Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 08:37
  • Data zakończenia: 3 kwietnia 2025 09:00

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką rolę odgrywa router w sieci komputerowej?

A. Konwertera danych cyfrowych
B. Węzła komunikacyjnego
C. Łącznika segmentów sieci
D. Konwertera danych analogowych
Router jest kluczowym elementem w sieci komputerowej, pełniącym funkcję węzła komunikacyjnego, co oznacza, że zarządza ruchem danych pomiędzy różnymi sieciami. Jego głównym zadaniem jest kierowanie pakietów danych do odpowiednich adresów, co zapewnia efektywną komunikację między urządzeniami znajdującymi się w różnych lokalizacjach. Przykładem zastosowania routera może być domowa sieć Wi-Fi, gdzie router łączy lokale urządzenia, takie jak komputery, telefony czy smart TV z Internetem. W dzisiejszym świecie, w którym komunikacja opiera się na protokołach takich jak TCP/IP, routery są niezbędne do prawidłowego przesyłania informacji. Dobry router powinien przestrzegać standardów takich jak RFC 791, dotyczącego protokołu IP, co zapewnia jego interoperacyjność z innymi urządzeniami. Dodatkowo, routery mogą oferować zaawansowane funkcje, takie jak NAT (Network Address Translation), co pozwala na oszczędne wykorzystanie adresów IP oraz zwiększa bezpieczeństwo sieci.

Pytanie 3

Którego typu środka gaśniczego nie należy używać do gaszenia ognia pochodzącego z urządzenia elektrycznego?

A. Halon.
B. Dwutlenku węgla.
C. Piany gaśniczej.
D. Proszku gaśniczego.
Piana gaśnicza nie powinna być stosowana do gaszenia pożarów urządzeń elektrycznych, ponieważ może prowadzić do przewodzenia prądu i stwarzać zagrożenie dla ratowników oraz osób znajdujących się w pobliżu. Piana gaśnicza jest skuteczna w przypadku pożarów materiałów stałych oraz cieczy palnych, jednak w przypadku pożarów sprzętu elektrycznego, zawsze należy wykorzystywać środki, które nie przewodzą prądu. Przykładem odpowiednich mediów gaśniczych są dwutlenek węgla oraz proszek gaśniczy, które nie tylko tłumią płomienie, ale także minimalizują ryzyko wybuchu elektrycznego. Zgodnie z normami branżowymi, takich jak NFPA 70E oraz IEC 60947-4-1, ważne jest, aby przy wyborze środka gaśniczego kierować się jego właściwościami izolacyjnymi oraz skutecznością w danym kontekście. Warto również szkolenia z zakresu ochrony przeciwpożarowej, aby zrozumieć różnice między środkami gaśniczymi i ich zastosowaniem w praktyce.

Pytanie 4

PAL B/G, PAL, SECAM, NTSC - jakie skróty dotyczą?

A. metod kodowania kolorów w sygnale telewizyjnym
B. metod kodowania sygnału AUDIO
C. nazwa obszarów w półprzewodnikach
D. nazwa szyn systemowych mikrokontrolera 8051
Skróty PAL, NTSC, SECAM i PAL B/G odnoszą się do standardów kodowania kolorów, które określają sposób przesyłania sygnału wizji w telewizji. Te standardy różnią się między sobą nie tylko w zakresie formatów obrazu, ale także w metodach modulacji i parametrach technicznych, co wpływa na jakość odbioru i kompatybilność między różnymi urządzeniami. Na przykład, NTSC jest używany głównie w Stanach Zjednoczonych i Japonii, gdzie sygnał telewizyjny jest przesyłany w formacie o 30 klatkach na sekundę. Z kolei PAL jest stosowany w Europie i wielu innych regionach, oferując 25 klatek na sekundę oraz wyższą jakość kolorów dzięki lepszemu rozwiązaniu problemu z synchronizacją. SECAM, który jest używany we Francji i niektórych krajach afrykańskich, różni się od PAL i NTSC zarówno w sposobie kodowania kolorów, jak i metodzie przesyłania sygnału. Znajomość tych standardów jest kluczowa w kontekście projektowania systemów audio-wideo oraz w rozwoju technologii telewizyjnych. Przykładowo, przy projektowaniu urządzeń do odbioru telewizji cyfrowej, inżynierowie muszą zadbać o kompatybilność z różnymi standardami, co bezpośrednio wpływa na jakość odbioru i zadowolenie użytkowników.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Czujnik typu PIR służy do wykrywania

A. wilgoci
B. ruchu
C. dymu
D. światła
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 9

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć podręczna cache procesora jest uszkodzona.
B. pamięć CMOS nie została ustawiona.
C. wystąpił problem z sumą kontrolną BIOS-u.
D. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaki standard kompresji audio jest stosowany w Polsce w dekoderach telewizji cyfrowej naziemnej DVB-T?

A. MPEG-2
B. MPEG-3
C. MPEG-1
D. MPEG-4
MPEG-4, znany też jako MPEG-4 Part 14, to standard kompresji audio i wideo, który wszedł w życie w latach 90. XX wieku. Stał się popularny, bo świetnie radzi sobie z kompresją danych, a jednocześnie oferuje wysoką jakość obrazu i dźwięku. Jeśli chodzi o telewizję cyfrową naziemną DVB-T, to MPEG-4 jest szeroko stosowany do nadawania sygnałów, bo pozwala zmniejszyć wymagania dotyczące przepustowości, a jakość odbioru pozostaje wysoka. W Polsce mamy przykład z platformą DVB-T, która dzięki niemu umożliwia odbiór kanałów telewizyjnych w HD. Co ciekawe, MPEG-4 wspiera również interaktywne treści i różne aplikacje multimedialne, przez co jest bardzo wszechstronny w nadawaniu. A to, że jest zgodny z nowoczesnymi urządzeniami, tylko zwiększa jego popularność i dostępność dla użytkowników. Warto też dodać, że MPEG-4 to rozwinięcie wcześniejszych standardów, jak MPEG-1 i MPEG-2, oferując lepszą kompresję i dostosowanie do nowoczesnych technologii, takich jak streaming i wideo na żądanie.

Pytanie 14

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Czarnego
B. Brązowego
C. Szarego
D. Niebieskiego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 15

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Miernika sygnału
B. Kątomierza
C. Kompasu
D. Multimetru
Multimetr nie jest przyrządem stosowanym do ustawiania anten satelitarnych, ponieważ jego główne funkcje dotyczą pomiaru napięcia, prądu oraz rezystancji. W kontekście instalacji anten satelitarnych kluczowe jest precyzyjne ustawienie kierunku anteny, aby maksymalizować odbiór sygnału. W tym celu wykorzystuje się inne urządzenia, takie jak mierniki sygnału, które umożliwiają bezpośredni pomiar jakości i siły sygnału satelitarnego. Dodatkowo, kompas może być pomocny przy orientacji anteny względem południa, co jest istotne przy ustawianiu anteny na odpowiednią satelitę. Kątomierz z kolei może służyć do precyzyjnego ustawienia kąta nachylenia anteny. W praktyce instalatorzy anten korzystają z tych narzędzi, aby zapewnić optymalne warunki odbioru, co jest kluczowe dla uzyskania wysokiej jakości sygnału telewizyjnego. Dobrą praktyką jest również stosowanie odpowiednich standardów instalacji, takich jak zalecenia producentów anten, co pozwala na uzyskanie najlepszych rezultatów.

Pytanie 16

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. pęknięciu ścieżek łączących.
B. zimnych lub przegrzanych lutach.
C. braku kontaktu w złączach typu wysuwanego.
D. utracie z pamięci danych.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. mostek pomiarowy
B. wobulator i oscyloskop
C. miernik magnetoelektryczny
D. multimetr cyfrowy
Miernik magnetoelektryczny, mostek pomiarowy i multimetr cyfrowy to urządzenia, które mają swoje zastosowania w pomiarach elektrycznych, ale do strojenia toru pośredniej częstotliwości w radiu się nie nadają. Miernik magnetoelektryczny jest głównie do pomiaru prądu i napięcia, więc jest przydatny w prostych pomiarach, ale nie pokaże nam, co dzieje się z sygnałami częstotliwościowymi. Mostek pomiarowy przydaje się do sprawdzania impedancji, ale to też nie jest narzędzie do strojenia toru IF, gdzie kluczowa jest analiza dynamiki sygnału. Multimetr cyfrowy jest wszechstronny, ale robi tylko podstawowe pomiary elektryczne, jak napięcie, prąd, czy rezystancja, a to za mało, by dokładnie dostroić parametry częstotliwościowe odbiornika. Więc pomysł, że te urządzenia mogą być zastępstwem dla wobulatora czy oscyloskopu, wynika z braku zrozumienia różnicy pomiędzy pomiarami statycznymi a analizą sygnałów w czasie rzeczywistym. Efektywne strojenie toru wymaga specjalistycznych narzędzi, które potrafią jednocześnie generować sygnały i je wizualizować, co jest kluczowe dla dobrego odbioru radiowego.

Pytanie 19

Luty miękkie obejmują luty

A. mosiężne
B. cynowo-ołowiowe i bezołowiowe
C. srebrne
D. miedziano-fosforowe
Odpowiedź dotycząca lutów cynowo-ołowiowych i bezołowiowych jako luty miękkie jest prawidłowa, ponieważ te materiały są powszechnie stosowane w procesach lutowania ze względu na swoje właściwości. Luty cynowo-ołowiowe zawierają stop cynku i ołowiu, co sprawia, że mają niską temperaturę topnienia, co czyni je łatwymi w użyciu w elektronice, gdzie precyzyjne połączenia są kluczowe. Luty bezołowiowe, stosowane w odpowiedzi na regulacje dotyczące ograniczenia użycia ołowiu, zyskały popularność w branży elektronicznej, a ich zastosowanie jest zgodne z normami RoHS. W praktyce, proces lutowania tymi materiałami wymaga odpowiednich technik, aby zapewnić trwałość i elektryczną ciągłość połączeń. Dodatkowo, w ramach standardów IPC, określono wytyczne dotyczące stosowania lutów, co zabezpiecza jakość komponentów elektronicznych oraz ich odporność na czynniki zewnętrzne. Zrozumienie typów lutów i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w obszarze elektroniki.

Pytanie 20

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Enkoder
B. Dekoder
C. Transkoder
D. Koder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 21

W analizie parametrów anteny reflektometry używa się do pomiaru

A. impedancji na wejściu
B. rezystancji promieniującej
C. współczynnika odbicia
D. temperatury szumów
Mimo że wszystkie inne odpowiedzi odnoszą się do różnych aspektów parametrów antenowych, nie są one właściwe w kontekście pytania o reflektometry. Temperatura szumowa odnosi się do poziomu szumów w systemie i nie jest bezpośrednio związana z pomiarami antenowymi. Pomiar temperatury szumowej jest istotny w kontekście analizy wydajności systemów radiowych, ale nie jest głównym celem użycia reflektometrów. Impedancja wejściowa jest również istotnym parametrem, który określa, jak antena łączy się z resztą systemu, ale sama w sobie nie jest bezpośrednio mierzona za pomocą reflektometrów, a raczej jest to wynik analizy współczynnika odbicia. Natomiast rezystancja promieniowania odnosi się do efektywności anteny w promieniowaniu energii radiowej, ale również nie jest główną wielkością mierzoną przez reflektometry. Typowe błędy w interpretacji tych parametrów wynikają z mylenia ich zastosowania lub z niepełnego zrozumienia, jaką rolę odgrywają w ocenie efektywności anteny. Dobrą praktyką jest używanie reflektometrów do bezpośredniego pomiaru współczynnika odbicia, aby uzyskać precyzyjne dane, które są kluczowe do dostosowania systemów antenowych dla uzyskania optymalnej wydajności.

Pytanie 22

Podczas konserwacji systemu telewizyjnego, oceniając jakość sygnału w gniazdku abonenckim, co należy zmierzyć?

A. MER i BER
B. moc
C. napięcie
D. prąd
Odpowiedź MER i BER jest prawidłowa, ponieważ są to kluczowe wskaźniki jakości sygnału w instalacjach telewizyjnych. MER (Modulation Error Ratio) oraz BER (Bit Error Rate) służą do oceny jakości sygnału cyfrowego. MER mierzy stosunek błędów modulacji do sygnału, a jego wysoka wartość wskazuje na dobrą jakość sygnału, co jest kluczowe dla prawidłowego odbioru sygnału telewizyjnego. Z kolei BER informuje nas o liczbie błędnych bitów w transmisji, co pozwala na ocenę stabilności i niezawodności połączenia. W praktyce, podczas konserwacji systemów telewizyjnych, technicy powinni używać dedykowanych mierników, które umożliwiają pomiar tych wartości. Przykładowo, w systemach DVB-T/T2, stosowanie wartości MER powyżej 30 dB jest zalecane dla zapewnienia wysokiej jakości odbioru. Dobre praktyki w tym zakresie obejmują również regularne sprawdzanie parametrów sygnału w różnych porach dnia, aby zidentyfikować potencjalne problemy związane z zakłóceniami w otoczeniu.

Pytanie 23

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. telewizyjnego
B. optycznego
C. radiowego
D. internetowego
TCP, czyli Transmission Control Protocol, to protokół komunikacyjny, który jest fundamentalnym elementem architektury Internetu. Jego główną rolą jest zapewnienie niezawodnego, uporządkowanego i kontrolowanego przesyłania danych pomiędzy urządzeniami w sieci. TCP działa na poziomie transportowym modelu OSI i jest szeroko stosowany w aplikacjach internetowych, takich jak przeglądarki internetowe, poczta elektroniczna czy protokoły transferu plików (FTP). Przykładowo, przy korzystaniu z przeglądarki internetowej, TCP zapewnia, że wszystkie pakiety danych są dostarczane w odpowiedniej kolejności oraz że żadne z nich nie zostaną utracone w trakcie transmisji. Dzięki mechanizmom takim jak retransmisja zgubionych pakietów oraz potwierdzenia odbioru, TCP jest standardem w wielu aplikacjach wymagających wysokiej niezawodności, co czyni go kluczowym w komunikacji internetowej. Zrozumienie działania TCP jest niezbędne dla każdego specjalisty w dziedzinie sieci komputerowych, ponieważ umożliwia to projektowanie i rozwiązywanie problemów związanych z transmisją danych w Internecie.

Pytanie 24

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav ~= Ifsm
B. Ifav = Ifsm
C. Ifav > Ifsm
D. Ifav < Ifsm
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 25

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. w płaszczu polietylenowym (PE)
B. w płaszczu PCV
C. z oplotem miedzianym
D. z linką nośną
Odpowiedź "w płaszczu polietylenowym (PE)" jest prawidłowa, ponieważ przewody tego typu charakteryzują się wysoką odpornością na działanie wilgoci oraz zmiennych temperatur. Polietylen jest materiałem, który nie tylko chroni przed wpływem wody, ale także wykazuje odporność na wiele chemikaliów, co czyni go idealnym rozwiązaniem w trudnych warunkach atmosferycznych. W instalacjach antenowych, gdzie przewody są narażone na bezpośredni kontakt z opadami deszczu, wilgocią oraz skrajnymi temperaturami, zastosowanie przewodów w płaszczu PE pozwala na zachowanie ich właściwości elektrycznych oraz mechanicznych przez długi czas. Przykładem zastosowania przewodów w płaszczu polietylenowym mogą być instalacje w obszarach przybrzeżnych, gdzie warunki atmosferyczne są szczególnie zmienne. Zgodnie z normami ochrony środowiska i najlepszymi praktykami branżowymi, wybór materiałów odpornych na czynniki zewnętrzne jest kluczowy dla trwałości i niezawodności systemów antenowych.

Pytanie 26

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. limiter
B. equalizer
C. zwrotnica głośnikowa
D. komparator głośnikowy
Zwrotnica głośnikowa jest kluczowym elementem systemów audio, odpowiedzialnym za rozdzielanie sygnałów audio na różne pasma częstotliwości. Działa na zasadzie filtracji, co pozwala na kierowanie tonów niskich, średnich i wysokich do odpowiednich głośników. Dzięki temu, subwoofer odbiera tylko dźwięki niskich częstotliwości, głośniki średniozakresowe zajmują się tonami średnimi, a tweeter obsługuje dźwięki wysokie. To rozdzielenie pozwala na uzyskanie lepszej jakości dźwięku oraz zwiększa efektywność poszczególnych głośników, co jest szczególnie istotne w profesjonalnych systemach nagłośnieniowych oraz hi-fi. Dobrze zaprojektowana zwrotnica minimalizuje zniekształcenia dźwięku oraz maksymalizuje wydajność głośników, co jest zgodne z branżowymi standardami audio. W praktyce, zwrotnice są często wykorzystywane w koncertach, w studiach nagraniowych oraz w domowych systemach audio, co świadczy o ich wszechstronności i niezbędności w dziedzinie dźwięku.

Pytanie 27

Która modulacja jest stosowana w zakresie fal długich?

A. Fazy
B. Częstotliwości
C. Amplitudy
D. Impulsowa
Modulacja amplitudy (AM) jest powszechnie stosowana w paśmie fal długich, głównie ze względu na jej zdolność do efektywnego przesyłania informacji na dużych odległościach. W modulacji amplitudy, amplituda fali nośnej jest zmieniana w zależności od sygnału informacyjnego, co sprawia, że AM jest odpowiednia do transmisji radiowych w warunkach, gdzie fale radiowe mogą być mocno zakłócane przez różne przeszkody. W praktyce, stacje radiowe nadające w paśmie fal długich wykorzystują modulację amplitudy, aby umożliwić odbiorcom słuchanie programów radiowych z dużą jakością dźwięku na dużych dystansach. Standardy takie jak CCIR 493-7 określają parametry techniczne dla transmisji AM w paśmie fal długich. Dodatkowo, modulacja amplitudy jest stosunkowo prosta do zrealizowania, co sprawia, że jest często wykorzystywana w aplikacjach komercyjnych i amatorskich.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
B. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
C. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
D. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 31

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dBµV
B. dB
C. dBmV
D. dBA
Stosunek poziomu sygnału do szumu (MER - Modulation Error Ratio) w instalacjach telewizyjnych określany jest w decybelach (dB), które stanowią jednostkę miary używaną do wyrażania stosunku dwóch wartości, w tym przypadku mocy sygnału do mocy szumu. Używanie dB jest standardem w telekomunikacji, ponieważ pozwala na wygodne porównywanie poziomów sygnału w różnych warunkach i systemach. Przykładowo, w instalacjach DVB-T (Digital Video Broadcasting - Terrestrial) poprawny MER jest kluczowy dla jakości odbioru sygnału - wartości powyżej 30 dB są zazwyczaj uznawane za satysfakcjonujące. W praktyce, aby osiągnąć odpowiednią jakość sygnału, technicy często korzystają z mierników sygnału, które wskazują wartości MER w dB, co umożliwia szybkie i efektywne diagnozowanie problemów z odbiorem. Dobre praktyki branżowe zalecają regularne monitorowanie tych wartości, co pozwala na wczesne wykrycie problemów z jakością sygnału i szumem, co jest kluczowe dla zapewnienia stabilnej i wysokiej jakości transmisji telewizyjnej.

Pytanie 32

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektromagnetyczne
B. dyspersja chromatyczna
C. pole elektrostatyczne
D. dyspersja międzymodowa
Dyspersja chromatyczna jest kluczowym zjawiskiem, które prowadzi do zniekształceń sygnału przesyłanego światłowodem jednomodowym. Polega ona na różnym czasie propagacji fal światła o różnych długościach, co skutkuje rozmyciem impulsów świetlnych w czasie. W praktyce, gdy sygnał świetlny przechodzi przez światłowód, różne długości fal mogą ulegać różnym opóźnieniom, co prowadzi do zniekształcenia informacji. W światłowodach jednomodowych, które używane są głównie w telekomunikacji, dyspersja chromatyczna jest szczególnie istotna, ponieważ wpływa na maksymalną odległość, na jaką można przesyłać sygnał bez regeneracji. Standardy, takie jak ITU-T G.652 dotyczące światłowodów, uwzględniają te zjawiska, co pozwala na optymalizację projektów sieciowych i zmniejszenie wpływu dyspersji na jakość sygnału. W praktyce, inżynierowie sieci często stosują techniki kompensacji dyspersji, aby zminimalizować jej wpływ, co jest kluczowe dla zapewnienia niezawodności i wydajności systemów optycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 100 kHz
C. 1 kHz
D. 0,1 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Czujnik, który składa się z elementu wrażliwego na drgania mechaniczne oraz obwodu elektronicznego, to czujnik

A. ruchu
B. wibracyjna
C. magnetyczna
D. zalania
Czujka wibracyjna jest specjalistycznym urządzeniem, które składa się z elementu czułego na drgania mechaniczne oraz układu elektronicznego, który przetwarza sygnały generowane przez te drgania. Działa na zasadzie detekcji wibracji, które mogą być spowodowane ruchem obiektów, uderzeniami lub innymi formami mechanicznych zakłóceń. Przykłady zastosowania czujek wibracyjnych obejmują systemy alarmowe, które monitorują potencjalne intruzje poprzez detekcję nieautoryzowanych drgań w oknach lub drzwiach. W przemyśle, czujki te są używane do monitorowania stanu maszyn i urządzeń, co pozwala na wczesne wykrywanie awarii lub nadmiernego zużycia. Zgodnie z branżowymi standardami, czujki wibracyjne powinny być instalowane w miejscach, gdzie ruch fizyczny może wskazywać na niepożądane zdarzenia, co zwiększa bezpieczeństwo obiektów. Dodatkowo, czujki te mogą być zintegrowane z systemami automatyki budynkowej, co umożliwia automatyczne reagowanie na wykryte drgania, np. poprzez uruchomienie alarmu lub zabezpieczeń.

Pytanie 38

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. galwaniczne oddzielenie obwodów elektronicznych
B. zwiększenie wydolności wyjściowej obwodu elektronicznego
C. dopasowanie impedancji obwodów elektronicznych
D. dopasowanie poziomów napięć między obwodami elektronicznymi
Głównym powodem, dla którego używamy optoizolacji w układach elektronicznych, jest to, żeby odseparować je galwanicznie. To naprawdę podnosi bezpieczeństwo i niezawodność naszych systemów. Optoizolatory, jak fotodiody czy fototranzystory, umożliwiają przesyłanie sygnałów bez fizycznego połączenia elektrycznego, co jest super praktyczne. Dzięki temu, różnice w napięciu i prądzie w poszczególnych układach mogą być skutecznie izolowane. Dobrym przykładem może być użycie optoizolacji w interfejsach między mikrokontrolerami a zewnętrznymi urządzeniami, na przykład przekaźnikami - one często działają na wyższych napięciach. Możemy też zauważyć, że normy, takie jak IEC 61131-2, mówią, że optoizolacja powinna być stosowana w systemach automatyki przemysłowej, żeby chronić przed przepięciami i minimalizować ryzyko uszkodzeń delikatnych podzespołów. A co najważniejsze, optoizolacja pomaga też wyeliminować pętlę masy, co chroni przed zakłóceniami i błędami w przesyłaniu sygnałów. Dlatego jest to naprawdę ważne przy projektowaniu niezawodnych układów elektronicznych.

Pytanie 39

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Uszkodzenie monitora
B. Awaria zasilacza zestawu wideodomofonowego
C. Usterka kamery bramofonu
D. Zniszczenie przewodu łączącego bramofon z monitorem
Awaria zasilacza zestawu wideodomofonowego nie może być przyczyną braku wizji, ponieważ dźwięk działa prawidłowo. W systemach wideodomofonowych zasilacz odpowiada za dostarczenie energii zarówno do kamery, jak i do monitora. Jeśli zasilacz jest sprawny, obie funkcje powinny działać poprawnie. W przypadku awarii zasilacza, zarówno obraz, jak i dźwięk przestałyby działać. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie zasilania w instalacjach wideodomofonowych, aby zapewnić ich niezawodność. Warto również wspomnieć, że w profesjonalnych instalacjach zaleca się stosowanie zasilaczy o odpowiedniej mocy, aby uniknąć problemów z funkcjonowaniem urządzeń, co jest zgodne z zaleceniami producentów i standardami branżowymi. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów oraz skuteczniejsze planowanie instalacji.

Pytanie 40

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Źródło prądowe oparte na tranzystorze bipolarnym
B. Wzmacniacz z tranzystorem bipolarnym w układzie OC
C. Wzmacniacz z tranzystorem bipolarnym w układzie OB
D. Ogranicznik prądowy zrealizowany w technologii bipolarnej
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.