Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 15 maja 2025 20:41
  • Data zakończenia: 15 maja 2025 20:59

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie sieciowe widnieje na ilustracji?

Ilustracja do pytania
A. Karta sieciowa bezprzewodowa
B. Modem USB
C. Moduł Bluetooth
D. Adapter IrDA
Adapter Bluetooth oraz adapter IrDA to urządzenia służące do bezprzewodowej komunikacji pomiędzy różnymi urządzeniami lecz działają na zupełnie innych zasadach niż modem USB. Adapter Bluetooth umożliwia łączenie się z urządzeniami w bliskiej odległości jak słuchawki czy klawiatury w oparciu o technologię radiową działającą w paśmie ISM 2,4 GHz. Jest znany z niskiego zużycia energii i krótkiego zasięgu co sprawia że nie nadaje się do przesyłania dużych ilości danych jak internet mobilny. Adapter IrDA natomiast wykorzystuje technologię podczerwieni do komunikacji na bardzo krótkie odległości co jest praktycznie przestarzałe w nowoczesnych zastosowaniach sieciowych. Karta sieciowa WiFi służy do łączenia się z lokalnymi sieciami bezprzewodowymi dzięki czemu umożliwia dostęp do internetu przez router WiFi. Chociaż zapewnia mobilność w obrębie sieci lokalnej nie korzysta z technologii mobilnych i nie posiada funkcji modemu co ogranicza jej zastosowanie w porównaniu do modemu USB. Wybór niewłaściwego urządzenia często wynika z mylenia różnych technologii bezprzewodowych i ich zastosowań co może prowadzić do nieoptymalnego wykorzystania sprzętu w określonych sytuacjach. Ważne jest aby zrozumieć specyfikę i przeznaczenie każdego typu urządzenia co pozwala lepiej dopasować je do indywidualnych potrzeb sieciowych szczególnie tam gdzie liczy się mobilność i dostępność do szerokopasmowego internetu mobilnego. Stąd kluczowe jest rozpoznawanie różnic pomiędzy technologiami i ich praktycznymi zastosowaniami w rzeczywistych scenariuszach użytkowania.

Pytanie 2

Napięcie dostarczane przez płytę główną dla pamięci typu SDRAM DDR3 może wynosić

A. 3,3 V
B. 2,5 V
C. 1,5 V
D. 1,2 V
Zasilanie pamięci SDRAM DDR3 nie może wynosić 3,3 V, 1,2 V ani 2,5 V z uwagi na szereg podstawowych różnic w konstrukcji i działaniu tych technologii. Pamięci DDR3 zostały zaprojektowane z myślą o efektywności energetycznej, stąd napięcie zasilania zostało obniżone do 1,5 V, co jest istotnym krokiem w kierunku zmniejszenia zużycia energii przez komponenty komputerowe. Napięcie 3,3 V jest typowe dla starszych standardów, takich jak SDR SDRAM lub DDR SDRAM, które nie są już powszechnie stosowane w nowoczesnych systemach. Pamięci z wyższym napięciem mogą prowadzić do większego wydzielania ciepła i mniejszej efektywności energetycznej, co jest niepożądane w dzisiejszych aplikacjach. Z drugiej strony, wartość 1,2 V odnosi się do pamięci DDR4, która jest nowszym standardem i zapewnia jeszcze większą efektywność energetyczną oraz wyższe prędkości transferu danych. Podobnie, napięcie 2,5 V jest związane z technologią DDR2, która również jest już przestarzała. W związku z tym, błędne podejście do napięcia zasilania pamięci DDR3 może prowadzić do nieodpowiedniej konfiguracji systemów, co w konsekwencji może skutkować niestabilnością lub uszkodzeniem podzespołów. Ważne jest, aby dostosować wybór pamięci do specyfikacji producenta płyty głównej oraz systemu, co jest kluczowym elementem w zapewnieniu optymalnej wydajności i niezawodności całego systemu komputerowego.

Pytanie 3

Symbol zaprezentowany powyżej, używany w dokumentacji technicznej, wskazuje na

Ilustracja do pytania
A. zielony punkt upoważniający do wniesienia opłaty pieniężnej na rzecz organizacji odzysku opakowań
B. brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych
C. wymóg selektywnej zbiórki sprzętu elektronicznego
D. konieczność utylizacji wszystkich elementów elektrycznych
Rozważając niepoprawne odpowiedzi, ważne jest zrozumienie ich podstawowych założeń i dlaczego mogą prowadzić do błędnych wniosków. Koncepcja konieczności utylizacji wszystkich elementów elektrycznych wydaje się intuicyjna, jednak nie jest zgodna z rzeczywistością prawną czy też praktykami branżowymi. Przepisy skupiają się nie tylko na utylizacji, ale przede wszystkim na recyklingu i ponownym użyciu wartościowych surowców. Z kolei brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych jako definicja tego symbolu jest błędnym uproszczeniem. Choć odpadów metalicznych rzeczywiście nie powinno się wyrzucać w sposób nieselektywny, to przekreślony kosz nie odnosi się bezpośrednio do tej kategorii odpadów. Natomiast zielony punkt upoważniający do wniesienia opłaty na rzecz organizacji odzysku opakowań to zupełnie inny symbol, który dotyczy systemu finansowania recyklingu materiałów opakowaniowych, a nie sprzętu elektronicznego. Tego rodzaju zrozumienie wskazuje na mylne utożsamienie różnych koncepcji zrównoważonego zarządzania odpadami. Ważne jest, aby jednoznacznie rozróżniać między nimi, szczególnie w kontekście regulacji takich jak dyrektywa WEEE, która skupia się na odpowiedzialnym zarządzaniu zużytym sprzętem elektronicznym przez wszystkich zainteresowanych uczestników rynku, od producentów po konsumentów.

Pytanie 4

Jakim portem domyślnie odbywa się przesyłanie poleceń (command) serwera FTP?

A. 21
B. 110
C. 25
D. 20
Port 21 jest domyślnym portem dla protokołu FTP (File Transfer Protocol), który jest standardem służącym do transferu plików w sieciach. Użycie portu 21 jako portu kontrolnego jest zgodne z ustaleniami IETF (Internet Engineering Task Force) i jest szeroko stosowane w branży IT. Na tym porcie klient FTP nawiązuje połączenie z serwerem, aby wysłać polecenia, takie jak logowanie czy przeglądanie folderów. Przykładowo, podczas korzystania z oprogramowania FTP, takiego jak FileZilla, wpisując adres serwera, automatycznie używa portu 21, chyba że użytkownik wskaże inny. To standardowe podejście zapewnia łatwość konfiguracji i zgodność z różnorodnymi serwerami FTP. Warto również zauważyć, że dla bezpieczniejszego transferu danych, można używać FTP Secure (FTPS) lub SSH File Transfer Protocol (SFTP), które zajmują inne porty, jednak dla klasycznego FTP port 21 pozostaje powszechnie uznawanym standardem.

Pytanie 5

Według KNR (katalogu nakładów rzeczowych) montaż 4-parowego modułu RJ45 oraz złącza krawędziowego to 0,07 r-g, natomiast montaż gniazd abonenckich natynkowych wynosi 0,30 r-g. Jak wysoki będzie koszt robocizny za zamontowanie 10 pojedynczych gniazd natynkowych z modułami RJ45, jeśli wynagrodzenie godzinowe montera-instalatora wynosi 20,00 zł?

A. 120,00 zł
B. 14,00 zł
C. 60,00 zł
D. 74,00 zł
W przypadku błędnych odpowiedzi, często pojawia się nieporozumienie związane z obliczeniami czasowymi i kosztami robocizny. Na przykład, jeśli ktoś obliczy koszt montażu gniazd bez uwzględnienia modułów RJ45, może dojść do wniosku, że koszt robocizny wynosi 60,00 zł, co jest błędne, ponieważ nie uwzględnia pełnego zakresu prac. Również rozważając montaż tylko modułów RJ45, można obliczyć koszt na 14,00 zł, co jest również niepoprawne w kontekście całego zadania. Kluczowym błędem w tych podejściach jest nieuwzględnianie wszystkich komponentów potrzebnych do wykonania instalacji. Dobrą praktyką jest szczegółowe rozplanowanie poszczególnych kroków montażowych oraz ich czasochłonności, co pozwala na dokładniejsze oszacowanie całkowitych kosztów. Często również występuje pomylenie jednostek roboczogodzin z jednostkami pieniężnymi, co prowadzi do błędnych wniosków co do kosztów. Obliczanie kosztów robocizny powinno zawsze obejmować pełny obraz prac, co w tym przypadku oznacza zarówno montaż gniazd, jak i modułów RJ45. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w branży instalacyjnej oraz dla skutecznego zarządzania projektami.

Pytanie 6

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pośrednictwem serwera drukarskiego w systemie operacyjnym Windows Server. Przysługuje im jedynie uprawnienie 'Zarządzanie dokumentami'. Co należy uczynić, aby rozwiązać przedstawiony problem?

A. Dla grupy Pracownicy należy wycofać uprawnienia 'Zarządzanie dokumentami'
B. Dla grupy Administratorzy należy wycofać uprawnienia 'Zarządzanie dokumentami'
C. Dla grupy Administratorzy należy wycofać uprawnienia 'Drukuj'
D. Dla grupy Pracownicy należy przyznać uprawnienia 'Drukuj'
Odpowiedź, która sugeruje nadanie grupie Pracownicy uprawnienia 'Drukuj', jest prawidłowa, ponieważ użytkownicy tej grupy muszą mieć odpowiednie uprawnienia, aby móc wykonywać operacje związane z drukowaniem dokumentów. W systemie Windows Server uprawnienia do drukowania są kluczowe dla poprawnego funkcjonowania serwera wydruku. Użytkownicy, którzy posiadają jedynie uprawnienia 'Zarządzanie dokumentami', mogą jedynie zarządzać zadaniami drukowania (takimi jak zatrzymywanie lub usuwanie dokumentów z kolejki drukowania), ale nie mają możliwości fizycznego wydruku. Aby umożliwić użytkownikom z grupy Pracownicy drukowanie, administrator musi dodać im uprawnienia 'Drukuj'. To podejście jest zgodne z najlepszymi praktykami zarządzania uprawnieniami w systemach operacyjnych, które zalecają przydzielanie minimalnych, ale wystarczających uprawnień dla użytkowników, co zwiększa bezpieczeństwo i kontrolę nad zasobami. Na przykład, w organizacjach, gdzie dostęp do drukarek jest ograniczony, uprawnienia te powinny być nadawane na poziomie grupy, aby uprościć proces zarządzania i audytu. Zastosowanie tego rozwiązania powinno poprawić efektywność pracy w biurze oraz zminimalizować problemy związane z niewłaściwym dostępem do zasobów wydruku.

Pytanie 7

Jaki rodzaj portu może być wykorzystany do podłączenia zewnętrznego dysku do laptopa?

A. LPT
B. USB
C. AGP
D. DMA
Odpowiedź USB jest prawidłowa, ponieważ port USB (Universal Serial Bus) jest standardem szeroko stosowanym do podłączania różnych urządzeń peryferyjnych, w tym dysków zewnętrznych, do komputerów i laptopów. Porty USB pozwalają na szybkie przesyłanie danych oraz zasilanie podłączonych urządzeń, co czyni je niezwykle praktycznymi w codziennym użytkowaniu. Standardy USB, takie jak USB 3.0 i USB 3.1, oferują prędkości transferu danych odpowiednio do 5 Gbps oraz 10 Gbps, co umożliwia efektywne przenoszenie dużych plików, na przykład filmów czy baz danych. Ponadto, porty USB są uniwersalne i obsługują wiele różnych urządzeń, co sprawia, że są one preferowanym wyborem dla użytkowników poszukujących łatwego i niezawodnego sposobu na podłączenie dysków zewnętrznych. Przykładem zastosowania portu USB może być podłączenie przenośnego dysku twardego do laptopa w celu wykonania kopii zapasowej danych lub przeniesienia plików między urządzeniami, co jest szczególnie ważne w kontekście bezpieczeństwa danych w pracy oraz w życiu prywatnym.

Pytanie 8

Na ilustracji zaprezentowane jest urządzenie, które to

Ilustracja do pytania
A. wtórnik.
B. bramka VoIP.
C. router.
D. koncentrator.
Router to zaawansowane urządzenie sieciowe pracujące w trzeciej warstwie modelu OSI. Jego główną funkcją jest kierowanie pakietów danych między różnymi sieciami co jest kluczowe dla połączeń internetowych. Routery mogą analizować adresy IP i podejmować decyzje o trasowaniu na podstawie informacji o stanie sieci co czyni je bardziej inteligentnymi niż koncentratory. Wtórnik natomiast to urządzenie stosowane w technice analogowej które wzmacnia sygnał wejściowy nie zmieniając jego fazy ani amplitudy. W kontekście sieci komputerowych wtórnik nie jest używany do przesyłania danych pomiędzy urządzeniami. Bramka VoIP to urządzenie lub oprogramowanie umożliwiające konwersję sygnałów głosowych na dane cyfrowe w celu przesyłania ich przez Internet. Bramka działa na wyższych warstwach modelu OSI i jest kluczowa dla technologii telefonii internetowej. Mylenie tych urządzeń wynika często z braku zrozumienia ich specyficznych funkcji oraz działania w różnych warstwach modelu OSI. Ważne jest aby odróżniać urządzenia na podstawie ich przeznaczenia oraz technologii które wspierają. Koncentrator działa na najniższej warstwie modelu OSI i nie analizuje przesyłanych danych co odróżnia go od bardziej zaawansowanych urządzeń jak routery czy bramki VoIP które realizują funkcje na wyższych poziomach sieciowych.

Pytanie 9

Urządzenie sieciowe, które łączy pięć komputerów w tej samej sieci, minimalizując ryzyko kolizji pakietów, to

A. ruter
B. most
C. koncentrator
D. przełącznik
Ruter (router) to urządzenie, które działa na warstwie trzeciej modelu OSI i jest odpowiedzialne za kierowanie ruchu między różnymi sieciami. Jego rola polega na analizowaniu adresów IP i podejmowaniu decyzji o tym, którędy dane powinny być przesyłane w obrębie większych sieci, takich jak Internet. W przypadku lokalnej sieci, ruter nie jest najlepszym rozwiązaniem do łączenia komputerów, ponieważ jego funkcje są bardziej związane z komunikacją między różnymi sieciami niż z zarządzaniem danymi w obrębie jednej sieci lokalnej. Most (bridge) jest urządzeniem, które łączy dwie lub więcej segmentów sieci, działając na warstwie drugiej modelu OSI. Mimo że most może redukować kolizje, to jego zdolności w zarządzaniu ruchem są ograniczone w porównaniu do przełącznika, który jest w stanie analizować i kierować pakiety do konkretnych urządzeń. Koncentrator (hub) to urządzenie, które działa na warstwie fizycznej i przesyła dane do wszystkich portów bez analizy, co prowadzi do licznych kolizji w sieci. Użytkownicy często mylą te urządzenia, nie zdając sobie sprawy, że przełącznik oferuje znacznie lepszą wydajność i możliwości zarządzania ruchem. Kluczowym błędem myślowym jest utożsamianie funkcji różnych urządzeń sieciowych bez zrozumienia ich specyfikacji i zastosowań, co może prowadzić do nieefektywnych rozwiązań w projektowaniu i zarządzaniu siecią.

Pytanie 10

Jakie zagrożenie nie jest eliminowane przez program firewall?

A. Ataki powodujące zwiększony ruch w sieci
B. Szpiegowanie oraz kradzież poufnych informacji użytkownika
C. Dostęp do systemu przez hakerów
D. Wirusy rozprzestrzeniające się za pomocą poczty e-mail
Wybór odpowiedzi dotyczącej wirusów rozprzestrzeniających się pocztą e-mail jako sytuacji, na którą firewall nie ma wpływu, jest zasłużony. Firewalle są narzędziami zabezpieczającymi sieci i urządzenia przed nieautoryzowanym dostępem oraz kontrolującymi przepływ danych w sieci, ale nie są projektowane do analizy i eliminacji złośliwego oprogramowania, które może być dostarczane przez e-maile. Wirusy, trojany i inne formy złośliwego oprogramowania często wykorzystują e-maile jako wektory ataku, co sprawia, że kluczowym zabezpieczeniem jest oprogramowanie antywirusowe oraz odpowiednia edukacja użytkowników. Przykłady skutecznych praktyk obejmują wdrażanie programów antywirusowych w celu skanowania załączników oraz korzystanie z filtrów spamowych. Z punktu widzenia standardów branżowych, takie działania są zgodne z zasadami bezpieczeństwa IT, które rekomendują wielowarstwowe podejście do ochrony danych.

Pytanie 11

W systemie Linux uruchomiono skrypt z czterema argumentami. Jak można uzyskać dostęp do listy wszystkich wartości w skrypcie?

A. $X
B. $all
C. $*
D. $@
Użycie $* w kontekście przekazywania argumentów w skryptach Bash nie jest optymalne. Choć $* pozwala na dostęp do wszystkich argumentów, łączy je w jeden ciąg bez uwzględniania spacji, co może prowadzić do poważnych błędów w sytuacjach, gdy argumenty zawierają spacje. Na przykład, wywołując skrypt z argumentami 'arg1', 'arg 2', $* wyprodukuje wynik traktujący wszystkie te argumenty jako jeden, co zniekształca ich rzeczywistą wartość i może prowadzić do nieprawidłowego działania skryptu. Ponadto, używanie $X jest zupełnie niepoprawne, ponieważ nie jest to standardowy zmienny w Bash, a zastosowanie $all jest również nietypowe i niepoprawne. Te niepoprawne podejścia wynikają często z nieporozumienia na temat sposobu, w jaki Bash interpretuje argumenty. Często programiści nie zdają sobie sprawy, że brak cudzysłowów przy użyciu $* może prowadzić do utraty kontekstu argumentów, co jest typowym błędem w praktyce skryptowej. Aby uniknąć tych sytuacji, istotne jest, aby zgłębić dokumentację oraz zastosować dobre praktyki w zakresie przetwarzania argumentów, co z pewnością przyczyni się do wyższej jakości skryptów i ich niezawodności.

Pytanie 12

Aby zminimalizować wpływ zakłóceń elektromagnetycznych na przesyłany sygnał w tworzonej sieci komputerowej, jakie rozwiązanie należy zastosować?

A. ekranowaną skrętkę
B. gruby przewód koncentryczny
C. cienki przewód koncentryczny
D. światłowód
Ekranowana skrętka czy przewody koncentryczne, zarówno cienkie jak i grube, mogą wydawać się ok, ale nie dają takiej ochrony przed zakłóceniami jak światłowód. Ekranowana skrętka ma wprawdzie dodatkową warstwę, co trochę pomaga, ale wciąż bazuje na miedzi, więc w trudnych warunkach nie sprawdzi się na 100%. Używa się jej w lokalnych sieciach komputerowych, ale w porównaniu do światłowodów to niezbyt duża efektywność. Gruby przewód koncentryczny lepiej zabezpiecza, ale i tak jest wrażliwy na zakłócenia, a teraz to coraz rzadziej go w instalacjach widać. Cienki przewód koncentryczny to już w ogóle nie ma sensu, bo jest jeszcze bardziej podatny na zakłócenia, a to nie jest dobre, gdy chcemy przesyłać sygnał w trudnych warunkach. Jak wybierzesz coś złego, jakość sygnału się pogarsza, błędów więcej, a wydajność sieci leci na łeb na szyję, co w dzisiejszych czasach, gdzie szybkość i stabilność połączeń są kluczowe, jest mocno nie na miejscu.

Pytanie 13

Które stwierdzenie odnoszące się do ruterów jest prawdziwe?

A. Działają w warstwie transportowej
B. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
C. Działają w warstwie łącza danych
D. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
Odpowiedź dotycząca podejmowania decyzji przesyłania danych na podstawie adresów IP jest prawidłowa, ponieważ rutery operują na warstwie trzeciej modelu OSI, która jest odpowiedzialna za routing i przesyłanie pakietów w oparciu o adresy IP. Rutery analizują nagłówki pakietów, aby określić najlepszą trasę do docelowego adresu IP, co jest kluczowe dla efektywnego przesyłania danych w Internecie. W praktyce, na przykład, gdy użytkownik wysyła zapytanie HTTP do serwera, ruter decyduje, w którą stronę kierować pakiety, aby dotarły one do właściwego miejsca. Dobrą praktyką w zarządzaniu ruchem sieciowym jest stosowanie protokołów takich jak BGP (Border Gateway Protocol), które umożliwiają rutery wymianę informacji o trasach i optymalizację ścieżek transmisji. Dodatkowo, znając adresy IP, rutery mogą implementować polityki bezpieczeństwa oraz kontrolować dostęp, co jest istotne w kontekście zarządzania sieciami oraz zapewnienia ich integralności. W związku z tym, zrozumienie roli adresów IP w kontekście działania ruterów jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 14

Jakie zakresy częstotliwości określa klasa EA?

A. 300 MHz
B. 600 MHz
C. 250 MHz
D. 500 MHz
Wybór 500 MHz jest całkiem trafny. Klasa EA, czyli Enhanced A, ma częstotliwości od 470 do 500 MHz. To pasmo ma spore znaczenie w technologii komunikacyjnej, szczególnie w systemach bezprzewodowych i radiowych. Używają go m.in. walkie-talkie czy w telekomunikacji, gdzie ważna jest dobra jakość sygnału. Pasmo to znajdziesz też w różnych standardach, jak DMR czy TETRA, co podkreśla jego rolę w profesjonalnej łączności. Fajnie też wiedzieć, że regulacje dotyczące tego pasma są ściśle określone przez ITU, co pozwala na ułatwienie komunikacji na całym świecie.

Pytanie 15

Jakie polecenie w systemie Windows należy użyć, aby ustalić liczbę ruterów pośrednich znajdujących się pomiędzy hostem źródłowym a celem?

A. tracert
B. routeprint
C. arp
D. ipconfig
Polecenie 'tracert' to naprawdę fajne narzędzie w systemie Windows. Dzięki niemu możesz sprawdzić, jak pakiety danych wędrują od jednego komputera do drugiego w sieci. Używając tego polecenia, dostajesz wgląd w wszystkie ruterów, przez które przechodzą twoje dane. To bardzo pomocne, gdy masz problemy z łącznością. Na przykład, jeśli zauważasz opóźnienia, 'tracert' pomoże ci zobaczyć, na którym etapie coś się psuje. Możesz więc szybko ustalić, czy problem leży w twojej lokalnej sieci, w jakimś ruterze, czy może na serwerze, z którym się łączysz. Działa to na zasadzie ICMP, czyli Internet Control Message Protocol. Wysyła pakiety echo request i potem czeka na odpowiedzi, co pozwala sprawdzić, jak długo pakiety lecą do każdego ruteru. Warto regularnie korzystać z 'tracert', bo pomaga to w optymalizacji sieci i wykrywaniu ewentualnych zagrożeń. Dla administratorów i osób zajmujących się IT to naprawdę kluczowe narzędzie.

Pytanie 16

Wskaż symbol, który znajduje się na urządzeniach elektrycznych przeznaczonych do handlu w Unii Europejskiej?

Ilustracja do pytania
A. D
B. A
C. C
D. B
Znak CE jest symbolem potwierdzającym, że produkt spełnia wymagania unijnych dyrektyw związanych z bezpieczeństwem zdrowiem i ochroną środowiska. Jest to obligatoryjne oznakowanie dla wielu produktów sprzedawanych na rynku EOG co obejmuje Unię Europejską oraz Islandię Norwegię i Liechtenstein. Umieszczenie znaku CE na produkcie wskazuje na to że producent przeprowadził ocenę zgodności i produkt spełnia wszystkie istotne wymogi prawne dotyczące oznakowania CE. Praktycznie oznacza to że produkty takie jak urządzenia elektryczne muszą być zgodne z dyrektywami takimi jak LVD Dyrektywa Niskonapięciowa czy EMC Dyrektywa kompatybilności elektromagnetycznej. Dzięki temu konsumenci i użytkownicy mają pewność że produkt spełnia określone standardy bezpieczeństwa i jakości. Producent zobowiązany jest do przechowywania dokumentacji technicznej potwierdzającej zgodność z dyrektywami na wypadek kontroli. Znak CE nie jest znakiem jakości czy pochodzenia ale zapewnia swobodny przepływ towarów na terenie EOG co jest kluczowe dla jednolitego rynku.

Pytanie 17

Jaki tryb funkcjonowania Access Pointa jest wykorzystywany do umożliwienia urządzeniom bezprzewodowym łączności z przewodową siecią LAN?

A. Punkt dostępowy
B. Tryb klienta
C. Most bezprzewodowy
D. Repeater
Punkt dostępowy (Access Point, AP) to urządzenie, które pełni kluczową rolę w zapewnieniu dostępu bezprzewodowego do sieci przewodowej, czyli LAN. Działa jako most łączący urządzenia bezprzewodowe z siecią przewodową, pozwalając na komunikację i wymianę danych. W praktyce, AP umożliwia użytkownikom korzystanie z internetu i zasobów sieciowych w miejscach, gdzie nie ma dostępu do przewodów Ethernetowych. Współczesne punkty dostępowe obsługują różne standardy, takie jak IEEE 802.11a/b/g/n/ac/ax, co zapewnia różnorodność prędkości przesyłania danych oraz zasięg. Przykładem zastosowania AP jest biuro, gdzie pracownicy korzystają z laptopów i smartfonów do podłączania się do lokalnej sieci bezprzewodowej. Dobrze skonfigurowany punkt dostępowy może znacząco poprawić wydajność sieci oraz umożliwić bezproblemową komunikację urządzeń mobilnych z zasobami w sieci lokalnej, co jest zgodne z najlepszymi praktykami w zakresie zarządzania sieciami. Warto zwrócić uwagę, że stosowanie AP w odpowiednich miejscach, z odpowiednim zabezpieczeniem (np. WPA3), jest kluczowe dla ochrony danych przesyłanych w sieci.

Pytanie 18

Jaką długość ma adres IP wersji 4?

A. 32 bitów
B. 16 bitów
C. 2 bajty
D. 10 bajtów
Adres IP w wersji 4 (IPv4) to kluczowy element w komunikacji w sieciach komputerowych. Ma długość 32 bity, co oznacza, że każdy adres IPv4 składa się z czterech oktetów, a każdy z nich ma 8 bitów. Cała przestrzeń adresowa IPv4 pozwala na przydzielenie około 4,3 miliarda unikalnych adresów. Jest to niezbędne do identyfikacji urządzeń i wymiany danych. Na przykład, adres IP 192.168.1.1 to typowy adres lokalny w sieciach domowych. Standard ten ustala organizacja IETF (Internet Engineering Task Force) w dokumencie RFC 791. W kontekście rozwoju technologii sieciowych, zrozumienie struktury adresów IP oraz ich długości jest podstawą do efektywnego zarządzania siecią, a także do implementacji protokołów routingu i bezpieczeństwa. Obecnie, mimo rosnącego zapotrzebowania na adresy, IPv4 często jest dopełniane przez IPv6, który oferuje znacznie większą przestrzeń adresową, ale umiejętność pracy z IPv4 wciąż jest bardzo ważna.

Pytanie 19

Diagnostykę systemu Linux można przeprowadzić za pomocą komendy

Ilustracja do pytania
A. whoami
B. lscpu
C. cat
D. pwd
Polecenie lscpu jest używane do wyświetlania szczegółowych informacji o architekturze procesora w systemie Linux. Jest to narzędzie, które zbiera dane z systemu operacyjnego na temat jednostek obliczeniowych takich jak liczba rdzeni na gniazdo liczba wątków na rdzeń liczba gniazd procesorowych oraz inne kluczowe parametry. Dzięki temu administratorzy systemów mogą lepiej zrozumieć zasoby sprzętowe dostępne na serwerze co jest niezbędne przy planowaniu wdrażania aplikacji optymalizacji wydajności oraz monitorowaniu zasobów. Praktyczne zastosowanie lscpu obejmuje scenariusze w których konieczne jest dostosowanie aplikacji do dostępnych zasobów czy też optymalizacja ustawień systemowych. Standardowa praktyka to używanie lscpu w ramach audytu sprzętowego co pozwala na efektywne zarządzanie zasobami oraz unikanie potencjalnych problemów związanych z nieadekwatnym przydzieleniem zasobów. Dodatkowo lscpu może być używane w skryptach automatyzujących procesy docierania do szczegółowych danych sprzętowych co wspiera administratorów w codziennych operacjach związanych z zarządzaniem infrastrukturą IT. Rozumienie tych informacji jest kluczowe dla efektywnego zarządzania i planowania zasobów komputerowych w nowoczesnych środowiskach IT.

Pytanie 20

Urządzenie typu Plug and Play, które jest ponownie podłączane do komputera, jest identyfikowane na podstawie

A. unikalnego identyfikatora urządzenia
B. specjalnego oprogramowania sterującego
C. lokalizacji sterownika tego urządzenia
D. położenia urządzenia
Analizując dostępne odpowiedzi, warto zauważyć, że niektóre z nich opierają się na mylnych założeniach dotyczących funkcjonowania urządzeń Plug and Play. Specjalny sterownik programowy, na przykład, nie jest kluczowym czynnikiem przy ponownym podłączeniu urządzenia. Standardowe systemy operacyjne mają zestaw wbudowanych sterowników, a rozpoznawanie urządzenia na podstawie sterownika nie oznacza, że system zawsze będzie wymagał nowego sterownika przy każdym podłączeniu. Kolejna odpowiedź, dotycząca lokalizacji sterownika urządzenia, również nie odnosi się bezpośrednio do mechanizmu identyfikacji. Sterownik jest narzędziem, które pozwala na komunikację pomiędzy systemem a urządzeniem, ale lokalizacja samego sterownika nie jest tym, co umożliwia urządzeniu prawidłowe rozpoznanie podczas podłączenia. Z kolei lokalizacja urządzenia jako kryterium identyfikacji również mijają się z prawdą, ponieważ systemy operacyjne nie polegają na fizycznej lokalizacji podłączonych urządzeń, a raczej na ich identyfikatorach logicznych. W rzeczywistości, identyfikacja opiera się na unikalnych identyfikatorach, które są przypisywane urządzeniom przez producenta. Błędem myślowym jest zatem myślenie, że lokalizacja czy sterowniki mają kluczowe znaczenie dla ponownego podłączenia urządzenia, gdyż zasadniczo cały proces opiera się na unikalnych identyfikatorach, które zapewniają jednoznaczność i właściwe przypisanie odpowiednich funkcji do każdego sprzętu.

Pytanie 21

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. adres e-mailowy
B. nazwa komputera
C. domenę
D. adres fizyczny
ARP, czyli Address Resolution Protocol, to naprawdę ważny element w sieciach komputerowych. Jego główne zadanie to przekształcanie adresów IP na adresy MAC, czyli sprzętowe. W lokalnych sieciach komunikacja między urządzeniami odbywa się głównie na poziomie warstwy łącza danych, gdzie te adresy MAC są kluczowe. Wyobraź sobie, że komputer chce przesłać dane do innego urządzenia. Jeśli zna tylko adres IP, to musi wysłać zapytanie ARP, by dowiedzieć się, jaki jest odpowiedni adres MAC. Bez ARP wszystko by się trochę zacięło, bo to on pozwala na prawidłowe połączenia w sieciach lokalnych. Na przykład, gdy komputer A chce wysłać dane do komputera B, ale zna tylko adres IP, to wysyła zapytanie ARP, które dociera do wszystkich urządzeń w sieci. Komputer B odsyła swój adres MAC, dzięki czemu komputer A może skonstruować ramkę i wysłać dane. Jak dobrze rozumiesz, jak działa ARP, to stajesz się lepszym specjalistą w sieciach, bo to dosłownie fundament komunikacji w sieciach TCP/IP. Takie rzeczy są mega istotne w branży, dlatego warto je dobrze ogarnąć.

Pytanie 22

Aby uporządkować dane pliku na dysku twardym, zapisane w klastrach, które nie sąsiadują ze sobą, tak aby znajdowały się w sąsiadujących klastrach, należy przeprowadzić

A. program scandisk
B. program chkdsk
C. oczyszczanie dysku
D. defragmentację dysku
Defragmentacja dysku to proces, który reorganizuje dane na dysku twardym w taki sposób, aby pliki zajmowały sąsiadujące ze sobą klastrów, co znacząco zwiększa wydajność systemu. W miarę jak pliki są tworzone, modyfikowane i usuwane, mogą one być zapisywane w różnych, niesąsiadujących ze sobą lokalizacjach. To prowadzi do fragmentacji, co z kolei powoduje, że głowica dysku musi przemieszczać się w różne miejsca, aby odczytać pełny plik. Defragmentacja eliminuje ten problem, co skutkuje szybszym dostępem do danych. Przykładowo, regularne przeprowadzanie defragmentacji na komputerach z systemem Windows, zwłaszcza na dyskach HDD, może poprawić czas ładowania aplikacji i systemu operacyjnego, jak również zwiększyć ogólną responsywność laptopa lub komputera stacjonarnego. Warto pamiętać, że w przypadku dysków SSD defragmentacja nie jest zalecana z powodu innej architektury działania, która nie wymaga reorganizacji danych w celu poprawy wydajności. Zamiast tego, w SSD stosuje się technologię TRIM, która zarządza danymi w inny sposób.

Pytanie 23

Wskaż błędny podział dysku MBR na partycje?

A. 1 partycja podstawowa oraz 2 rozszerzone
B. 3 partycje podstawowe oraz 1 rozszerzona
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 1 partycja podstawowa oraz 1 rozszerzona
W Twojej odpowiedzi wskazałeś jedną partycję podstawową i dwie rozszerzone, co jest zgodne z zasadami podziału dysków w standardzie MBR. A tak szczerze, to dobrze, że to zauważyłeś. W MBR można mieć maks 4 partycje – albo 4 podstawowe, albo 3 podstawowe i jedna rozszerzona. Te rozszerzone są przydatne, gdy trzeba stworzyć dodatkowe partycje logiczne, co ułatwia zarządzanie przestrzenią na dysku. Wyobraź sobie, że potrzebujesz kilku partycji, bo dzielisz dysk na różne systemy operacyjne. No, to wtedy jedna partycja rozszerzona z kilkoma logicznymi to świetne rozwiązanie. To jest w sumie najlepszy sposób na wykorzystanie miejsca na dysku i zapanowanie nad danymi, więc masz tu całkiem dobry wgląd w temat.

Pytanie 24

Jaką sekwencję mają elementy adresu globalnego IPv6 typu unicast ukazanym na diagramie?

Ilustracja do pytania
A. 1 - globalny prefiks, 2 - identyfikator podsieci, 3 - identyfikator interfejsu
B. 1 - identyfikator podsieci, 2 - globalny prefiks, 3 - identyfikator interfejsu
C. 1 - globalny prefiks, 2 - identyfikator interfejsu, 3 - identyfikator podsieci
D. 1 - identyfikator interfejsu, 2 - globalny prefiks, 3 - identyfikator podsieci
Adres IPv6 składa się z kilku komponentów z których kluczowymi są globalny prefiks identyfikator podsieci oraz identyfikator interfejsu. Globalny prefiks to pierwsze 48 bitów i jest przydzielany przez dostawcę internetu jako unikalny identyfikator sieci. Identyfikator podsieci zajmuje kolejne 16 bitów i służy do podziału większej sieci na mniejsze segmenty co pozwala na lepsze zarządzanie ruchem sieciowym oraz zwiększa bezpieczeństwo. Ostatnie 64 bity to identyfikator interfejsu który musi być unikalny w ramach danej podsieci i zwykle jest generowany automatycznie na podstawie adresu MAC urządzenia. Taka organizacja adresu IPv6 umożliwia efektywne zarządzanie ogromnymi zasobami adresowymi tego protokołu. W praktyce daje to możliwość tworzenia dużych dobrze zorganizowanych sieci z zachowaniem wysokiego poziomu hierarchii i skalowalności. Dzięki takiemu podejściu można łatwo integrować nowe technologie takie jak Internet Rzeczy (IoT) zapewniając jednocześnie stabilność i wydajność.

Pytanie 25

Który z protokołów jest używany w komunikacji głosowej przez internet?

A. SIP
B. HTTP
C. NetBEUI
D. FTP
Protokół SIP (Session Initiation Protocol) jest kluczowym elementem telefonii internetowej oraz komunikacji w czasie rzeczywistym. Jego głównym zadaniem jest nawiązywanie, modyfikowanie i kończenie sesji multimedialnych, które mogą obejmować połączenia głosowe, wideokonferencje, a także przesyłanie wiadomości. SIP działa na poziomie aplikacji w modelu OSI i jest powszechnie używany w systemach VoIP (Voice over Internet Protocol). Jednym z jego głównych atutów jest elastyczność oraz interoperacyjność z różnymi urządzeniami i platformami. Przykładowo, za pomocą SIP użytkownicy mogą łączyć się ze sobą niezależnie od używanego sprzętu, co jest kluczowe w środowiskach z wieloma dostawcami usług. Dodatkowo, SIP wspiera różne kodeki audio i wideo, co umożliwia optymalizację jakości połączeń w zależności od warunków sieciowych. Jego zastosowanie w praktyce możemy zobaczyć w popularnych aplikacjach komunikacyjnych, takich jak Skype czy Zoom, które wykorzystują SIP do zestawiania połączeń i zarządzania sesjami. Praktyka wdrażania protokołu SIP zgodnie z normami IETF (Internet Engineering Task Force) oraz standardami branżowymi zapewnia bezpieczeństwo i efektywność połączeń.

Pytanie 26

W dokumentacji technicznej wydajność głośnika połączonego z komputerem wyraża się w jednostce:

A. kHz
B. dB
C. W
D. J
Podane odpowiedzi, czyli W (wat), J (dżul) i kHz (kiloherc), w ogóle nie nadają się do pomiaru efektywności głośników. Wat to miara mocy elektrycznej, ona mówi, ile energii głośnik zużywa, ale nie mówi nic o tym, jak głośno gra. Dżul to jednostka energii, też nie wspomoże nas w ocenie głośności, więc odpada. Kiloherc z kolei mierzy częstotliwość dźwięku, więc też się nie nadaje do oceniania efektywności głośnika. Te odpowiedzi pokazują typowe błędy w rozumieniu pomiarów akustycznych. Często ludzie mylą moc z efektywnością, myśląc, że więcej mocy to więcej głośności, a w rzeczywistości, to zależy od efektywności głośnika, która jest wyrażana w dB. Ważne jest, żeby znać te różnice, szczególnie gdy się pracuje w audio, bo to pozwala lepiej ocenić sprzęt, a nie tylko patrzeć na jego moc nominalną.

Pytanie 27

Na ilustracji ukazano port w komputerze, który służy do podłączenia

Ilustracja do pytania
A. drukarki laserowej
B. monitora LCD
C. plotera tnącego
D. skanera lustrzanego
Na rysunku przedstawiony jest złącze DVI (Digital Visual Interface) które jest typowo używane do podłączania monitorów LCD do komputerów. Złącze DVI jest standardem w branży elektronicznej i zapewnia cyfrową transmisję sygnału video o wysokiej jakości co jest istotne w kontekście wyświetlania obrazu na monitorach LCD. Złącze to obsługuje różne tryby przesyłu danych w tym DVI-D (tylko sygnał cyfrowy) DVI-A (tylko sygnał analogowy) oraz DVI-I (zarówno cyfrowy jak i analogowy) co czyni je uniwersalnym rozwiązaniem w wielu konfiguracjach sprzętowych. DVI zastąpiło starsze złącza VGA oferując lepszą jakość obrazu i wyższe rozdzielczości co jest kluczowe w środowisku profesjonalnym gdzie jakość wyświetlanego obrazu ma znaczenie. Przykładowo w graficznych stacjach roboczych dokładność kolorów i szczegółowość obrazu na monitorze LCD są krytyczne co czyni złącze DVI idealnym wyborem. Zrozumienie i umiejętność rozpoznawania złączy takich jak DVI jest kluczowe dla profesjonalistów zajmujących się konfiguracją sprzętu komputerowego i zarządzaniem infrastrukturą IT.

Pytanie 28

Oprogramowanie diagnostyczne komputera pokazało komunikat NIC ERROR. Co ten komunikat wskazuje?

A. sieciowej
B. graficznej
C. wideo
D. dźwiękowej
Komunikat NIC ERROR to znak, że coś jest nie tak z kartą sieciową w komputerze. Ta karta odpowiada za nasze połączenia z siecią, zarówno w lokalnej sieci, jak i w Internecie. Problemy mogą się zdarzyć z różnych powodów – może to być uszkodzenie sprzętu, złe sterowniki, konflikt adresów IP lub nawet problemy z kablem. Na przykład, wyobraź sobie, że chcesz surfować po sieci, ale nagle nie możesz się połączyć przez błąd karty. W takiej sytuacji warto najpierw sprawdzić, co się dzieje z kartą w menedżerze urządzeń i uruchomić diagnostykę sieci. Pamiętaj też, że dobrym pomysłem jest regularne aktualizowanie sterowników oraz dbanie o stan sprzętu, żeby unikać przyszłych problemów. Jak coś nie działa, warto rzucić okiem na dokumentację albo skontaktować się z pomocą techniczną – czasami to naprawdę może pomóc.

Pytanie 29

Jak na diagramach sieciowych LAN oznaczane są punkty dystrybucyjne znajdujące się na różnych kondygnacjach budynku, zgodnie z normą PN-EN 50173?

A. CD (Campus Distribution)
B. MDF (Main Distribution Frame)
C. FD (Floor Distribution)
D. BD (BuildingDistributor)
Odpowiedź FD (Floor Distribution) jest prawidłowa, ponieważ oznacza ona punkty rozdzielcze (dystrybucyjne) znajdujące się na poszczególnych piętrach budynku, co jest zgodne z normą PN-EN 50173. Norma ta klasyfikuje różne poziomy dystrybucji w sieciach LAN, aby zapewnić odpowiednią organizację i efektywność instalacji. Punkty dystrybucyjne na piętrach są kluczowym elementem infrastruktury sieciowej, ponieważ umożliwiają one podłączenie urządzeń końcowych, takich jak komputery, drukarki czy telefony. Przykładowo, w biurowcach, gdzie na każdym piętrze znajduje się wiele stanowisk pracy, odpowiednie oznaczenie FD pozwala na łatwe lokalizowanie rozdzielni, co ułatwia zarządzanie siecią oraz wykonywanie prac konserwacyjnych. Dobrze zaplanowana dystrybucja na każdym piętrze wprowadza porządek w instalacji, co jest szczególnie istotne w przypadku modernizacji lub rozbudowy infrastruktury sieciowej. W praktyce, stosowanie jednolitych oznaczeń, takich jak FD, zwiększa efektywność komunikacji między specjalistami zajmującymi się siecią oraz ułatwia przyszłe prace serwisowe.

Pytanie 30

Zjawisko przesłuchu w sieciach komputerowych polega na

A. opóźnieniach w propagacji sygnału w torze transmisyjnym
B. przenikaniu sygnału pomiędzy sąsiadującymi w kablu parami przewodów
C. utratach sygnału w torze transmisyjnym
D. niejednorodności toru wynikającej z modyfikacji geometrii par przewodów
Przenikanie sygnału pomiędzy sąsiadującymi w kablu parami przewodów to kluczowe zjawisko, które jest istotne w kontekście transmisji danych w sieciach komputerowych. To zjawisko, znane również jako crosstalk, występuje, gdy sygnał z jednej pary przewodów przenika do innej pary w tym samym kablu, co może prowadzić do zakłóceń i degradacji jakości sygnału. Przykładem zastosowania tej wiedzy jest projektowanie kabli Ethernet, gdzie standardy takie jak TIA/EIA-568 określają maksymalne dopuszczalne poziomy przesłuchu, aby zapewnić wysokojakościową transmisję. W praktyce, inżynierowie sieciowi muszą zwracać uwagę na takie parametry jak długość kabli, sposób ich układania oraz stosowanie ekranowanych kabli, aby zminimalizować wpływ przesłuchów. Zrozumienie tego zjawiska jest również kluczowe przy pracy z nowoczesnymi technologiami, takimi jak PoE (Power over Ethernet), gdzie przesłuch może wpływać na zarówno jakość przesyłanych danych, jak i efektywność zasilania urządzeń.

Pytanie 31

Interfejs równoległy, który ma magistralę złożoną z 8 linii danych, 4 linii sterujących oraz 5 linii statusowych, nie zawiera linii zasilających i umożliwia transmisję na dystans do 5 metrów, gdy kable sygnałowe są skręcone z przewodami masy, a w przeciwnym razie na dystans do 2 metrów, jest określany mianem

A. LPT
B. AGP
C. EISA
D. USB
Odpowiedzi EISA, AGP oraz USB nie są poprawne w kontekście opisanego pytania. EISA, czyli Extended Industry Standard Architecture, to standard magistrali komputerowej, który został zaprojektowany jako rozwinięcie standardu ISA. Podczas gdy EISA umożliwia podłączenie wielu kart rozszerzeń, nie jest to interfejs równoległy i nie spełnia wymagań dotyczących liczby linii danych, linii sterujących ani linii statusu. AGP, z kolei, to interfejs zaprojektowany specjalnie do komunikacji z kartami graficznymi, oferujący wyższą wydajność przez dedykowaną magistralę, ale również nie jest interfejsem równoległym, a jego architektura jest zupełnie inna. USB, czyli Universal Serial Bus, to nowoczesny standard, który obsługuje różnorodne urządzenia, jednak jego konstrukcja opiera się na komunikacji szeregowej, co oznacza, że nie można go zakwalifikować jako interfejs równoległy. Typowym błędem myślowym jest zakładanie, że interfejsy, które są popularne w dzisiejszych czasach, takie jak USB, mogą pełnić te same funkcje co starsze standardy, jak LPT, co prowadzi do nieprawidłowych wniosków dotyczących ich zastosowań i architektury. Kluczową różnicą jest również maksymalna odległość transmisji oraz sposób, w jaki sygnały są przesyłane, co jest podstawą dla zrozumienia specyfiki różnych interfejsów.

Pytanie 32

Jaką maksymalną ilość GB pamięci RAM może obsłużyć 32-bitowa edycja systemu Windows?

A. 8 GB
B. 12 GB
C. 4 GB
D. 2 GB
32-bitowa wersja systemu Windows ma ograniczenie dotyczące maksymalnej ilości pamięci RAM, do której może uzyskać dostęp, wynoszące 4 GB. Wynika to z architektury 32-bitowej, w której adresowanie pamięci jest ograniczone do 2^32, co daje łącznie 4 294 967 296 bajtów, czyli dokładnie 4 GB. W praktyce, ilość dostępnej pamięci może być mniejsza, ponieważ część adresów jest wykorzystywana przez urządzenia i system operacyjny. Warto zauważyć, że użytkownicy aplikacji, które wymagają więcej pamięci, mogą rozważyć przejście na 64-bitową wersję systemu operacyjnego, która obsługuje znacznie większą ilość RAM, nawet do 128 TB w najnowszych systemach. Dlatego dla aplikacji wymagających dużej ilości pamięci, jak oprogramowanie do obróbki wideo czy zaawansowane gry, wybór 64-bitowego systemu jest kluczowy dla wydajności i stabilności pracy.

Pytanie 33

W celu zabezpieczenia komputerów w sieci lokalnej przed nieautoryzowanym dostępem oraz atakami typu DoS, konieczne jest zainstalowanie i skonfigurowanie

A. programu antywirusowego
B. zapory ogniowej
C. filtru antyspamowego
D. blokady okienek pop-up
Zainstalowanie i skonfigurowanie zapory ogniowej jest kluczowym krokiem w zabezpieczaniu komputerów w sieci lokalnej przed nieautoryzowanym dostępem oraz atakami typu DoS (Denial of Service). Zapora ogniowa działa jako filtr, kontrolując ruch trafiający i wychodzący z sieci, co pozwala na zablokowanie potencjalnie niebezpiecznych połączeń. Przykładem zastosowania zapory ogniowej jest możliwość skonfigurowania reguł, które zezwalają na dostęp tylko dla zaufanych adresów IP, co znacząco zwiększa bezpieczeństwo sieci. Warto również zauważyć, że zapory ogniowe są zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania bezpieczeństwem informacji, jak na przykład standardy NIST czy ISO/IEC 27001. Regularne aktualizacje zapory oraz monitorowanie logów mogą pomóc w identyfikacji podejrzanego ruchu i w odpowiednim reagowaniu na potencjalne zagrożenia. To podejście pozwala na budowanie warstwy zabezpieczeń, która jest fundamentalna dla ochrony zasobów informacyjnych w każdej organizacji.

Pytanie 34

W jaki sposób skonfigurować zaporę Windows, aby spełniała zasady bezpieczeństwa i umożliwiała użycie polecenia ping do weryfikacji komunikacji z innymi urządzeniami w sieci?

A. Ustawić reguły dla protokołu ICMP
B. Ustawić reguły dla protokołu IP
C. Ustawić reguły dla protokołu IGMP
D. Ustawić reguły dla protokołu TCP
Odpowiedź wskazująca na skonfigurowanie reguł dotyczących protokołu ICMP (Internet Control Message Protocol) jest prawidłowa, ponieważ protokół ten jest odpowiedzialny za przesyłanie komunikatów kontrolnych w sieci, w tym dla polecenia ping. Ping wykorzystuje ICMP Echo Request oraz ICMP Echo Reply, aby sprawdzić, czy inny host jest osiągalny przez sieć. Konfigurowanie reguł zapory Windows wymaga zezwolenia na te typy komunikatów, co pozwoli na efektywne monitorowanie i diagnostykę łączności w sieci lokalnej. Przykładowo, w przypadku problemów z połączeniem, administrator może użyć polecenia ping, aby szybko zidentyfikować, czy dane urządzenie odpowiada, co jest podstawowym krokiem w rozwiązywaniu problemów. W praktyce, umożliwienie ICMP w zaporze sieciowej jest zgodne z najlepszymi praktykami w zakresie zarządzania siecią, ponieważ pozwala na skuteczną diagnostykę, a jednocześnie nie stwarza większego ryzyka dla bezpieczeństwa, o ile inne, bardziej wrażliwe porty i protokoły są odpowiednio zabezpieczone.

Pytanie 35

Na schemacie przedstawiono sieć o strukturze

Ilustracja do pytania
A. drzew
B. gwiazd
C. magistrali
D. siatek
Topologia magistrali to struktura sieciowa, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, najczęściej kabla, nazywanego magistralą. W tego typu sieci każde urządzenie może komunikować się bezpośrednio z innym poprzez to wspólne medium, co upraszcza proces instalacji i zmniejsza koszty materiałowe. Główna zaleta topologii magistrali to jej prostota i efektywność w małych sieciach, gdzie dane są przesyłane w jednym kierunku i nie ma potrzeby skomplikowanego zarządzania ruchem. Współczesne przykłady zastosowania to starsze sieci Ethernet, gdzie przesyłanie danych odbywa się w postaci ramek. Standardy takie jak IEEE 802.3 opisują specyfikacje dla sieci tego typu. Magistrala jest korzystna tam, gdzie wymagane są ekonomiczne rozwiązania w prostych konfiguracjach. Jednakże w miarę wzrostu liczby urządzeń mogą pojawić się problemy z przepustowością oraz kolizjami danych, dlatego w dużych sieciach często wybiera się inne topologie. Dodatkową korzyścią jest łatwość diagnozowania problemów przy użyciu narzędzi takich jak analizatory sygnałów, co przyspiesza proces rozwiązywania problemów technicznych.

Pytanie 36

Jak określa się atak w sieci lokalnej, który polega na usiłowaniu podszycia się pod inną osobę?

A. Flood ping
B. Spoofing
C. Phishing
D. DDoS
Wydaje mi się, że wybór odpowiedzi związanej z DDoS, spoofingiem czy flood pingiem sugeruje, że masz małe zrozumienie tych terminów w cyberbezpieczeństwie. Atak DDoS (Distributed Denial of Service) polega na zalewaniu systemu dużą ilością ruchu, co sprawia, że przestaje działać. To zupełnie inna sprawa niż phishing, który skupia się na wyłudzaniu informacji. Spoofing to technika, gdzie oszust zmienia adres źródłowy, żeby wyglądał na zaufane źródło, ale to nie to samo, co pełne podszywanie się pod instytucję. Flood ping jest stosowane w atakach DoS i polega na bombardowaniu celu dużą ilością pingów, co również nie ma nic wspólnego z phishingiem. Mylne wybory często wynikają z niewłaściwego rozumienia tych terminów, więc warto poświęcić chwilę na ich przestudiowanie. Zrozumienie tych różnic jest kluczowe, żeby lepiej zrozumieć bezpieczeństwo informacji i chronić się przed zagrożeniami w sieci.

Pytanie 37

Dane dotyczące kont użytkowników w systemie Linux są przechowywane w pliku

A. /etc/shadows
B. /etc/passwd
C. /etc/group
D. /etc/shells
Wybierając odpowiedzi takie jak /etc/shells, /etc/group czy /etc/shadow, można dojść do mylnych wniosków na temat struktury przechowywania informacji o kontach użytkowników w systemie Linux. Plik /etc/shells zawiera listę dozwolonych powłok systemowych, co może być użyteczne w kontekście ograniczenia dostępu do określonych powłok dla użytkowników. W przeciwieństwie do /etc/passwd, nie przechowuje on informacji o użytkownikach, co czyni go nieodpowiednim do zarządzania kontami. Podobnie plik /etc/group jest używany do definiowania grup użytkowników, zawierając informacje o grupach i ich członkach, ale nie zawiera on szczegółów dotyczących pojedynczych kont użytkowników. Z kolei plik /etc/shadow przechowuje hasła w postaci zaszyfrowanej i jest dostępny tylko dla użytkownika root, co czyni go niewłaściwym miejscem na przechowywanie podstawowych informacji o kontach. Typowym błędem jest mylenie funkcji tych plików, co prowadzi do nieefektywnego zarządzania systemem oraz potencjalnych luk w bezpieczeństwie. Zrozumienie różnic między tymi plikami jest kluczowe dla skutecznego administrowania systemem i zapewnienia, że informacje o użytkownikach są chronione i zarządzane w odpowiedni sposób.

Pytanie 38

Aby uporządkować dane pliku zapisane na dysku twardym, które znajdują się w nie sąsiadujących klastrach, tak by zajmowały one sąsiadujące ze sobą klastry, należy przeprowadzić

A. program scandisk
B. oczyszczanie dysku
C. defragmentację dysku
D. program chkdsk
Defragmentacja dysku to proces, który reorganizuje dane na dysku twardym, aby pliki zajmowały sąsiadujące ze sobą klastry. W wyniku intensywnego użytkowania systemu operacyjnego i zapisywania nowych danych, pliki mogą być rozproszone po różnych klastrach, co prowadzi do ich fragmentacji. Przykładem takiej sytuacji może być zapis dużej ilości plików multimedialnych lub programów, co skutkuje ich układaniem się w różnych, niepowiązanych ze sobą lokalizacjach. Proces defragmentacji ma na celu poprawę wydajności dysku poprzez zmniejszenie czasu dostępu do plików, co jest szczególnie istotne w przypadku tradycyjnych dysków twardych (HDD), gdzie mechaniczny ruch głowicy odczytującej jest ograniczony. Warto również zauważyć, że nowoczesne systemy operacyjne, takie jak Windows, oferują wbudowane narzędzia do defragmentacji, które automatycznie planują tego typu operacje w regularnych odstępach czasu, co jest zgodne z dobrymi praktykami zarządzania systemem. Defragmentacja nie jest zazwyczaj potrzebna w przypadku dysków SSD, ponieważ działają one na innej zasadzie, ale dla HDD jest to kluczowy proces, który znacząco wpływa na ich efektywność.

Pytanie 39

Który rodzaj złącza nie występuje w instalacjach światłowodowych?

A. MTRJ
B. GG45
C. SC
D. FC
GG45 to złącze, które nie jest stosowane w okablowaniu światłowodowym, ponieważ jest ono przeznaczone wyłącznie do transmisji sygnałów ethernetowych w kablach miedzianych. W kontekście okablowania światłowodowego, istotne są złącza takie jak SC, FC czy MTRJ, które są zaprojektowane do łączenia włókien światłowodowych i optymalizacji ich wydajności. Złącze SC (Subscriber Connector) charakteryzuje się prostą konstrukcją i niskimi stratami sygnału, co sprawia, że jest popularne w instalacjach telekomunikacyjnych. Z kolei złącze FC (Ferrule Connector) jest znane z wysokiej precyzji i trwałości, co czyni je odpowiednim do zastosowań w środowiskach wymagających odporności na wibracje. MTRJ (Mechanical Transfer Registered Jack) to złącze, które pozwala na podłączenie dwóch włókien w jednym złączu, co jest praktycznym rozwiązaniem przy ograniczonej przestrzeni. Wybór odpowiednich złącz jest kluczowy dla zapewnienia efektywności i niezawodności infrastruktury światłowodowej, a GG45 nie spełnia tych wymagań, co czyni je nieodpowiednim w tym kontekście.

Pytanie 40

Zainstalowanie w komputerze wskazanej karty pozwoli na

Ilustracja do pytania
A. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
B. podłączenie dodatkowego urządzenia peryferyjnego, na przykład skanera lub plotera
C. bezprzewodowe połączenie z siecią LAN przy użyciu interfejsu BNC
D. zwiększenie przepustowości magistrali komunikacyjnej w komputerze
Odpowiedź dotycząca rejestracji przetwarzania oraz odtwarzania obrazu telewizyjnego jest prawidłowa ponieważ karta przedstawiona na zdjęciu to karta telewizyjna często używana do odbioru sygnału telewizyjnego w komputerze. Tego typu karty pozwalają na dekodowanie analogowego sygnału telewizyjnego na cyfrowy format przetwarzany w komputerze co umożliwia oglądanie telewizji na ekranie monitora oraz nagrywanie programów TV. Karty takie obsługują różne standardy sygnału analogowego jak NTSC PAL i SECAM co umożliwia ich szerokie zastosowanie w różnych regionach świata. Montaż takiej karty w komputerze jest szczególnie przydatny w systemach do monitoringu wideo gdzie może służyć jako element do rejestracji obrazu z kamer przemysłowych. Dodatkowo karty te często oferują funkcje takie jak timeshifting pozwalające na zatrzymanie i przewijanie na żywo oglądanego programu. Stosowanie kart telewizyjnych w komputerach stacjonarnych jest praktyką umożliwiającą integrację wielu funkcji multimedialnych w jednym urządzeniu co jest wygodne dla użytkowników domowych oraz profesjonalistów zajmujących się edycją wideo.