Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 14 maja 2025 14:14
  • Data zakończenia: 14 maja 2025 14:30

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zerwanie połączenia wału silnika z maszyną napędzającą
B. Zwarcie międzyzwojowe w uzwojeniu twornika
C. Przerwa w obwodzie wzbudzenia
D. Uszkodzenie łożysk silnika
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 2

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,5 mA
B. ±0,3 mA
C. ±3,2 mA
D. ±2,0 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 3

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w sypialniach.
B. we wszystkich pomieszczeniach.
C. w łazienkach.
D. w holach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 4

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. zakleić gniazdo taśmą izolacyjną
B. wymienić gniazdo na nowe
C. zdemontować gniazdo i zaślepić puszkę
D. uszczelnić pęknięcia za pomocą kleju do tworzywa
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 5

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Zwarcie międzyfazowe
B. Skok napięcia
C. Przeciążenie obwodu
D. Upływ prądu
Przepięcie, przeciążenie i zwarcie międzyfazowe to takie awaryjne sytuacje, które się zdarzają w instalacjach elektrycznych, ale RCD wcale się na to nie aktywuje. Przepięcie, to nic innego jak nagły wzrost napięcia, który może złamać urządzenia, ale nie zmienia różnicy prądów, a to jest kluczowe dla działania RCD. RCD nie służy do ochrony przed przepięciami, w takich sytuacjach są ograniczniki przepięć. Przeciążenie natomiast, to co się dzieje, gdy podłączamy zbyt dużo sprzętu do obwodu, co zwiększa prąd powyżej normy, ale RCD nie reaguje, bo nie wykrywa różnicy prądów w takim przypadku. Wtedy na szczęście mamy wyłączniki nadprądowe, które odcinają zasilanie przy za dużym prądzie. A jeśli chodzi o zwarcie międzyfazowe, to jest to, gdy przewody fazowe się stykają i prąd leci jak szalony, ale znów, RCD na to nie działa, bo nie ma żadnej różnicy prądów do wykrycia. Więc ważne jest, by zrozumieć, jak te wszystkie zabezpieczenia w elektryce współpracują, żeby zapewnić bezpieczeństwo, co jest zgodne z najlepszymi praktykami w tej branży.

Pytanie 6

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wyboru zabezpieczeń oraz urządzeń
B. wyboru i oznakowania przewodów
C. wartości natężenia oświetlenia na stanowiskach pracy
D. rozmieszczenia tablic informacyjnych i ostrzegawczych
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 7

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 6,0 kV
B. 2,5 kV
C. 4,0 kV
D. 1,5 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 8

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. instalacji odgromowej budynku.
B. instalacji elektrycznej.
C. linii kablowej zasilającej budynek.
D. linii napowietrznej niskiego napięcia.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 9

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
B. prasę hydrauliczną
C. cęgi do zdejmowania izolacji oraz wkrętak
D. nóż monterski
Podejście, które sugeruje użycie prasy hydraulicznej w przypadku łączenia przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO, jest mylne. Prasa hydrauliczna jest narzędziem stosowanym głównie do zaciskania końcówek przewodów, co w kontekście złączek WAGO nie ma zastosowania, ponieważ te złącza działają na zasadzie sprężystego zacisku mechanicznego, a nie na zasadzie spawania czy zaciskania. W przypadku użycia noża monterskiego, mylenie tej czynności z użyciem prasy hydraulicznej może wynikać z nieznajomości podstawowych zasad montażu instalacji elektrycznych. Nóż monterski jest narzędziem, które doskonale nadaje się do precyzyjnego usuwania izolacji, co jest kluczowe dla uzyskania dobrego połączenia. Cążki do zdejmowania izolacji i wkrętaki również nie są optymalnymi narzędziami w tym kontekście, ponieważ ich zastosowanie nie zabezpiecza połączenia w optymalny sposób, co może prowadzić do trudności w zapewnieniu dobrego kontaktu elektrycznego. W przypadku zastosowania cęgów do zdejmowania izolacji, istnieje ryzyko uszkodzenia przewodu, co obniża jakość połączenia. Dobre praktyki w branży elektrycznej wymagają użycia odpowiednich narzędzi dla określonego rodzaju złączeń i połączeń, co podkreśla znaczenie znajomości technologii i narzędzi dostępnych na rynku.

Pytanie 10

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie części czynnych
B. izolowanie miejsca pracy
C. urządzenia II klasy ochronności
D. połączenia wyrównawcze
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 11

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 12

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Rtęciowy.
B. Ledowy.
C. Halogenowy.
D. Wolframowy.
Wybór żarówki wolframowej, rtęciowej lub halogenowej jako odpowiedzi sugeruje pewne nieporozumienia dotyczące technologii oświetleniowej. Żarówki wolframowe, choć kiedyś były powszechnie stosowane, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością, wynoszącą średnio około 1000 godzin. Emitują one dużą ilość ciepła, co sprawia, że są mniej praktyczne w zastosowaniach wymagających długotrwałego użytkowania. Z kolei żarówki rtęciowe, wykorzystywane głównie w oświetleniu przemysłowym i ulicznym, mają swoje ograniczenia związane z zawartością rtęci, co czyni je zagrożeniem dla środowiska. Ich zastosowanie w domach jest nie tylko niepraktyczne, ale także niebezpieczne. Halogenowe żarówki, będące rozwinięciem technologii wolframowej, oferują nieco lepszą efektywność, ale nadal nie dorównują żarówkom LED pod względem oszczędności energii oraz żywotności. Typowe błędy myślowe, które mogą prowadzić do wyboru tych opcji, to przekonanie, że tradycyjne źródła światła są wystarczające do zaspokojenia potrzeb oświetleniowych, ignorując przy tym ich negatywny wpływ na rachunki za energię oraz środowisko. W praktyce, na podstawie badań i analiz branżowych, zaleca się stosowanie żarówek LED jako najbardziej efektywnej i ekologicznej opcji oświetleniowej, dostosowanej do współczesnych standardów.

Pytanie 13

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do wzmacniaczy maszynowych
C. Do transformatorów
D. Do prądnic tachometrycznych
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 14

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Zwarcie międzyfazowe
B. Upływ prądu
C. Przepięcie
D. Przeciążenie
Przeciążenie, zwarcie międzyfazowe i przepięcie to sytuacje, które nie są bezpośrednio związane z włączaniem wyłącznika różnicowoprądowego. Przeciążenie dotyczy sytuacji, w której obciążenie na linii elektrycznej przekracza dopuszczalny poziom, co może prowadzić do przegrzania przewodów i ich uszkodzenia, ale nie stanowi bezpośredniego zagrożenia dla życia. W takich przypadkach stosuje się wyłączniki nadprądowe, które reagują na wzrost natężenia prądu. Zwarcie międzyfazowe to awaria, która polega na bezpośrednim połączeniu dwóch przewodów fazowych, co prowadzi do znacznego wzrostu prądu i potencjalnie niebezpiecznych warunków, a także wymaga zastosowania wyłączników zabezpieczających. Przepięcie z kolei odnosi się do nagłych wzrostów napięcia, które mogą uszkodzić urządzenia, ale również nie są powodem do załączenia RCD. Zrozumienie różnicy pomiędzy tymi sytuacjami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych, a błędne przypisanie funkcji RCD do tych zagrożeń może prowadzić do niewłaściwej ochrony oraz zwiększonego ryzyka awarii instalacji.

Pytanie 15

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów rozruchowych i regulacyjnych
B. Sprawdzenie układów sterowania i sygnalizacji
C. Pomiar rezystancji izolacji i próbne uruchomienie
D. Impregnację uzwojeń i wyważenie wirnika
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 16

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 17

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik synchroniczny trójfazowy
B. Silnik krokowy
C. Silnik liniowy
D. Silnik indukcyjny jednofazowy
Silniki synchroniczne trójfazowe, choć są niezwykle wydajne i precyzyjne, nie są powszechnie używane w urządzeniach gospodarstwa domowego. Ich konstrukcja wymaga bardziej skomplikowanego układu zasilania oraz większego nakładu na utrzymanie synchronizacji prędkości wirnika z częstotliwością zasilania. Z tego powodu znajdują zastosowanie głównie w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa, na przykład w maszynach produkcyjnych lub generatorach prądu. Silniki krokowe natomiast, choć używane w sytuacjach wymagających precyzyjnego sterowania pozycyjnego, takich jak w drukarkach czy robotyce, nie są typowe dla podstawowych urządzeń AGD. Ich koszt oraz specyficzne wymagania co do sterowania czynią je mniej optymalnym wyborem dla prostych zastosowań domowych. Silniki liniowe, choć interesujące ze względu na ich zdolność do generowania ruchu liniowego bezpośrednio, są rzadko spotykane w urządzeniach AGD z powodu kosztów i skomplikowanej konstrukcji. Zwykle znajdują zastosowanie w specjalistycznych aplikacjach, takich jak transport wewnętrzny w zakładach produkcyjnych czy w kolejkach magnetycznych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych silników do urządzeń domowych, wynikają z niezrozumienia specyficznych potrzeb i ograniczeń każdego z tych rodzajów silników.

Pytanie 18

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 16 A
C. gG 20 A
D. aM 20 A
Wybór wkładek topikowych aM 20 A i aM 16 A jest niewłaściwy, ponieważ wkładki te są stworzone do zabezpieczania obwodów w przypadku przeciążeń, a nie zwarć, co czyni je mniej odpowiednimi do ochrony bojlerów elektrycznych. Wkładki aM charakteryzują się dłuższym czasem reakcji na krótkotrwałe przeciążenia, co może prowadzić do niebezpiecznych sytuacji, szczególnie w przypadku urządzeń takich jak bojler, które mogą generować znaczne obciążenia podczas rozruchu. Użycie wkładki aM mogłoby skutkować opóźnieniem w zadziałaniu zabezpieczenia, co w rezultacie narażałoby instalację na uszkodzenia. Z kolei wkładka gG 20 A, choć jest odpowiednia dla zabezpieczeń przed zwarciami, przekracza prąd znamionowy dla bojlera o mocy 3 kW, co oznacza, że w przypadku wystąpienia zwarcia wkładka mogłaby nie zadziałać wystarczająco szybko. Takie podejście może prowadzić do przegrzania przewodów i zwiększenia ryzyka pożaru lub uszkodzenia sprzętu. Niezrozumienie różnicy pomiędzy charakterystyką wkładek topikowych aM a gG jest typowym błędem, który skutkuje nieprawidłowym doborem zabezpieczeń w instalacjach elektrycznych.

Pytanie 19

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Waromierza
C. Watomierza
D. Reflektometru
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 20

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Wyłącznika nadprądowego
B. Wyłącznika różnicowoprądowego
C. Ochronnika przepięć
D. Elektronicznego przekaźnika czasowego
Wybór innego urządzenia, takiego jak wyłącznik nadprądowy, elektroniczny przekaźnik czasowy lub ochronnik przepięć, pokazuje nieporozumienie w zakresie funkcji i zastosowania tych urządzeń. Wyłącznik nadprądowy, choć również istotny w instalacjach elektrycznych, ma na celu ochronę przed przeciążeniem i zwarciem, a nie przed porażeniem prądem. Nie prowadzi się pomiarów prądu zadziałania w kontekście wyłączników nadprądowych, co czyni tę odpowiedź niepoprawną. Elektroniczny przekaźnik czasowy, który jest używany do kontrolowania czasów działania obwodów elektrycznych, nie ma zastosowania w kontekście ochrony przeciwporażeniowej. Z kolei ochronniki przepięć zabezpieczają urządzenia przed nagłymi wzrostami napięcia, ale również nie są odpowiednie w kontekście ochrony ludzi przed porażeniem prądem. Właściwe zrozumienie funkcji poszczególnych elementów instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa. Typowe błędy myślowe, takie jak mylenie funkcji ochronnych różnych urządzeń, mogą prowadzić do nieprawidłowej oceny ryzyka oraz niewłaściwych decyzji w zakresie zabezpieczeń elektrycznych. W praktyce, wiedza na temat odpowiednich zastosowań wyłączników różnicowoprądowych oraz ich regularne testowanie są niezbędne dla ochrony użytkowników instalacji elektrycznych.

Pytanie 21

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Rozłącznik
B. Wyłącznik
C. Odłącznik
D. Stycznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 22

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. Na drabinkach
B. W listwach przypodłogowych
C. Przewodami szynowymi
D. W kanałach podłogowych
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 23

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Uzbrojone
B. Rdzeniowe
C. Szynowe
D. Kabelkowe
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 24

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 500V
B. 1000 V
C. 750V
D. 250V
Wybór napięcia probierczego w testach rezystancji izolacji obwodów elektrycznych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemów. Odpowiedzi takie jak 750 V, 250 V oraz 1000 V mogą wydawać się na pierwszy rzut oka logiczne, ale w rzeczywistości mogą prowadzić do nieprawidłowych wniosków i problemów w praktyce. Użycie 750 V jest zbyt wysokie dla wielu instalacji o napięciu roboczym 230/400 V, co może skutkować uszkodzeniem izolacji, a tym samym zagrażać bezpieczeństwu użytkowników. Z kolei napięcie 250 V jest niewystarczające do skutecznego przeprowadzenia testu, co może nie ujawnić rzeczywistych problemów z izolacją, takich jak niewidoczne uszkodzenia czy degradacja materiału. Napięcie 1000 V, choć stosowane w niektórych aplikacjach, również nie jest zalecane dla instalacji o niższych wartościach napięcia roboczego, ponieważ może prowadzić do fałszywych wyników, które nie odzwierciedlają stanu faktycznego. Kluczowe znaczenie ma stosowanie odpowiednich norm, jak PN-EN 61557-2, które określają, że dla instalacji 230/400 V optymalnym napięciem probierczym jest 500 V. Wybór niewłaściwego napięcia może prowadzić do nieprawidłowych ocen stanu izolacji, co w konsekwencji zwiększa ryzyko awarii oraz zagrożenia dla bezpieczeństwa.

Pytanie 25

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (5÷10) · In
B. (2÷3) · In
C. (3÷5) · In
D. (5÷10) · In
Zakres zadziałania wyzwalaczy elektromagnetycznych samoczynnych wyłączników instalacyjnych nadprądowych typu C jest kluczowym elementem ich funkcjonowania, a błędne odpowiedzi często wynikają z niepełnego zrozumienia ich charakterystyki. Odpowiedzi sugerujące zakres (3÷5) · In i (2÷3) · In są niepoprawne, ponieważ odnoszą się do wyzwalaczy typu B, które działają w niższych krotnościach prądu znamionowego. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenia nie generują dużych prądów rozruchowych, co czyni je odpowiednimi dla instalacji oświetleniowych oraz gniazd zasilających. Również odpowiedź (5÷10) · In nie jest dwukrotnie podana przez przypadek - popełniono tu błąd w prezentacji opcji, co może wprowadzać w błąd. Ważne jest, aby przy wyborze odpowiednich wyłączników nadprądowych kierować się ich charakterystyką zgodną z normami, co wpływa na bezpieczeństwo i niezawodność instalacji. Typowe błędy obejmują mylenie charakterystyki wyzwalaczy B i C, co może prowadzić do niewłaściwego doboru zabezpieczeń w obwodach, narażając instalację na nadmierne ryzyko uszkodzeń. Zrozumienie różnic między tymi typami wyzwalaczy jest kluczowe dla zapewnienia ochrony przed zwarciami oraz nadmiernym przeciążeniem, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznej.

Pytanie 26

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Serwis styków oraz połączeń śrubowych
B. Czyszczenie izolatorów
C. Obsługa przełącznika zaczepów
D. Weryfikacja poziomu oleju w olejowskazie konserwatora
Podczas oceny konserwacji transformatorów wiele osób może błędnie zinterpretować działania, które powinny być podejmowane w trakcie oględzin. Konserwacja przełącznika zaczepów jest z pewnością istotnym aspektem obsługi transformatora, jednak nie jest to czynność bezpośrednio związana z bieżącym nadzorowaniem jego pracy. Przełączniki zaczepów są kluczowe dla regulacji napięcia, ale ich konserwację przeprowadza się w innych cyklach czasowych, a nie w trakcie standardowych oględzin. Również czyszczenie izolatorów jest istotne, jednak skupia się na usuwaniu osadów oraz zanieczyszczeń, które mogą wpływać na właściwości izolacyjne. Ta czynność również nie jest bezpośrednio związana z monitorowaniem poziomu oleju. Konserwacja styków i połączeń śrubowych jest ważna, aby zapewnić stabilne połączenia elektryczne, ale nie jest to czynność, która powinna być przeprowadzana w czasie standardowych oględzin operacyjnych. Mylne podejście do tych czynności wynika często z braku zrozumienia ich priorytetów w kontekście bieżącej eksploatacji transformatora. Ostatecznie, kluczowym aspektem w pracy z transformatorami jest zapewnienie ich bezpieczeństwa i stabilności działania, co jest realizowane poprzez systematyczne monitorowanie i konserwację, gdzie sprawdzanie poziomu oleju stanowi fundament tej procedury.

Pytanie 27

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
B. który współdziała z przekaźnikiem sygnalizacyjnym
C. który działa z przekaźnikiem czasowym
D. posiadający aparat różnicowoprądowy
W kontekście zabezpieczania przewodów przed przeciążeniem i zwarciem, odpowiedzi sugerujące współpracę z przekaźnikiem czasowym, sygnalizacyjnym lub wyposażenie w aparat różnicowoprądowy są nieadekwatne do postawionego pytania. Przekaźnik czasowy, który może być używany do kontrolowania czasowego działania urządzeń elektrycznych, nie jest elementem bezpośrednio zabezpieczającym przed przeciążeniem. Jego funkcjonalność koncentruje się na precyzyjnym zarządzaniu czasem, co nie ma zastosowania w kontekście natychmiastowego reagowania na nadmierny prąd. Z kolei przekaźnik sygnalizacyjny jest używany do monitorowania i wskazywania stanu obwodu, a nie do jego ochrony. Co więcej, aparaty różnicowoprądowe są wyspecjalizowane w detekcji prądów upływowych, mających na celu zabezpieczenie osób i mienia przed porażeniem prądem, lecz nie eliminują ryzyka przeciążeń czy zwarć. Zastosowanie tych elementów w miejscu wyłącznika zabezpieczającego może prowadzić do fałszywego poczucia bezpieczeństwa, ponieważ nie zapewniają one właściwego odcięcia zasilania w przypadku zbyt wysokiego natężenia prądu. Kluczowym błędem w myśleniu jest zapominanie, że każdy z tych elementów ma swoją specyfikę i zastosowanie; ich niewłaściwe użycie może skutkować poważnymi konsekwencjami dla bezpieczeństwa instalacji elektrycznej.

Pytanie 28

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. przyłącze
B. rozdzielnica główna
C. wewnętrzna linia zasilająca
D. złącze
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 29

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. mostka LC
B. wskaźnika kolejności faz
C. omomierza
D. miernika izolacji
Wybór wskaźnika kolejności faz do sprawdzania ciągłości żył w przewodzie YDY 4x2,5 mm2 wskazuje na pewne nieporozumienie dotyczące przeznaczenia tego urządzenia. Wskaźniki kolejności faz służą do identyfikacji i potwierdzania poprawnego ustawienia faz w układzie trójfazowym. Ich główną funkcją jest ocena kolejności przychodzących faz w instalacji, a nie mierzenie oporu elektrycznego czy ciągłości przewodów. Dlatego stosowanie ich w kontekście sprawdzania ciągłości żył może prowadzić do błędnych wniosków. Mostek LC, który jest używany do pomiarów impedancji w obwodach, również nie jest odpowiednim narzędziem w tej sytuacji, ponieważ tak samo jak wskaźnik kolejności faz, nie jest przystosowany do pomiaru oporu w przewodach. Miernik izolacji, z kolei, ma swoje zastosowanie w testach odporności izolacji przewodów, ale nie służy do bezpośredniego pomiaru ciągłości żył. Zastosowanie niewłaściwych narzędzi do specyficznych zadań technicznych może prowadzić do zaniedbań w ocenie stanu instalacji, co z kolei stwarza ryzyko bezpieczeństwa. Zrozumienie funkcji i ograniczeń różnych narzędzi pomiarowych jest kluczowe w pracy elektryka, aby unikać błędów, które mogą mieć poważne konsekwencje.

Pytanie 30

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. maksymalnej wielkości prądu zwarciowego
B. progu zadziałania wyzwalacza przeciążeniowego
C. czasu działania wyzwalacza zwarciowego
D. wartości prądu wyłączającego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 31

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Czujnik kolejności faz.
C. Przekaźnik czasowy.
D. Lampkę sygnalizacyjną trójfazową.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 32

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Kontrola zabezpieczeń i stanu osłon części wirujących
B. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
C. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 33

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,79
C. 0,95
D. 0,75
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 34

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Formowania oczek na końcach żył.
B. Montażu zacisków zakleszczających.
C. Zaprasowywania przewodów w połączeniach wsuwanych.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji kleszczy w kontekście instalacji elektrycznych. Zaprasowywanie przewodów w połączeniach wsuwanych oraz montaż zacisków zakleszczających to techniki, które wymagają innych narzędzi, takich jak szczypce do zaprasowywania lub specjalistyczne narzędzia do zaciskania kabli. Te podejścia są stosowane w zupełnie innych kontekstach, a pomylenie ich z formowaniem oczek może prowadzić do znacznych problemów w instalacji. Zaciskanie końcówek tulejkowych na żyłach przewodu również nie jest funkcją kleszczy przeznaczonych do formowania oczek, ponieważ to zadanie wymaga użycia odpowiednich narzędzi zaprasowujących, które na ogół nie mają funkcji tworzenia oczek. Ważne jest, aby podczas pracy z instalacjami elektrycznymi stosować odpowiednie narzędzia do specyficznych zadań, co jest zgodne z normami bezpieczeństwa i efektywności. Typowym błędem myślowym jest przyjmowanie, że różne narzędzia mogą pełnić te same funkcje, co prowadzi do nieprawidłowości w realizacji instalacji oraz potencjalnych zagrożeń. Właściwe zrozumienie zadań przypisanych do poszczególnych narzędzi jest kluczowe dla sukcesu w pracy elektryka.

Pytanie 35

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Torx.
B. Kluczem nasadowym.
C. Kluczem imbusowym.
D. Wkrętakiem z nacięciem Phillips.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 36

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. porażeniem
B. zwarciem
C. przeciążeniem
D. przepięciem
Wybór niewłaściwej odpowiedzi może prowadzić do nieporozumień na temat funkcji wyłączników różnicowoprądowych. Zwarcie, czyli nagłe połączenie dwóch przewodów o różnym potencjale, prowadzi do zwiększonego przepływu prądu, co zazwyczaj jest zabezpieczane przez wyłączniki automatyczne (np. wyłączniki nadprądowe), a nie przez RCD, które nie reagują na wzrost natężenia prądu, lecz na różnice w prądzie między przewodami. Przepięcia, które mogą być wynikiem nagłych skoków napięcia, również nie są głównym celem RCD. Przeciążenie, z kolei, to sytuacja, gdy obciążenie przekracza nominalną wartość zabezpieczeń, co ponownie wymaga reakcji wyłączników nadprądowych. Kluczowym błędem jest zrozumienie, że RCD nie zabezpiecza przed skutkami zwarcia, przeciążenia ani przepięcia, lecz tylko przed porażeniem elektrycznym wynikającym z upływu prądu. Dobrą praktyką jest stosowanie RCD jako dodatkowego zabezpieczenia w instalacjach elektrycznych, ale nie należy mylić ich funkcji z innymi rodzajami zabezpieczeń, co może prowadzić do niewłaściwego stosowania urządzeń i potencjalnych zagrożeń dla użytkowników.

Pytanie 37

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Instalacja dodatkowego gniazda elektrycznego
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Zmiana rodzaju zastosowanych przewodów
D. Wymiana uszkodzonych źródeł światła
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 38

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
Podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych niezwykle istotne jest przestrzeganie procedur bezpieczeństwa, które zapobiegają wypadkom. Wiele osób może pomylić kolejność działań, co prowadzi do niebezpiecznych sytuacji. Na przykład, pierwszym krokiem w odpowiedziach opisujących zabezpieczenie przed przypadkowym załączeniem przed wyłączeniem instalacji spod napięcia jest istotnym błędem. Jeśli instalacja nie została wyłączona, jakiekolwiek zabezpieczenia mogą być niewystarczające, co może skutkować niebezpieczeństwem dla osób pracujących w danym miejscu. Ponadto, potwierdzenie braku napięcia po zabezpieczeniu może prowadzić do fałszywego poczucia bezpieczeństwa. Bez uprzedniego wyłączenia instalacji, wszelkie późniejsze kroki są bezzasadne, ponieważ osoba może być narażona na ryzyko porażenia prądem. Z kolei oznakowanie miejsca pracy powinno odbywać się na końcu, co nie tylko może wprowadzić chaos, ale również nie zabezpiecza przed przypadkowymi włączeniami. Praktyczne zastosowanie tych zasad jest kluczowe; regularne szkolenia i przestrzeganie norm, takich jak PN-EN 50110-1, są niezbędne dla zapewnienia bezpieczeństwa. Ignorowanie właściwej kolejności działań naraża nie tylko pracowników, ale również instytucje na poważne konsekwencje prawne i finansowe, dlatego tak ważne jest zrozumienie i stosowanie się do ustalonych procedur.

Pytanie 39

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Wiertarkę, lutownicę, wkrętak
B. Lutownicę, wiertarkę, ściągacz izolacji
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Nóż monterski, wiertarkę, ściągacz izolacji
Wybór narzędzi w odpowiedziach niepoprawnych wskazuje na błędne zrozumienie podstawowych zasad związanych z instalacjami elektrycznymi i ich wykonaniem. Lutownica, mimo że jest narzędziem użytecznym w niektórych pracach elektrycznych, nie jest konieczna w tym przypadku, ponieważ przewody YDYp są zazwyczaj łączone poprzez skręcanie lub złączki, a nie lutowanie. Wiertarka również nie jest narzędziem niezbędnym do podłączenia plafonu, gdyż jej zastosowanie ogranicza się głównie do wiercenia otworów w sufitach, co nie jest wymagane, jeżeli montaż może odbyć się na gotowych mocowaniach. Wykorzystanie wkrętaka jest istotne, jednak w połączeniu z niewłaściwymi narzędziami, nie spełnia ono swojej funkcji w kontekście prawidłowego podłączenia. Błędy myślowe, które mogą prowadzić do takich wniosków, to m.in. mylenie funkcji narzędzi oraz niezrozumienie specyfikacji stosowanych kabli i ich użycia w praktyce. Dla zapewnienia bezpieczeństwa oraz efektywności pracy, ważne jest, aby używać odpowiednich narzędzi zgodnie z ich przeznaczeniem oraz z zachowaniem zasad bezpieczeństwa, co zwiększa jakość wykonanej instalacji.

Pytanie 40

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana miejscami dwóch faz
C. brak podłączenia jednej fazy
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.