pionowych. Jest niezwykle precyzyjnym instrumentem, który pozwala na dokładne określenie kierunków i kątów w terenie. Dzięki swojej konstrukcji, teodolit umożliwia wykonywanie pomiarów z bardzo dużą dokładnością, co jest kluczowe w wielu pracach inżynieryjnych. W praktyce, teodolit jest często używany podczas prac związanych z wytyczaniem tras drogowych, budową mostów czy konstrukcją budynków, gdzie precyzyjne pomiary są niezbędne dla prawidłowego przebiegu całego procesu budowlanego. Warto również wspomnieć, że teodolit może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak niwelatory czy tachimetry, co rozszerza jego możliwości pomiarowe. Z mojego doświadczenia wynika, że znajomość obsługi teodolitu jest nieodzowną umiejętnością każdego geodety i inżyniera budownictwa, ponieważ pozwala na skuteczne i efektywne przeprowadzenie wielu kluczowych operacji pomiarowych.

Pytanie 4

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. brązowym
B. czerwonym
C. czarnym
D. żółtym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 5

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch pozycjach lunety?

A. Kolidacja
B. Inklinacja
C. Libella rurkowa
D. Położenie zera
W przypadku błędu instrumentalnego związanego z miejscem zera, kolimacją oraz inklinacją, pomiar kątów w dwóch położeniach lunety może skutecznie zredukować te błędy. Miejsce zera odnosi się do punktu, w którym teodolit wskazuje zero na skali — jeśli miejsce to jest źle ustawione, można to skorygować przez zmianę ustawienia lunety. Przykładem może być dostosowanie poziomu instrumentu, aby wskazania były zgodne z rzeczywistością. Kolimacja dotyczy poprawności ustawienia osi optycznej lunety w kierunku obiektu. Pomiar kątów z dwóch różnych pozycji pozwala na zniwelowanie błędów związanych z niewłaściwą kolimacją poprzez porównanie wyników z dwóch pomiarów. Inklinacja, czyli kąt nachylenia teodolitu, również może być korygowana przez wykonanie dwóch pomiarów w różnych położeniach, co pozwala na zidentyfikowanie i skorygowanie ewentualnych odchyleń. Powszechnym błędem jest założenie, że wszystkie błędy teodolitu można wyeliminować poprzez pomiar w dwóch położeniach lunety, co prowadzi do nieprawidłowych wniosków. W praktyce, aby uzyskać dokładne wyniki, konieczne jest kompleksowe podejście do kalibracji i regularne sprawdzanie wszystkich aspektów instrumentalnych teodolitu przed wykonaniem pomiarów.

Pytanie 6

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. odwrotnie proporcjonalne do różnic wysokości ciągów
B. wprost proporcjonalne do długości ciągów
C. wprost proporcjonalne do różnic wysokości ciągów
D. odwrotnie proporcjonalne do długości ciągów
W pomiarach niwelacyjnych wagi przyjmowane są odwrotnie proporcjonalnie do długości ciągów, co oznacza, że im dłuższy jest ciąg niwelacyjny, tym mniejsza waga przypisywana jest jego wartości. Jest to zgodne z zasadą, że dłuższe ciągi mogą wprowadzać większe błędy pomiarowe, przez co ich wpływ na wyniki pomiarów powinien być odpowiednio zredukowany. Przykładowo, w standardach branżowych, takich jak normy ISO dotyczące geodezji, uwzględnia się, że długość ciągu ma kluczowe znaczenie dla dokładności pomiaru. Z tego względu, podczas precyzyjnych pomiarów niwelacyjnych, stosuje się odpowiednią korekcję, aby zminimalizować wpływ długości ciągu na wynik. W praktyce oznacza to, że w sytuacjach, gdy mamy do czynienia z różnymi długościami ciągów, wagi dla krótko i długościowych odcinków powinny być starannie obliczone, aby zachować wysoką dokładność całego procesu niwelacyjnego, co jest kluczowe w projektowaniu infrastruktury, budownictwie czy w geodezji.

Pytanie 7

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 400 m
B. 600 m
C. 500 m
D. 300 m
Długość 500 m to świetny wybór. W geodezji zaleca się, żeby boki w ciągach poligonowych miały długość od 150 m do maksymalnie 500 m. Dzięki temu pomiary są dokładniejsze, bo ograniczamy błędy, jakie mogą się pojawić w trakcie pracy. Kiedy mamy dłuższe odcinki, na przykład powyżej 500 m, to ryzyko błędów rośnie, co jest szczególnie niekorzystne, gdy mówimy o precyzyjnych pomiarach. Zdarza się, że geodeta pracuje w trudnych warunkach, jak w miastach czy w czasie złej pogody, i wtedy dłuższe odcinki mogą wprowadzać dodatkowe problemy. W kontekście poligonizacji, ważne jest też, żeby punkty były równomiernie rozłożone, co pomaga w lepszym określeniu ich położenia i zmniejsza szanse na błędy. Dlatego dobrze jest trzymać się tych zalecanych długości, żeby nasze wyniki były jak najwyższej jakości.

Pytanie 8

Jakie jest przybliżone znaczenie błędu względnego dla odcinka o długości 500,00 m, który został zmierzony z błędem średnim ±10 cm?

A. 1/5000
B. 1/2000
C. 1/500
D. 1/1000
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia definicji błędu względnego oraz sposobu jego obliczania. Przykładem są ułamki 1/1000 i 1/2000, które mogą wydawać się uzasadnione, jednak nie uwzględniają rzeczywistego stosunku błędu do wartości pomiaru. W przypadku błędu bezwzględnego 10 cm w odniesieniu do długości 500 m, błędy te sugerują, że niektórzy mogą mylić jednostki miary lub nieprawidłowo interpretować pojęcie błędu względnego jako małego udziału w dłuższym odcinku. Pamiętaj, że błąd względny informuje nas o tym, jak znaczący jest błąd pomiarowy w stosunku do całkowitych wymiarów obiektu. Kolejną typową pomyłką jest mylenie błędu względnego z wartością bezwzględną; błąd bezwzględny to po prostu wartość błędu, natomiast błąd względny to jego stosunek do całkowitych wymiarów. Odpowiedzi takie jak 1/500 mogą się wydawać realne, jednak nie uwzględniają rzeczywistego wpływu błędu na całkowitą długość. Przy analizowaniu wyników pomiarów warto stosować standardy metrologiczne, które pomogą w wyciąganiu poprawnych wniosków oraz w ocenie dokładności i precyzji narzędzi pomiarowych.

Pytanie 9

Jakim symbolem oznaczane są rury kanalizacyjne sanitarne na mapach zasadniczych?

A. ks
B. kd
C. ko
D. kp
Odpowiedź "ks" jest poprawna, ponieważ w systemach oznaczeń stosowanych na mapach zasadniczych przewody kanalizacyjne sanitarne są właśnie oznaczane tym symbolem. Oznaczenie to jest zgodne z obowiązującymi normami, które zapewniają jednolitość w interpretacji danych na mapach. W praktyce, wiedza na temat symboli wykorzystywanych do oznaczania różnych rodzajów przewodów jest kluczowa dla inżynierów budowlanych, architektów oraz projektantów instalacji sanitarnych, ponieważ pozwala na prawidłowe planowanie i wykonawstwo. Właściwe oznaczenie kanałów sanitarnych ma również znaczenie w kontekście późniejszego serwisowania i konserwacji systemów odwadniających budynków, co jest normą w dobrych praktykach budowlanych. Na przykład, w przypadku awarii lub potrzeby modernizacji, zrozumienie systemu oznaczeń pozwala na szybszą lokalizację i identyfikację poszczególnych elementów instalacji, co znacząco przyspiesza czas reakcji i zmniejsza koszty napraw. Ponadto, znajomość obowiązujących standardów, takich jak PN-EN 12056 dotyczących systemów odprowadzania wód, podkreśla wagę poprawnego stosowania symboliki na mapach zasadniczych, co jest niezbędne do zapewnienia bezpieczeństwa i funkcjonalności infrastruktury sanitarnej.

Pytanie 10

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Nanośnika biegunowego
B. Koordynatografu
C. Współrzędnika
D. Nanośnika prostokątnego
Koordynatograf to kluczowe narzędzie wykorzystywane w procesie opracowywania map analogowych, które pozwala na precyzyjne nanoszenie ramki sekcyjnej oraz siatki kwadratów. Jego konstrukcja umożliwia bardzo dokładne określenie współrzędnych punktów na mapie, co jest niezbędne w geodezji oraz kartografii. Koordynatograf działa poprzez system krzyżujących się linii, które są dostosowywane do odpowiednich jednostek miar. Dzięki temu użytkownik może precyzyjnie umiejscawiać elementy mapy w odpowiednich miejscach, co wpływa na dokładność i jakość końcowego produktu. Przykładem zastosowania koordynatografu może być opracowywanie planów zagospodarowania przestrzennego, gdzie każdy detal musi być dokładnie odwzorowany. W praktyce, wykorzystując koordynatograf, można zapewnić zgodność z międzynarodowymi standardami kartograficznymi, co jest niezwykle istotne w profesjonalnych pracach związanych z tworzeniem map.

Pytanie 11

Azymut węzłowy został obliczony na podstawie 4 ciągów poligonowych, w których zarejestrowano:
− ciąg nr I - 5 kątów,
− ciąg nr II - 4 kąty,
− ciąg nr III - 3 kąty,
− ciąg nr IV - 2 kąty.
Który z ciągów ma największą wagę?

A. Ciąg IV
B. Ciąg III
C. Ciąg I
D. Ciąg II
Ciąg IV ma największą wagę, ponieważ zawiera najmniejszą liczbę pomierzonych kątów, co czyni go mniej obciążonym błędami pomiarowymi. W praktyce, im mniejsza ilość kątów w ciągu, tym większa jego waga, ponieważ zyskuje on na precyzji i wiarygodności w kontekście obliczeń azymutów. Ważenie ciągów kątowych opiera się na zasadzie, że każdy pomiar kątowy wprowadza potencjalny błąd, a im więcej pomiarów, tym suma błędów może być większa. Dlatego w geodezji i kartografii, stosując metody takie jak metoda najmniejszych kwadratów, preferuje się mniejsze ciągi pomiarowe dla uzyskania bardziej stabilnych i dokładnych wyników. Ponadto, w kontekście azymutów węzłowych, kluczowe jest także zrozumienie, że każdy pojedynczy kąt ma swoje znaczenie w rozrachunkach, a więc mniejsza ilość pomiarów w ciągu IV wpływa na jego większą wagę w całym procesie wyznaczania azymutów. Takie podejście jest zgodne z normami i dobrymi praktykami w dziedzinie geodezji.

Pytanie 12

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. brązowym
B. szarym
C. żółtym
D. czarnym
Wybór kolorów czarnego, szarego czy żółtego do przedstawiania naturalnych form rzeźby terenu nie jest zgodny z przyjętymi standardami kartograficznymi. Czarne barwy na mapie są zazwyczaj zarezerwowane dla elementów sztucznych, takich jak drogi, budynki czy granice administracyjne. Użycie czerni do reprezentacji rzeźby terenu może prowadzić do nieporozumień w interpretacji mapy, gdyż może sugerować znacznie bardziej płaskie lub zabudowane obszary. Podobnie, kolor szary, choć czasem stosowany do przedstawiania cieni lub obiektów nieczytelnych, nie nadaje się do rzeźby terenu, gdyż może wprowadzać w błąd, sugerując, że dany teren jest mniej istotny lub nieaktywny geologicznie. Żółty kolor z kolei jest często używany do oznaczania obszarów rolniczych lub pustynnych, co również nie jest odpowiednie dla przedstawienia form rzeźby terenu. Błędne przypisanie kolorów do form terenu na mapach może prowadzić do poważnych konsekwencji w analizach geograficznych czy przy planowaniu przestrzennym, dlatego ważne jest, aby stosować odpowiednią kolorystykę zgodną z uznanymi konwencjami i praktykami w kartografii.

Pytanie 13

Która z poniższych aktywności nie wchodzi w zakres działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Rejestrowanie dokumentów przyjętych do zasobu geodezyjnego
B. Przyjmowanie oraz rejestrowanie zgłoszeń prac geodezyjnych i kartograficznych
C. Realizacja pomiarów w celu ustalenia współrzędnych oraz wysokości punktów osnowy
D. Wydawanie instrukcji do przeprowadzenia zgłoszonych prac
Nieprawidłowa odpowiedź może wynikać z niepełnego zrozumienia zakresu działań Powiatowego Ośrodka Dokumentacji Geodezyjnej i Kartograficznej. Wydawanie wytycznych do wykonania zgłoszonych robót oraz przyjmowanie i ewidencjonowanie zgłoszeń robót geodezyjnych i kartograficznych są fundamentalnymi obowiązkami PODGiK. Te działania obejmują nadzór nad pracami geodezyjnymi i zapewnienie ich zgodności z obowiązującymi przepisami oraz standardami jakości. Ponadto ewidencjonowanie dokumentów przyjętych do zasobu geodezyjnego jest kluczowe dla przechowywania oraz udostępniania danych, co jest niezbędne dla wszelkich działań związanych z zarządzaniem przestrzenią. W złożonym procesie zarządzania danymi geodezyjnymi istotne jest nie tylko ich zbieranie, ale także weryfikacja, archiwizacja i udostępnianie interesariuszom. Brak zrozumienia podziału ról pomiędzy różnymi jednostkami geodezyjnymi może prowadzić do błędnych wniosków co do zakresu odpowiedzialności poszczególnych instytucji. Zrozumienie tego podziału jest kluczowe w kontekście współpracy z innymi jednostkami oraz w realizacji zadań związanych z planowaniem przestrzennym i inwestycjami budowlanymi. To także pokazuje, jak ważne jest przestrzeganie procedur administracyjnych oraz inwestowanie w szkolenia, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 14

Który z poniższych dokumentów jest wymagany przy wykonywaniu inwentaryzacji powykonawczej budowli?

A. Projekt budowlany
B. Instrukcja obsługi tachimetru
C. Mapa topograficzna
D. Mapa zasadnicza
Pozostałe dokumenty wymienione w pytaniu, choć mogą być przydatne w różnych etapach pracy geodezyjnej, nie są kluczowe dla samej inwentaryzacji powykonawczej budowli. Mapa zasadnicza jest używana przede wszystkim do celów ogólnego planowania przestrzennego oraz jako podstawa do tworzenia różnego rodzaju planów miejscowych. Zawiera ona informacje o sieciach uzbrojenia terenu, granicach działek czy ukształtowaniu terenu, ale nie dostarcza szczegółowych danych na temat samej budowli, które są niezbędne do przeprowadzenia inwentaryzacji powykonawczej. Mapa topograficzna natomiast, jest bardziej szczegółowa i obejmuje większe obszary, ale jej głównym celem jest odwzorowanie ukształtowania terenu oraz elementów krajobrazu, co nie jest bezpośrednio związane z dokumentacją budowlaną konkretnej budowli. Instrukcja obsługi tachimetru, choć istotna z punktu widzenia samego procesu pomiarowego, nie odnosi się do dokumentacji budowlanej ani do wymogów formalnych związanych z inwentaryzacją powykonawczą. Jest to raczej techniczny dokument pomocniczy, który zapewnia poprawne użytkowanie sprzętu pomiarowego, ale nie wpływa bezpośrednio na zgodność budowli z projektem budowlanym. W kontekście inwentaryzacji powykonawczej, kluczowe jest porównanie rzeczywistego stanu budowli z zapisami w projekcie budowlanym, co czyni ten dokument niezbędnym, podczas gdy inne mogą być jedynie wspomagające.

Pytanie 15

Zastosowanie metody niwelacji służy do pomiaru oraz zagęszczenia osnowy wysokościowej?

A. reperów
B. barometrycznej
C. profilów
D. powierzchniowej
Wybór odpowiedzi niebędącej reperami prowadzi do nieporozumienia w zakresie metod pomiaru wysokości. Odpowiedzi, takie jak "profilów", "powierzchniowej" oraz "barometrycznej", nie są odpowiednie w kontekście konkretnych zastosowań niwelacji. Metoda "profilów" odnosi się do pomiarów, które mogą być wykorzystane do analizy różnic wysokości wzdłuż określonej trasy, ale nie stanowi standardowej metody tworzenia osnowy wysokościowej. W kontekście niwelacji, punkty profilowe są bardziej użyteczne do obserwacji gradientów terenu, a nie do tworzenia systematycznej sieci wysokości. Metoda "powierzchniowa" może sugerować pomiary na powierzchni terenu, ale nie odnosi się bezpośrednio do precyzyjnych pomiarów wysokości wymaganych w geodezji. Z kolei "metoda barometryczna" polega na pomiarze ciśnienia atmosferycznego w celu oszacowania wysokości, co jest mniej dokładne niż niwelacja oparta na reperach. Typowym błędem myślowym jest przypuszczenie, że każda technika pomiarowa związana z wysokością jest równoważna z niwelacją; w rzeczywistości jednak, każde podejście ma swoje zastosowania i ograniczenia. Precyzyjne pomiary wysokości są kluczowe dla działań inżynieryjnych i geodezyjnych, dlatego stosowanie odpowiedniej metody, zgodnej z obowiązującymi standardami, jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 16

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412

A. +56 mm
B. -56 mm
C. -5,6 mm
D. +5,6 mm
Odpowiedź -5,6 mm jest rzeczywiście trafna, bo dokładnie pokazuje, że punkt nr 3 przesunął się w dół o 5,6 mm. To dość istotne w geodezji i inżynierii, bo takie pomiary mówią nam, czy konstrukcje są stabilne i czy coś się zmienia w terenie. Żeby obliczyć to przemieszczenie, porównujemy pomiary z początku i po zmianach. W tym wypadku, pierwotna wartość punktu nr 3 została zmniejszona o 5,6 mm. To przydaje się w praktyce, na przykład przy analizie osiadań budynków, bo musimy wiedzieć, czy się nie zapadają. W branży używa się różnych metod, jak tachimetria czy GNSS, żeby mieć pewność co do dokładności danych o przemieszczeniach. Przepisy, takie jak Eurokod 7, wymagają regularnego sprawdzania tych wartości, by zapewnić bezpieczeństwo naszych budowli.

Pytanie 17

Punkt, w którym niweleta styka się z powierzchnią terenu, nazywany jest punktem

A. zmiany kierunku trasy
B. zerowym robót ziemnych
C. charakterystycznym
D. hektometrowym
Wybór odpowiedzi dotyczącej załamania trasy, charakterystycznego punktu czy hektometrowego punktu wskazuje na pewne nieporozumienia w zakresie terminologii używanej w budownictwie. Załamanie trasy dotyczy zmiany kierunku w projekcie drogowym, a nie miejsca przecięcia niwelet z terenem. Odpowiedzi te mogą prowadzić do nieprecyzyjnych interpretacji związanych z projektowaniem dróg, co ma istotne znaczenie dla bezpieczeństwa ruchu. Charakterystyczny punkt odnosi się raczej do miejsca, które ma szczególne znaczenie w kontekście nawigacji czy orientacji w terenie, a nie do technicznych aspektów robót ziemnych. Hektometrowy punkt z kolei jest jednostką miary, która odnosi się do odległości, a nie do wysokości, co również nie ma zastosowania w kontekście przecinania niwelet z terenem. Typowe błędy w myśleniu dotyczą założenia, że te terminy są ze sobą powiązane w kontekście robót ziemnych, co jest błędne. Zrozumienie różnicy pomiędzy tymi pojęciami jest kluczowe dla efektywnego planowania i realizacji projektów budowlanych oraz inżynieryjnych. Ignorowanie poprawnej terminologii może prowadzić do poważnych problemów w fazie realizacji projektu, co podkreśla znaczenie precyzyjnego posługiwania się terminami w branży budowlanej.

Pytanie 18

Wyznacz wysokość reperu końcowego HK, jeśli wysokość reperu początkowego wynosi HP = 325,000 m, różnica wysokości na badanym odcinku wynosi AhP-K = 2500 mm, a poprawka ma wartość v∆h = -10 mm?

A. HK = 327,490 m
B. HK = 327,510 m
C. HK = 322,510 m
D. HK = 322,490 m
Aby obliczyć wysokość reperu końcowego HK, zaczynamy od wysokości reperu początkowego HP, która wynosi 325,000 m. Następnie dodajemy różnicę wysokości mierzonego odcinka, która wynosi AhP-K = 2500 mm, co przekłada się na 2,500 m. Ważnym krokiem jest uwzględnienie poprawki v∆h = -10 mm, co oznacza, że musimy odjąć tę wartość od uzyskanego wyniku. Zatem, obliczenia wyglądają następująco: HK = HP + AhP-K + v∆h = 325,000 m + 2,500 m - 0,010 m = 327,490 m. To podejście jest zgodne z praktykami w geodezji, w których dokładność pomiarów jest kluczowa. Wysokość reperów jest istotna w budownictwie i inżynierii lądowej, gdzie precyzyjne ustalanie poziomów jest niezbędne dla bezpieczeństwa i funkcjonalności budowli. Rekomenduje się regularne stosowanie takich obliczeń w praktyce inżynieryjnej, aby zapewnić zgodność z normami i standardami branżowymi.

Pytanie 19

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 5 punktów
B. 4 punkty
C. 2 punkty
D. 3 punkty
Wybranie innej liczby punktów może się brać z tego, że nie do końca rozumiesz, jak działa interpolacja warstwicowa. Często myśli się, że liczbę punktów liczy się tylko na podstawie zaokrągleń albo prostych różnic w wysokości, co sprawia, że liczba punktów jest zaniżona. Jak się stosuje złe metody obliczeń, na przykład ignorując cięcie warstwicowe, to wychodzą błędne wyniki. W geodezji i inżynierii lądowej bardzo ważne jest, żeby dokładnie ustalić pomiary, bo jeśli zaniżysz liczbę punktów, to potem mogą być poważne błędy w analizach i projektowaniu. Ustalając wysokości warstwic, zawsze musisz mieć na uwadze różnicę wysokości i wybrane cięcie. Pamiętaj, że pomiar powinien być zgodny z branżowymi standardami, takimi jak normy ISO czy lokalne przepisy geodezyjne. To wszystko przekłada się na jakość wyników, co jest kluczowe w planowaniu przestrzennym.

Pytanie 20

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 400,0 cm2
B. 0,4 cm2
C. 40,0 cm2
D. 4,0 cm2
Istnieje wiele nieporozumień związanych z obliczaniem powierzchni w kontekście skalowanych map, które prowadzą do nieprawidłowych odpowiedzi. Często mylnie zakłada się, że powierzchnia w skali odpowiada prostemu przeliczeniu długości, co prowadzi do błędnych wyników. Na przykład, odpowiedzi wskazujące na 0,4 cm² lub 40,0 cm² wynikają z błędnego zrozumienia zależności między jednostkami miary w różnych skalach. Zamiast przeliczać długość boku działki na odpowiednią długość na mapie, niektórzy mogą błędnie pomnożyć długość boku przez 1:500, co odbiera im właściwy kontekst jednostek. Ponadto, odpowiedź 400,0 cm² sugeruje niepoprawne podniesienie długości boku do kwadratu bez uwzględnienia skali, co jest fundamentalnym błędem w obliczeniach. Kluczowe jest zrozumienie, że skala mapy nie tylko zmienia jednostki długości, ale także wpływa na sposób obliczania powierzchni. Dlatego, aby prawidłowo ocenić powierzchnię działki w kontekście mapy, należy najpierw dokonać właściwego przeliczenia wymiarów, co jest zgodne z najlepszymi praktykami w dziedzinie geodezji i kartografii.

Pytanie 21

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. średnicę przewodu.
B. rysunek instalacji wewnętrznej w budynku.
C. materiał, z którego wykonano przewód.
D. kąt nachylenia przewodu.
Szkic polowy inwentaryzacji powykonawczej przyłącza kanalizacyjnego powinien zawierać kilka istotnych informacji, które są kluczowe dla sprawnego działania całego systemu. Średnica przewodu to jedna z tych najważniejszych rzeczy, bo to ona decyduje o tym, ile ścieków może przejść przez instalację. Według norm, średnica rury musi być dobrana do tego, ile ścieków będzie odprowadzane oraz do specyfiki budynku. Na przykład, w domach mieszkalnych zazwyczaj używa się rur o średnicy 100 mm, co powinno wystarczyć dla typowego gospodarstwa domowego. Warto to rozumieć, szczególnie przy planowaniu przyszłych prac budowlanych czy modernizacji, bo źle dobrana średnica może spowodować zatory i inne problemy w systemie. A znajomość średnicy pomoże też w odpowiednim doborze materiałów i nasadek do przewodów – to ważne, żeby wszystko było zgodne ze standardami jakości. Z moich doświadczeń wynika, że błędne określenie średnicy może prowadzić do poważnych awarii, co z kolei zwiększa koszty późniejszych napraw.

Pytanie 22

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z ewidencji gruntów oraz budynków
B. z urzędu wojewódzkiego
C. z państwowego zasobu geodezyjnego i kartograficznego
D. z urzędu miasta
Wybór danych z ewidencji gruntów i budynków, urzędu wojewódzkiego czy urzędu miasta jako źródła do aktualizacji mapy zasadniczej jest nieprawidłowy, ponieważ każda z tych instytucji dysponuje informacjami o innej specyfice, które nie są wystarczające do pełnej aktualizacji mapy zasadniczej. Ewidencja gruntów i budynków, chociaż zawiera informacje o statusie prawnym nieruchomości, nie dostarcza danych geodezyjnych dotyczących topografii terenu, co jest kluczowe dla mapy zasadniczej. Ponadto, dane uzyskiwane z urzędów wojewódzkich i miejskich mają często ograniczenia terytorialne i mogą nie być kompletnymi zbiorami danych geodezyjnych, przez co mogą prowadzić do nieścisłości i błędów w przedstawieniu rzeczywistości. Na przykład, urzędnicy miejscy mogą nie być na bieżąco z aktualizacją danych, co w praktyce prowadzi do sytuacji, gdzie mapa zasadnicza oparta na takich informacjach może być nieaktualna i nieodzwierciedlająca rzeczywistego stanu terenu. Ponadto, z punktu widzenia dobrych praktyk w geodezji, korzystanie z wyczerpującego i oficjalnego państwowego zasobu geodezyjnego i kartograficznego jest standardem, który zapewnia spójność i zgodność danych, co jest kluczowe dla planowania i zarządzania przestrzenią. Ignorowanie tego zasobu może skutkować poważnymi konsekwencjami w zakresie planowania przestrzennego oraz naruszeniem przepisów prawa geodezyjnego.

Pytanie 23

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Topograficznej
B. Sytuacyjnej
C. Ewidencyjnej
D. Wysokościowej
Właściwym miejscem do wykreślenia włązu studzienki kanalizacyjnej na mapie zasadniczej jest nakładka sytuacyjna. Nakładka ta ma za zadanie przedstawienie układu obiektów na danym terenie, w tym również infrastruktury technicznej, takiej jak sieci kanalizacyjne. W przypadku studzienek kanalizacyjnych, ich lokalizacja jest kluczowa, ponieważ wpływa na zarządzanie infrastrukturą miejską, w tym na prace konserwacyjne, inspekcję oraz ewentualne awarie. W praktyce, włązy studzienek powinny być oznaczone w sposób umożliwiający ich łatwe zlokalizowanie na mapach i w terenie, co jest zgodne z obowiązującymi normami, takimi jak PN-EN ISO 19110, dotycząca opisu obiektów geograficznych. Dzięki temu, pracownicy odpowiedzialni za obsługę sieci kanalizacyjnych będą mogli szybko reagować na potrzebne interwencje, co jest niezwykle istotne dla zapewnienia sprawności systemu odprowadzania ścieków i minimalizowania ryzyka związanego z ich awariami.

Pytanie 24

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. drewnianych, które nie są zamieszkałe
B. drewnianych przeznaczonych do wyburzenia
C. murowanych mieszkalnych w etapie projektowania
D. murowanych gospodarczych w stanie surowym
Odpowiedź 'murowanych mieszkalnych w fazie projektu' jest poprawna, ponieważ na szkicach polowych, które służą do przedstawiania istniejących warunków i elementów zagospodarowania przestrzennego, nie zaznacza się budynków, które są jedynie na etapie planowania. Budynki znajdujące się w fazie projektu nie mają jeszcze fizycznej obecności, co oznacza, że nie powinny być uwzględniane w dokumentacji przedstawiającej aktualny stan terenu. W praktyce architektonicznej i urbanistycznej, zgodnie z wytycznymi i standardami dotyczącymi prowadzenia dokumentacji, należy odzwierciedlać jedynie te obiekty, które są już zrealizowane lub w trakcie realizacji. Taka zasada pozwala na zachowanie przejrzystości i wiarygodności dokumentów, co jest kluczowe w procesie planowania przestrzennego oraz w analizach dotyczących zagospodarowania terenu. Przykładem zastosowania tej zasady jest przygotowanie raportów dotyczących uwarunkowań środowiskowych, gdzie zazwyczaj ujmuje się jedynie obiekty istniejące oraz infrastrukturę, a nie plany przyszłych inwestycji.

Pytanie 25

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości poziomej i kąta pionowego
B. odległości pionowej i kąta poziomego
C. odległości pionowej i kąta pionowego
D. odległości poziomej i kąta poziomego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 26

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Trygonometryczna
B. Geometryczna
C. Reperów
D. Punktów rozproszonych
Niwelacja geometryczna jest metodą, która polega na bezpośrednim pomiarze różnic wysokości pomiędzy punktami za pomocą poziomicy i łaty. W przeciwieństwie do niwelacji trygonometrycznej, która wykorzystuje kąt i dystans do obliczeń, niwelacja geometryczna nie opiera się na zasadach trygonometrii, co może ograniczać jej zastosowanie w terenie o złożonej topografii. W przypadku niwelacji punktów rozproszonych, chodzi o pomiar różnic wysokości z wykorzystaniem pomiarów wykonanych w różnych punktach, ale bez wyraźnego odniesienia do kątów lub odległości, co nie jest zgodne z definicją metody trygonometrycznej. Repery to stałe punkty odniesienia, które są wykorzystywane w różnych metodach niwelacji jako bazowe poziomy, ale same w sobie nie definiują metody pomiaru. Typowe błędy w myśleniu o tych metodach mogą obejmować mylenie ich celów i zastosowań. Warto zauważyć, że skuteczność każdej z tych metod zależy od kontekstu i wymagań pomiarowych, dlatego zrozumienie różnic między nimi jest kluczowe dla właściwego doboru techniki pomiarowej. W praktyce, zastosowanie nieodpowiedniej metody może prowadzić do błędnych wyników, co ma poważne konsekwencje w procesie projektowym i budowlanym. Dlatego, przy wyborze metody niwelacji, należy zawsze brać pod uwagę specyfikę danego projektu oraz wymagania dotyczące precyzji i dokładności pomiarów.

Pytanie 27

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Microstation
B. Mikro-Map
C. C-Geo
D. Winkalk
Wybór programów, które są niewłaściwe do wykreślania mapy zasadniczej, może wynikać z niepełnego zrozumienia ich funkcji i zastosowań. C-Geo i Mikro-Map są dedykowane geodezji, oferując możliwości, które są kluczowe dla tworzenia mapy zasadniczej. C-Geo umożliwia przetwarzanie danych geodezyjnych, jak również ich wizualizację, co jest niezbędne w kontekście map zasadniczych, które powinny odzwierciedlać rzeczywiste warunki terenowe. Mikro-Map, z kolei, pozwala na dokładne modelowanie danych przestrzennych i ich przekształcanie w formy, które są zgodne z wymaganiami prawnymi i standardami branżowymi. Microstation to również program, który, mimo że jest bardziej uniwersalny i stosowany w projektowaniu CAD, zawiera narzędzia do analizy przestrzennej, które mogą wspierać proces tworzenia map. Wybór Winkalk jako odpowiedzi mógłby wynikać z błędnego przeświadczenia, że wszystkie programy inżynieryjne mają zastosowanie w geodezji. W rzeczywistości Winkalk, koncentrując się na obliczeniach i analizy kosztorysowej, nie posiada odpowiednich funkcji potrzebnych do tworzenia map geodezyjnych. Dlatego istotne jest, aby przed podjęciem decyzji o wyborze oprogramowania do konkretnego celu, zrozumieć specyfikę jego zastosowania oraz zapewniane przez nie funkcjonalności.

Pytanie 28

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +20cc
B. +15cc
C. +5cc
D. +10cc
Rozważając inne możliwe odpowiedzi, warto zauważyć, że pomyłki w obliczeniach wartości błędu indeksu często wynikają z niezrozumienia relacji pomiędzy kątami pomierzonymi a teoretycznymi wartościami. Na przykład, wybór +10cc mógłby sugerować, że pomiar został zinterpretowany jako mniejszy błąd, co jest mylnym wnioskiem przy skomplikowanej analizie kątów. Inne opcje, takie jak +20cc, +15cc, także mogą wynikać z błędnego założenia o pełnym obrocie lunety. Zrozumienie podstaw metody pomiarowej oraz znajomość geodezyjnych norm i praktyk jest kluczowe. Kiedy luneta jest nieodpowiednio skalibrowana, pomiary mogą przynieść zafałszowane wyniki. Należy pamiętać, że błąd indeksu jest istotny dla precyzyjnych pomiarów w geodezji, a jego właściwe obliczenie ma kluczowe znaczenie dla dokładności całego procesu pomiarowego. Dlatego też każdy, kto pracuje z instrumentami geodezyjnymi, powinien być świadomy potencjalnych źródeł błędów oraz regularnie dokonywać kalibracji sprzętu.

Pytanie 29

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. dokumentacyjny
B. polowy
C. tyczenia
D. pomiarowy
Odpowiedź "dokumentacyjny" jest poprawna, ponieważ wyniki geodezyjnego opracowania projektu zagospodarowania działki są przede wszystkim poddawane formalnej dokumentacji, która stanowi podstawę do dalszych działań projektowych i administracyjnych. Dokument ten zawiera szczegółowe informacje na temat lokalizacji, wymiarów, granic działki oraz wszelkich istotnych danych geodezyjnych, które są niezbędne do uzyskania decyzji administracyjnych oraz do realizacji inwestycji. Przykładowo, w przypadku projektowania budynku, dokumentacyjny szkic geodezyjny jest często wymagany przy składaniu wniosków o pozwolenie na budowę, co podkreśla jego kluczowe znaczenie w procesie inwestycyjnym. Ponadto, zgodnie z polskimi normami geodezyjnymi, taki dokument musi być wykonany zgodnie z określonymi standardami, co zapewnia jego wiarygodność i użyteczność w przyszłych etapach realizacji projektu.

Pytanie 30

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. U
B. US
C. MW
D. ZP
Wprowadzenie w błąd przez wybór innego symbolu może mieć poważne konsekwencje dla planowania przestrzennego. Symbol U oznacza tereny usługowe, co nie precyzuje rodzaju usług, które mogą być tam świadczone; to może prowadzić do niejasności w kontekście działalności sportowej, która wymaga specyficznych warunków. Z kolei symbol MW oznacza tereny zabudowy mieszkaniowej wielorodzinnej, co jest absolutnie niezgodne z przeznaczeniem obszarów rekreacyjnych. Tereny te powinny być dedykowane dla aktywności fizycznej i rekreacji, a nie dla budownictwa mieszkaniowego, co mogłoby negatywnie wpłynąć na jakość życia mieszkańców. Symbol ZP, który oznacza tereny zieleni publicznej, również nie oddaje pełnej specyfiki obiektów sportowych, które są bardziej złożone niż sama zieleń. Wybór nieodpowiednich symboli może prowadzić do nieprawidłowego zagospodarowania przestrzeni, co w praktyce skutkuje brakiem odpowiednich obiektów sportowych i rekreacyjnych w danym regionie. Warto pamiętać, że każdy symbol w planie zagospodarowania przestrzennego ma swoje konkretne znaczenie i przeznaczenie, dlatego kluczowe jest zrozumienie ich funkcji oraz trzymanie się uznanych standardów i norm. Ignorowanie tych zasad może skutkować nieefektywnym wykorzystaniem przestrzeni i frustracją społeczności lokalnych, które oczekują dostępu do profesjonalnych obiektów sportowych.

Pytanie 31

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 10 mm2
B. 50 mm2
C. 25 mm2
D. 5 mm2
Aby obliczyć pole powierzchni działki na mapie w innej skali, należy najpierw zrozumieć, jak zmienia się pole w zależności od skali. W przypadku mapy w skali 1:500, pole powierzchni wynosi 4,00 cm². Przeliczając to pole na mm², otrzymujemy 400 mm² (ponieważ 1 cm² to 100 mm²). Gdy zmieniamy skalę na 1:2000, wartość skali zmienia się w stosunku do oryginalnej. W przypadku skali 1:2000, rzeczywista powierzchnia działki jest czterokrotnie większa, co oznacza, że powiększa się stosunek powierzchni w skali kwadratowej: (2000/500)² = 16. Dlatego, aby obliczyć pole powierzchni w nowej skali, dzielimy oryginalne pole powierzchni przez 16, co daje 400 mm² / 16 = 25 mm². To obliczenie jest kluczowe w planowaniu przestrzennym oraz w inżynierii, gdzie precyzyjne pomiary i ich przeliczenia są niezbędne do dokładnych analiz i projektów.

Pytanie 32

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. kontrolne
B. wiążące
C. odniesienia
D. kontrolowane
Odpowiedź 'kontrolowane' jest poprawna, ponieważ punkty kontrolowane to specyficzne punkty umieszczane na monitorowanym obiekcie, które służą do obserwacji i analizy zmian w ich położeniu. Używane są w różnych dziedzinach, takich jak inżynieria, geodezja czy monitorowanie konstrukcji, aby ocenić deformacje, ruchy czy inne zmiany w czasie. Przykładowo, w budownictwie punkty kontrolowane mogą być wykorzystane do monitorowania osiadania fundamentów budynku po jego wybudowaniu. Zastosowanie takich punktów jest zgodne z najlepszymi praktykami branżowymi, takimi jak standardy geodezyjne, które sugerują regularne pomiary oraz dokumentację wyników, co ułatwia analizę zmian oraz identyfikację ewentualnych problemów w konstrukcji. W kontekście systemów monitorowania, punkty kontrolowane pozwalają na automatyzację procesów i poprawiają dokładność pomiarów poprzez zastosowanie technologii takich jak GPS czy skanowanie laserowe, które mogą być zintegrowane z systemami zarządzania obiektami.

Pytanie 33

Który z podanych rodzajów pomiarów powinien być użyty do określenia lokalizacji punktów kolejowej osnowy poziomej podstawowej, korzystając z globalnych systemów nawigacji satelitarnej (GNSS)?

A. Statyczny pomiar GPS
B. "Stop-and-go"
C. RTK GPS
D. Pomiary w czasie rzeczywistym DGPS
Statyczny pomiar GPS jest uważany za najlepszą metodę wyznaczania położenia punktów kolejowej osnowy poziomej podstawowej przy użyciu globalnych systemów nawigacji satelitarnej (GNSS). W tym podejściu odbiorniki GPS są pozostawione w jednym miejscu przez dłuższy czas, co pozwala na zebranie danych z satelitów przez wiele epok pomiarowych. Dzięki temu można uzyskać bardzo wysoką precyzję pomiaru, rzędu kilku centymetrów lub nawet milimetrów. Taki styl pomiaru jest szczególnie stosowany w geodezji i inżynierii lądowej, gdzie wymagana jest dokładność danych na potrzeby projektowania, budowy i utrzymania infrastruktury. Przykładem zastosowania statycznych pomiarów GPS jest wyznaczanie punktów osnowy geodezyjnej, co jest kluczowe dla prawidłowego lokalizowania obiektów budowlanych oraz dla prowadzenia dalszych pomiarów i analiz. Ponadto, metody statyczne są zgodne z międzynarodowymi standardami, takimi jak te ustanowione przez Międzynarodową Unię Geodezyjną (FIG), co podkreśla ich uznanie w branży.

Pytanie 34

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 76,04 m
B. 64,94 m
C. 6,49 m
D. 7,60 m
Wybór niewłaściwych odpowiedzi może być skutkiem nieporozumień dotyczących podstawowych zasad trygonometrii oraz geodezji. Przy obliczaniu przyrostów współrzędnych Y, kluczowe jest zrozumienie, że przyrost Y można uzyskać jedynie poprzez zastosowanie funkcji sinus kąta azymutalnego. Wiele osób może błędnie pomyśleć, że przyrosty współrzędnych są proporcjonalne do wartości cosinusa, co prowadzi do błędnych rezultatów, takich jak 6,49 m lub 7,60 m. W rzeczywistości wartość cosinusa jest używana do obliczeń dotyczących przyrostów współrzędnych X, a nie Y. Typowym błędem jest także pomijanie kontekstu geometrycznego, co prowadzi do nielogicznych wyników, jak 64,94 m. Ponadto, niektórzy mogą nie uwzględniać, że sinus reprezentuje odwrotną stronę w trójkącie prostokątnym w odniesieniu do kąta, co skutkuje mylnymi interpretacjami długości przyrostów. W praktyce, zrozumienie tych podstawowych koncepcji jest kluczowe, aby uniknąć błędów w obliczeniach, które mogą mieć konsekwencje w rzeczywistych projektach inżynieryjnych i geodezyjnych, gdzie precyzyjne dane są niezbędne dla bezpieczeństwa i dokładności realizowanych działań.

Pytanie 35

Jakie kryterium musi zostać zrealizowane dla poprawek po wyrównaniu zmierzonych wartości o różnej dokładności, przy założeniu, że v to poprawka, a p to waga zmierzonej wartości?

A. [pv] = min
B. [pvv] = max
C. [pvv] = min
D. [pv] = max
Wybór odpowiedzi [pv] = min. sugeruje zrozumienie pojęcia wag pomiarowych, jednak jest to nieprawidłowe podejście. W kontekście wyrównania pomiarów, minimalizacja wartości wag pomiarowych prowadziłaby do zniekształcenia rzeczywistego obrazu danych, co jest niepożądane. Waga pomiaru (p) odnosi się do poziomu zaufania do danego pomiaru, a nie do jego wartości. W przypadku gdy różne pomiary mają różne stopnie dokładności, ich wpływ na wyniki powinien być uwzględniony w sposób, który odzwierciedla rzeczywistą precyzję tych pomiarów. Zastosowanie zasady minimum dla wag pomiarowych mogłoby prowadzić do nadmiernej redukcji wpływu wartości bardziej wiarygodnych, co jest sprzeczne z zasadami statystyki oraz analizą błędów. Wartości [pvv] = max. oraz [pv] = max. również są mylące. Maksymalizacja wag pomiarowych nie jest zgodna z potrzebą otrzymania najbardziej trafnych i precyzyjnych wyników. Dlatego kluczowym elementem jest zrozumienie, że minimalizowanie błędów wymaga zastosowania odpowiednich poprawek, a nie minimalizacji wag, co jest fundamentem dla każdego analityka danych oraz specjalisty zajmującego się pomiarami, który dąży do uzyskania rzetelnych wyników w swojej pracy.

Pytanie 36

Za zbieranie, zarządzanie i kontrolowanie przyjmowanych dokumentów do centralnego zasobu geodezyjnego i kartograficznego oraz udostępnianie jego informacji odpowiedzialny jest

A. Główny Geodeta Kraju
B. starosta
C. wojewódzki inspektor nadzoru geodezyjnego i kartograficznego
D. marszałek województwa
Wybór starosty jako organu odpowiedzialnego za gromadzenie i kontrolę zasobów geodezyjnych jest wynikiem nieporozumienia dotyczącego podziału kompetencji w polskim systemie administracyjnym. Starosta rzeczywiście pełni ważną rolę w zarządzaniu lokalnymi zasobami geodezyjnymi, jednak jego zadania są ograniczone do obszaru powiatu i nie obejmują centralnego zasobu geodezyjnego, który zarządzany jest na poziomie krajowym. Marszałek województwa również nie ma kompetencji w tym zakresie, jego odpowiedzialność dotyczy przede wszystkim strategii rozwoju regionów i koordynacji działań na poziomie wojewódzkim. Wojewódzki inspektor nadzoru geodezyjnego i kartograficznego ma z kolei za zadanie kontrolowanie działalności geodezyjnej na poziomie województwa, co również nie obejmuje zarządzania centralnymi zasobami. Warto zrozumieć, że każdy z wymienionych organów pełni specyficzne funkcje i nie można mylić ich kompetencji. Błędne zrozumienie podziału zadań i zakresu odpowiedzialności między różnymi szczeblami administracji może prowadzić do nieprawidłowego postrzegania roli Głównego Geodety Kraju oraz wpływać na efektywność działań w zakresie geodezji i kartografii.

Pytanie 37

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 227g12c35cc
B. 127g12c35cc
C. 27g12c35cc
D. 527g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 38

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta poziomego i odległości skośnej
B. kąta pionowego i odległości skośnej
C. kąta poziomego i odległości poziomej
D. kąta pionowego i odległości poziomej
Wybór kąta poziomego oraz odległości poziomej podczas pomiaru narożnika ogrodzenia metodą biegunową jest zgodny z praktycznymi zasadami geodezji. Obserwacja kąta poziomego pozwala na precyzyjne określenie kierunku, w którym znajduje się punkt, co jest kluczowe dla określenia granic działek i lokalizacji obiektów. Z kolei pomiar odległości poziomej jest istotny, ponieważ pozwala na dokładne wyznaczenie dystansu pomiędzy punktami w poziomie, co ma bezpośrednie zastosowanie w geodezyjnych mapach i planach. Zastosowanie tej metody jest szczególnie ważne w przypadku działek o nieregularnym kształcie, gdzie dokładność pomiarów wpływa na późniejsze decyzje dotyczące zagospodarowania przestrzennego. Warto również zauważyć, że zgodnie z normami ISO oraz krajowymi standardami geodezyjnymi, wykorzystanie pomiarów poziomych jest preferowane w wielu przypadkach, co podkreśla ich znaczenie w praktyce geodezyjnej.

Pytanie 39

Do I grupy charakterystycznych detali terenowych, które można jednoznacznie zidentyfikować w terenie i które przejawiają długotrwałą stabilność, zalicza się między innymi

A. budynek szkoły
B. wał przeciwpowodziowy
C. boisko sportowe
D. jezioro o naturalnej linii brzegowej
Budynek szkoły jest przykładem obiektu, który można jednoznacznie zidentyfikować w terenie i który zachowuje długookresową niezmienność. W kontekście analizy terenowej, grupy szczegółów terenowych mogą obejmować obiekty stałe, które mają znaczenie dla planowania przestrzennego i zarządzania infrastrukturą. Budynki publiczne, takie jak szkoły, są zazwyczaj zarejestrowane w systemach GIS (Geographic Information Systems) oraz w dokumentacji urbanistycznej, co pozwala na ich skuteczną lokalizację i analizę w kontekście urbanistyki. Przykładowo, w procesie planowania przestrzennego, informacje o lokalizacji szkół są kluczowe dla ustalania stref oddziaływania, dostępności usług edukacyjnych oraz analizy ruchu uczniów. Dodatkowo, budynki takie jak szkoły są często objęte normami i regulacjami dotyczącymi bezpieczeństwa oraz dostępu, co podkreśla ich znaczenie jako stabilnych elementów infrastruktury społecznej.

Pytanie 40

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. bolec żelazny
B. palik drewniany
C. słup betonowy
D. słup granitowy
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.