Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 31 maja 2025 09:10
  • Data zakończenia: 31 maja 2025 09:30

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W trakcie tynkowania ceglanego gzymsu zaprawę narzutu aplikujemy na

A. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
B. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
C. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
D. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
Podczas tynkowania gzymsu ceglanego, kluczowe jest, aby zaprawę narzutu nanosić na odpowiednio dobranym odcinku. Pozwala to na precyzyjne wyprofilowanie gzymsu przed związaniem zaprawy. W praktyce oznacza to, że można przesuwać szablon po prowadnicach w obu kierunkach - do przodu i do tyłu, co umożliwia uzyskanie równomiernego i estetycznego wykończenia. Takie podejście jest zgodne z najlepszymi praktykami w budownictwie, które sugerują, że kontrola nad aplikacją zaprawy jest kluczowa dla trwałości i wyglądu wykończenia. Przykładowo, w przypadku gzymsów, które są często narażone na działanie warunków atmosferycznych, odpowiednia technika tynkowania może znacząco wpłynąć na ich odporność na wilgoć czy uszkodzenia mechaniczne. Warto również zwrócić uwagę na sposób nanoszenia zaprawy, aby uniknąć powstawania szczelin i nierówności, które mogą prowadzić do późniejszych problemów z estetyką i funkcjonalnością. Zachowanie procedur nanoszenia zaprawy z uwagą na czas związania umożliwia lepszą kontrolę nad ostatecznym efektem.

Pytanie 2

Jaką ilość zaprawy murarskiej należy przygotować do wzniesienia ściany z bloczków z betonu komórkowego o grubości 37 cm oraz wymiarach 3,5 × 8 m, jeśli do budowy 1 m2 takiej ściany potrzeba 0,043 m3 zaprawy?

A. 12,728 m3
B. 1,591 m3
C. 1,204 m3
D. 5,569 m3
W przypadku błędnych odpowiedzi, kluczowym błędem jest zrozumienie proporcji między powierzchnią a zapotrzebowaniem na zaprawę. Na przykład, niektórzy mogą pomylić obliczenia powierzchni z objętością, co prowadzi do podania niewłaściwych wartości. Również, przyjmowanie wartości zapotrzebowania, niezwiązanej z rzeczywistymi wymiarami ściany, jest częstym błędem. W kontekście praktyki budowlanej, obliczanie ilości materiałów budowlanych powinno opierać się na solidnych podstawach matematycznych oraz znajomości specyfikacji materiałów dostępnych na rynku. Ponadto, niewłaściwe zrozumienie jednostek miary, takich jak m² (powierzchnia) i m³ (objętość), prowadzi do pomyłek w obliczeniach. Idealnie, każdy specjalista powinien być w stanie zweryfikować swoje obliczenia, upewniając się, że wszystko jest zgodne z normami budowlanymi oraz praktykami w branży. Dlatego tak ważne jest, aby przed przystąpieniem do realizacji projektu zrozumieć nie tylko teoretyczne aspekty, ale także praktyczne zastosowanie tych obliczeń w rzeczywistych warunkach budowlanych.

Pytanie 3

Do czego jest używana poziomica wężowa?

A. Do kontrolowania grubości muru w ścianie
B. Do określania zewnętrznej krawędzi warstw muru
C. Do sprawdzania pionowości murowanej ściany
D. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
Poziomica wężowa to naprawdę przydatne narzędzie, które pozwala na precyzyjne wyznaczanie poziomu murowanych ścian. Działa na zasadzie hydrostatyki, co oznacza, że woda w rurce ustawia się na równym poziomie, niezależnie od tego, jak trzymamy poziomicę. To mega ważne, zwłaszcza przy dużych budowach, gdzie precyzja ma kluczowe znaczenie. Czasem tradycyjne poziomice nie są wystarczające, szczególnie w trudnym terenie. Dobrze jest wiedzieć, że poziomica wężowa świetnie sprawdzi się przy ustawianiu fundamentów, bo dokładne przeniesienie poziomu z jednego miejsca na drugie zabezpiecza stabilność budowli. W branży budowlanej trzymanie się norm i dobrych praktyk to podstawa, żeby zbudować coś, co posłuży przez lata i będzie bezpieczne.

Pytanie 4

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. wapna hydratyzowanego
B. cementu portlandzkiego
C. cementu hutniczego
D. wapna hydraulicznego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 5

W remontowanym budynku na poddaszu zamierzono stworzyć lekką ściankę działową, aby oddzielić dwa pokoje mieszkalne. Jakie materiały powinno się zastosować do jej budowy?

A. cegły klinkierowe
B. cegły szamotowe
C. płyty Pro-Monta
D. płyty wiórowe laminowane
Wybór płyty wiórowej laminowanej na ściankę działową może wydawać się spoko, ale w praktyce nie jest najlepszym pomysłem. One nie mają wystarczającej stabilności ani izolacji akustycznej, a to w mieszkaniach jest kluczowe. Może się zdarzyć, że dźwięki będą przenikały między pokojami, co jest trochę irytujące. Z kolei cegły klinkierowe to w ogóle nie jest dobre rozwiązanie, bo są za ciężkie i niepraktyczne w tym kontekście. Mogą obciążać konstrukcję budynku, co na poddaszu jest istotne, gdyż stropy mają swoje ograniczenia. A cegły szamotowe, mimo że mają swoją wartość w wysokich temperaturach, to też nie nadają się na ścianki działowe. Wybierając materiały budowlane, warto zwrócić uwagę na ich funkcjonalność i trwałość, a także na normy budowlane, które mówią, co jest dozwolone w wewnętrznych konstrukcjach.

Pytanie 6

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
B. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
C. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
D. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 7

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. wapiennego
B. bazaltowego
C. granitowego
D. barytowego
Wybór kruszywa wapiennego, granitowego czy bazaltowego nie jest właściwy w kontekście ochrony przed promieniowaniem rentgenowskim. Kruszywo wapienne, mimo że jest powszechnie używane w budownictwie, ma niską gęstość, co sprawia, że nie jest w stanie skutecznie blokować promieniowania ionizującego. Jego zastosowanie w tynkach ochronnych nie zapewni wystarczającej bariery dla promieni X, przez co narażałoby osoby znajdujące się w pobliżu na niebezpieczne poziomy promieniowania. Granit i bazalt, choć charakteryzują się większą gęstością niż wapń, również nie są odpowiednie ze względu na swoje właściwości fizyczne. Granite, jako materiał naturalny, jest ciężki i trudny w obróbce, a jego zdolności ochronne w kontekście promieniowania są ograniczone. Bazalt, będący wynikiem wulkanicznej działalności, również nie dostarcza potrzebnej ochrony przed promieniowaniem rentgenowskim. Wybierając materiał do tynków ochronnych, kluczowe jest zrozumienie, że efektywność ochrony przed promieniowaniem zależy głównie od gęstości i specyfikacji chemicznych materiału, co czyni baryt jedynym słusznym rozwiązaniem w tym przypadku. Powszechnym błędem w myśleniu jest zakładanie, że większa masa materiału automatycznie przekłada się na lepszą ochronę, podczas gdy najważniejsza jest ich odpowiednia struktura i rodzaj.

Pytanie 8

W rogach słupów narażonych na uderzenia i przewidzianych do pokrycia tynkiem należy

A. zainstalować kątowniki z blachy ocynkowanej
B. przygotować mocniejszą zaprawę do narzutu
C. zamontować płaskowniki stalowe ocynkowane
D. nałożyć dodatkową warstwę tynku
Osadzenie kątowników z blachy ocynkowanej w narożach słupów narażonych na uderzenia jest najlepszą praktyką w budownictwie, szczególnie w obiektach przemysłowych i użyteczności publicznej. Kątowniki pełnią rolę dodatkowego wzmocnienia, które chroni narożniki przed uszkodzeniami mechanicznymi. Stal ocynkowana zapewnia ochronę przed korozją, co jest kluczowe w miejscach narażonych na działanie wilgoci i innych czynników atmosferycznych. W praktyce, zastosowanie kątowników pozwala na zwiększenie trwałości konstrukcji, a także na wydłużenie cyklu życia słupów. Normy budowlane, takie jak Eurokod 3, zalecają stosowanie takich rozwiązań w celu zapewnienia odpowiedniej odporności na obciążenia dynamiczne. W sytuacjach, gdy słupy są narażone na intensywne użytkowanie, jak w magazynach czy halach produkcyjnych, zastosowanie kątowników staje się niezbędne dla zapewnienia bezpieczeństwa oraz zachowania estetyki budynku.

Pytanie 9

Jakie materiały należy wykorzystać do wykonania lekkiej pionowej izolacji przeciwwilgociowej na ścianie w podziemiu?

A. dwóch warstw papy na lepiku asfaltowym
B. dwóch warstw lepiku asfaltowego
C. jednej warstwy emulsji asfaltowej
D. jednej warstwy folii polietylenowej
Jedna warstwa folii polietylenowej jest niewystarczająca do zabezpieczenia ścian podziemia przed wilgocią. Choć folia polietylenowa jest popularnym materiałem izolacyjnym, jej zastosowanie w pojedynczej warstwie nie zapewnia odpowiedniego poziomu ochrony. Folia może ulegać uszkodzeniom mechanicznym i łatwo przerywać się w wyniku ruchów podłoża, co prowadzi do powstawania mostków wilgotnościowych. Z kolei jedna warstwa emulsji asfaltowej, mimo iż jest to produkt wodochronny, również nie jest wystarczająca. Emulsje asfaltowe są stosowane zazwyczaj jako podkład lub preparat gruntujący, ale ich jednowarstwowe nałożenie nie oferuje odpowiedniej barierowości, ponieważ są bardziej podatne na uszkodzenia i mogą łatwiej ulegać degradacji na skutek działania wody i zmiennych warunków atmosferycznych. Dwie warstwy lepiku asfaltowego zapewniają lepszą szczelność oraz trwałość, gdyż ich struktura jest bardziej odporna na działanie ciśnienia hydrostatycznego oraz zmiany temperatury. Podczas wykonywania izolacji budynków warto kierować się zaleceniami producentów oraz normami budowlanymi, aby uniknąć powszechnych błędów, które mogą prowadzić do poważnych problemów związanych z wilgocią i degradacją budynku. Wykonywanie izolacji w sposób niewłaściwy może skutkować nie tylko uszkodzeniem konstrukcji, ale także wystąpieniem pleśni i grzybów, które negatywnie wpływają na zdrowie mieszkańców.

Pytanie 10

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. pokryć mleczkiem cementowym
B. obłożyć listewkami drewnianymi
C. owinąć siatką stalową ocynkowaną
D. wyłożyć matami trzcinowymi
Powlekanie elementów stalowych mleczkiem cementowym, pokrywanie listewkami drewnianymi oraz obkładanie matami trzcinowymi to podejścia, które nie spełniają standardów budowlanych dotyczących przygotowania podłoża pod tynk. Mleczko cementowe, mimo że może działać jako zabezpieczenie, nie tworzy wystarczającej struktury nośnej dla tynku, co prowadzi do ryzyka jego odspajania. Powłoka cementowa jest zbyt cienka i nie ma właściwości zbrojnych, co skutkuje zwiększoną podatnością na pęknięcia. Pokrycie listewkami drewnianymi także nie jest rozwiązaniem trwałym. Drewno, narażone na działanie wilgoci, może ulegać deformacji i gnicie, co w konsekwencji wpływa na stabilność i trwałość nałożonego tynku. Co więcej, drewniane elementy mogą sprzyjać rozwojowi pleśni i grzybów. Obkładanie matami trzcinowymi jest metodą stosowaną w niektórych kontekstach, jednak nie zapewnia ona wymaganej nośności i odporności na czynniki atmosferyczne, co jest kluczowe w przypadku tynków zewnętrznych. W każdym z tych przypadków dochodzi do nieprawidłowego myślenia o wymaganiach konstrukcyjnych, co może prowadzić do poważnych uszkodzeń budynku w dłuższym okresie czasu.

Pytanie 11

O odklejaniu się tynku od podłoża świadczą

A. widoczne na tynku pęknięcia
B. głuchy dźwięk przy ostukiwaniu tynku młotkiem
C. łatwość zarysowania tynkowej powierzchni ostrym narzędziem
D. widoczne na tynku zgrubienia
Głuchy odgłos przy ostukiwaniu tynku młotkiem jest najważniejszym wskaźnikiem odwarstwienia tynku od podłoża. Taki dźwięk wskazuje na obecność pustek powietrznych, które powstały w wyniku słabego przylegania tynku do podłoża, co często jest efektem niewłaściwego przygotowania podłoża przed nałożeniem tynku lub nieodpowiednich warunków podczas aplikacji. Dobrą praktyką budowlaną jest przeprowadzanie testu ostukiwania w celu identyfikacji potencjalnych problemów z odwarstwieniem. W przypadku wykrycia odwarstwienia, zaleca się usunięcie luźnego tynku, a następnie przemyślane przygotowanie powierzchni oraz nałożenie nowego tynku, aby zapewnić jego trwałość i funkcjonalność. Dodatkowo, warto zwrócić uwagę na specyfikacje producentów tynków oraz lokalne normy budowlane, które mogą dostarczyć cennych wskazówek dotyczących odpowiednich materiałów i technik aplikacji, co przyczyni się do minimalizacji ryzyka odwarstwienia w przyszłości.

Pytanie 12

Jak powinny wyglądać spoiny w murach z kanałami dymowymi?

A. kompletne i nierówno wykończone od wnętrza kanału
B. niekompletne i równo wykończone od wnętrza kanału
C. kompletne i równo wykończone od wnętrza kanału
D. niekompletne i nierówno wykończone od wnętrza kanału
Spoiny w murach z kanałami dymowymi powinny być pełne i gładko wyrównane od wnętrza kanału, co jest zgodne z zasadami dobrych praktyk budowlanych oraz normami technicznymi. Pełne spoiny zapewniają odpowiednią szczelność, co jest kluczowe w kontekście odprowadzania spalin i dymu. Gładkie wyrównanie spoin zapobiega osadzaniu się zanieczyszczeń oraz minimalizuje ryzyko tworzenia się miejsc, w których może dochodzić do gromadzenia się sadzy, co z kolei mogłoby prowadzić do zatorów w kominie. Przykładem zastosowania tych zasad jest budowa systemów kominowych w domach jednorodzinnych, gdzie odpowiednie wykonanie spoin wpływa na bezpieczeństwo użytkowania pieców oraz efektowność odprowadzania spalin. W kontekście norm, odpowiednie dokumenty, takie jak PN-EN 12056 dotyczące systemów kominowych, podkreślają znaczenie pełnych i gładkich połączeń w zachowaniu bezpieczeństwa i trwałości konstrukcji kominowych.

Pytanie 13

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 10,125 kg
B. 1 012,5 kg
C. 101,25 kg
D. 10 125 kg
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.

Pytanie 14

Aby zbudować murowane ścianki działowe o grubości do 12 cm i jak najmniejszym ciężarze objętościowym, należy zastosować cegłę

A. ceramicznej pełnej
B. dziurawki
C. klinkierową
D. silikatową pełną
Wybór cegły silikatowej pełnej do budowy murowanych ścianek działowych nie jest optymalny, ponieważ te cegły, pomimo swojej wysokiej wytrzymałości, charakteryzują się dużym ciężarem objętościowym. W praktyce oznacza to, że ściany wykonane z tego materiału będą miały znaczący wpływ na obciążenie całej konstrukcji budynku, co może prowadzić do problemów z fundamentami. Z kolei cegła klinkierowa, mimo że estetyczna i bardzo trwała, jest zbyt ciężka oraz kosztowna do stosowania w konstrukcjach działowych, gdzie kluczowym czynnikiem są parametry ciężaru oraz kosztów. Cegła ceramiczna pełna również nie jest odpowiednia ze względu na swoją gęstość, co negatywnie wpływa na obciążenia statyczne. W kontekście budowlanym, typowe błędy myślowe obejmują mylenie zastosowań materiałów budowlanych; niektóre cegły, chociaż wytrzymałe, nie nadają się do lekkich konstrukcji działowych. Właściwe podejście do projektowania wymaga analizy wszystkich właściwości materiałów, a nie tylko ich wytrzymałości, co jest kluczowe dla uzyskania optymalnych efektów w budownictwie.

Pytanie 15

Aby postawić ścianę z bloczków gazobetonowych, niezbędne jest użycie kielni oraz

A. sznurka murarskiego i poziomicy
B. spoinówki i poziomicy
C. pacy i poziomicy
D. sznurka murarskiego i cykliny
Wykorzystanie innych narzędzi, takich jak cyklina, spoinówka czy pacą, w kontekście murowania ścian z bloczków gazobetonowych, jest niezgodne z najlepszymi praktykami budowlanymi. Cyklina, stosowana do obróbki krawędzi bloczków, jest przydatna na etapie przygotowania materiałów, ale nie jest kluczowym narzędziem podczas samego murowania. Jej użycie nie ma wpływu na precyzję układania bloków w pionie i poziomie, co jest niezbędne dla jakości i trwałości ściany. Spoinówka, która ma na celu formowanie spoin między bloczkami, również nie zastępuje poziomicy ani sznurka murarskiego. Używając jej w niewłaściwy sposób, można narazić całą konstrukcję na niedokładności. Z kolei paca, chociaż pomocna w nakładaniu zaprawy, nie jest istotna dla kontroli geometrii ściany. Często spotykanym błędem jest skupienie się na narzędziach, które są pomocne w późniejszych etapach budowy, zamiast na tych, które zapewniają podstawową dokładność na początku procesu murowania. Zastosowanie niewłaściwych narzędzi może skutkować poważnymi konsekwencjami, w tym błędami w konstrukcji. Dlatego fundamentalne jest zrozumienie, że narzędzia do kontrolowania poziomu i linii są kluczowe dla powodzenia projektu budowlanego.

Pytanie 16

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Nasiąkliwość oraz urabialność
B. Proporcje oraz urabialność
C. Wytrzymałość na ściskanie i proporcje
D. Wytrzymałość na ściskanie i nasiąkliwość
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 17

Do prac zanikających oraz tych, które zostają zakryte i wymagają odbioru, zalicza się

A. uzupełnianie tynku
B. malowanie
C. układanie podłogi
D. przygotowanie podłoża
Przygotowanie podłoża jest kluczowym etapem w procesie budowlanym, który ma na celu zapewnienie odpowiednich warunków dla dalszych prac wykończeniowych. Podłoże musi być solidne, równe i suche, aby materiały takie jak płytki, podłogi czy tynki mogły prawidłowo związać i funkcjonować bez ryzyka uszkodzeń. Niezbędne jest przeprowadzenie odpowiednich badań, takich jak ocena nośności podłoża oraz sprawdzenie poziomu wilgotności. Przykładem dobrych praktyk jest stosowanie wytycznych zawartych w normach budowlanych, które wskazują na konieczność przygotowania podłoża poprzez jego oczyszczenie, zagruntowanie oraz wyrównanie. Należy również wziąć pod uwagę rodzaj materiałów, które będą aplikowane na podłoże, ponieważ różne systemy wymagają specyficznych przygotowań. Odpowiednio przygotowane podłoże zapewnia trwałość i estetykę wykończenia, co jest kluczowe w kontekście przyszłych prac konserwacyjnych i użytkowania przestrzeni.

Pytanie 18

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
B. W trakcie wykonywania robót rozbiórkowych
C. Po finalizacji rozbiórki ścian
D. Przed przystąpieniem do robót rozbiórkowych
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 19

Kruszywem wykorzystywanym do produkcji betonów lekkich jest

A. pospółka
B. keramzyt
C. tłuczeń
D. grys
Kruszywem stosowanym do wytwarzania betonów lekkich jest keramzyt, który jest materiałem pochodzenia naturalnego, powstałym w wyniku wypalania gliny w wysokotemperaturowych piecach. Keramzyt charakteryzuje się niską gęstością, co sprawia, że doskonale nadaje się do produkcji lekkich betonów o obniżonej masie, a także dobrej izolacyjności termicznej i akustycznej. Dzięki tym właściwościom, beton keramzytowy jest szeroko stosowany w budownictwie do wykonywania elementów takich jak ściany osłonowe, stropy, a także w konstrukcjach, gdzie obniżona waga ma kluczowe znaczenie, na przykład w budynkach wielokondygnacyjnych. Zastosowanie keramzytu przyczynia się również do oszczędności energii, ponieważ budynki wykonane z tego materiału mają lepsze właściwości izolacyjne, co przekłada się na mniejsze koszty ogrzewania. Zgodnie z normą PN-EN 206-1, beton wykorzystujący keramzyt jako kruszywo może osiągać różne klasy wytrzymałości, co czyni go materiałem uniwersalnym i wszechstronnie zastosowalnym w nowoczesnym budownictwie.

Pytanie 20

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. emulsją asfaltową
B. roztworem asfaltowym
C. lepikiem asfaltowym
D. kitem asfaltowym
Lepik asfaltowy jest najczęściej stosowanym materiałem do łączenia warstw papy asfaltowej, ponieważ zapewnia doskonałą przyczepność i szczelność. Jego właściwości hydroizolacyjne są kluczowe przy izolacji ław fundamentowych, ponieważ zapobiegają przenikaniu wody do konstrukcji. Lepik asfaltowy, będący płynnym materiałem, pod wpływem ciepła staje się lepki, co umożliwia łatwe łączenie poszczególnych warstw papy. W praktyce, stosując lepik, można uzyskać ciągłość izolacji, co jest istotne dla długotrwałej ochrony fundamentów. Dobrą praktyką jest również przestrzeganie norm budowlanych, takich jak PN-EN 13707, które definiują wymagania dla materiałów hydroizolacyjnych. Dzięki zastosowaniu lepika asfaltowego na ławach fundamentowych, inwestorzy mogą mieć pewność, że ich struktury są odpowiednio zabezpieczone przed negatywnym działaniem wody i wilgoci, co w dłuższej perspektywie przekłada się na trwałość budowli.

Pytanie 21

Po zainstalowaniu kratki wentylacyjnej w otworze wentylacyjnym szczelinę, która powstała pomiędzy ramką a tynkiem, należy wypełnić

A. zaprawą cementową
B. zaprawą gipsową
C. silikonem akrylowym
D. żywicą epoksydową
Wybór innych materiałów do wypełnienia szczeliny między kratką wentylacyjną a tynkiem może prowadzić do różnych problemów. Żywica epoksydowa, choć charakteryzuje się wysoką wytrzymałością, jest sztywna i nieelastyczna, co w kontekście wentylacji może powodować pęknięcia w wyniku naturalnych ruchów budynku, zmian temperatury oraz wilgotności. Również zaprawy cementowe i gipsowe, mimo że mogą wydawać się odpowiednie, nie są przystosowane do dynamicznych warunków, jakie występują w systemach wentylacyjnych. Te materiały nie tylko mogą pękać w wyniku skurczu, ale także nie zapewniają odpowiednich właściwości uszczelniających, co prowadzi do problemów z wentylacją i potentialnych strat energetycznych. Niezrozumienie tych różnic może skutkować błędnymi wyborami przy montażu, co w dłuższej perspektywie prowadzi do kosztownych napraw oraz obniżenia efektywności systemu wentylacyjnego. Zastosowanie niewłaściwych materiałów jest zatem typowym błędem, który wynika z braku znajomości właściwości i zastosowania odpowiednich produktów w kontekście ich przeznaczenia.

Pytanie 22

Tynki 1-warstwowe obejmują tynki

A. selektywne
B. wytworne
C. powszechne
D. surowe
Tynki surowe to rodzaj tynków 1-warstwowych, które charakteryzują się prostotą wykonania i szybkim czasem aplikacji. Są one najczęściej stosowane w budownictwie jako podkład pod dalsze warstwy wykończeniowe, a dzięki swojej naturalnej strukturze i porowatości, zapewniają dobrą przyczepność dla kolejnych warstw. W praktyce, tynki surowe mogą być wykonane z tradycyjnych materiałów, takich jak cement, wapno czy gips, które po nałożeniu tworzą jednolitą powłokę. Warto zaznaczyć, że tynki surowe mogą być również stosowane w pomieszczeniach o podwyższonej wilgotności, gdyż odpowiednio przygotowane materiały mogą minimalizować ryzyko pojawienia się pleśni. W budownictwie ekologicznym, tynki surowe zyskują na popularności, ponieważ są produkowane z lokalnych surowców i mają niską emisję CO2. Zgodnie z normami PN-EN 998-1, tynki surowe muszą spełniać określone wymagania dotyczące wytrzymałości i trwałości, co czyni je kluczowym elementem w kontekście długoterminowej eksploatacji budynków.

Pytanie 23

W efekcie "klawiszowania" stropu na tynku sufitu w pomieszczeniu utworzyła się rysa. Usunięcie tego defektu polega w szczególności na

A. zaszpachlowaniu rysy zaprawą cementową
B. zaszpachlowaniu rysy zaprawą gipsową
C. pokryciu rysy pasem papy asfaltowej
D. pokryciu rysy pasem siatki z włókna szklanego
Pokrycie rysy pasem siatki z włókna szklanego jest skuteczną metodą naprawy uszkodzonego tynku, szczególnie w przypadku pęknięć, które mogą się powiększać w wyniku ruchów konstrukcji lub różnic temperatur. Siatka z włókna szklanego działa jako wzmocnienie, rozkładając naprężenia na większej powierzchni, co z kolei zapobiega dalszemu rozwojowi rysy. W praktyce, po nałożeniu siatki, rysa jest zaszpachlowana odpowiednią zaprawą, co dodatkowo zabezpiecza naprawę. Dobrymi praktykami branżowymi jest stosowanie siatki o gramaturze odpowiedniej do specyfiki pomieszczenia oraz uniknięcie nadmiernego naciągania siatki, co może prowadzić do dalszych pęknięć. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz zmieniające się warunki klimatyczne.

Pytanie 24

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapiennej
B. wapienno-gipsowej
C. cementowej
D. gipsowej
Zaprawa wapienna, wapienno-gipsowa oraz gipsowa nie są odpowiednie do stosowania w konstrukcjach fundamentowych narażonych na zawilgocenie. Ich właściwości mechaniczne i odporność na wilgoć są znacznie niższe niż w przypadku zapraw cementowych. Zaprawa wapienna, chociaż ma swoje zastosowania, głównie w budownictwie zabytkowym i renowacyjnym, jest mniej odporna na działanie wody i nie zapewnia wystarczającej wytrzymałości w sytuacjach, gdzie występuje ciągła ekspozycja na wilgoć. Wapienno-gipsowa i gipsowa zaprawa charakteryzują się jeszcze większą podatnością na degradację pod wpływem wody, co sprawia, że ich użycie w fundamentach byłoby katastrofalnym błędem. Często błędnie sądzimy, że materiały oparte na wapnie mogą być wystarczająco trwałe, jednak w rzeczywistości ich zastosowanie w wilgotnych warunkach może prowadzić do poważnych uszkodzeń konstrukcji, co wymaga później kosztownych napraw. Standardy budowlane i dobre praktyki wyraźnie zalecają stosowanie zapraw cementowych w takich konstrukcjach, aby zapewnić zarówno trwałość, jak i bezpieczeństwo budynku. Zrozumienie tych różnic jest kluczowe dla każdego zajmującego się budownictwem.

Pytanie 25

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 1386,00 zł
C. 546,00 zł
D. 945,00 zł
Niepoprawne odpowiedzi mogą wynikać z błędnych założeń dotyczących obliczeń powierzchni lub kosztów. Na przykład, jeśli ktoś obliczy tylko jedną stronę ściany, mogą uzyskać koszt całkowity równy kosztowi tynku dla 21 m² zamiast 42 m². Dodatkowo, zignorowanie kosztu materiałów lub robocizny może prowadzić do znacznych niedoszacowań. Przykładowo, jeśli ktoś pomyli się w obliczeniach i weźmie pod uwagę tylko koszty robocizny, może uzyskać kwotę 798,00 zł, co jest błędne, ponieważ całkowity koszt musi uwzględniać oba składniki. Kolejnym typowym błędem jest nieprawidłowe pomnożenie jednostkowych kosztów przez całkowitą powierzchnię. Warto pamiętać, że w kosztorysach budowlanych, zgodnie z dobrymi praktykami, należy zawsze wyliczać sumy dla wszystkich części projektu, aby uniknąć nieporozumień i nieprzewidzianych wydatków. Zrozumienie, jak poprawnie obliczać koszty i jakie różne czynniki należy uwzględnić, jest kluczowe dla każdego specjalisty w branży budowlanej, ponieważ pozwala to na efektywne zarządzanie zasobami i kontrolowanie wydatków.

Pytanie 26

Jaką metodę stosujemy do badania konsystencji zaprawy?

A. prasy hydraulicznej
B. objętości omierza
C. stożka diamentowego
D. penetrometru
Wybór innej metody pomiaru konsystencji zaprawy, jak stożek diamentowy, prasa hydrauliczna czy objętość omierza, jest nieadekwatny do rzeczywistych potrzeb oceny właściwości świeżych zapraw. Stożek diamentowy, choć stosowany w innych kontekstach, nie jest narzędziem do pomiaru konsystencji zapraw budowlanych. Zamiast tego, jego zastosowanie bardziej odnosi się do testów dotyczących twardości materiałów, co może prowadzić do błędnych wniosków w przypadku zapraw, które wymagają oceny urabialności. Prasa hydrauliczna, choć skuteczna w ocenie wytrzymałości materiałów, nie mierzy bezpośrednio ich konsystencji. Tego rodzaju urządzenia służą do testowania wytrzymałości na ściskanie, a nie do oceny, jak łatwo materiał można rozprowadzić. Podobnie, objętość omierza to metoda, która nie daje informacji o konsystencji, lecz o objętości materiału, co jest zupełnie innym parametrem. W praktyce, błędne zrozumienie roli każdego z tych narzędzi może prowadzić do nieprawidłowych ocen jakości zapraw, co z kolei wpływa na bezpieczeństwo i trwałość konstrukcji. Znajomość standardów i zastosowań odpowiednich narzędzi pomiarowych jest kluczowa dla profesjonalistów w branży budowlanej, aby uniknąć takich nieporozumień.

Pytanie 27

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. rozbiórki ścianek działowych
B. demontażu urządzeń i instalacji sanitarnych
C. demontażu stolarki okiennej i drzwiowej
D. rozbiórki konstrukcji więźby dachowej
Demontaż urządzeń sanitarnych, zanim zaczniemy rozbiórkę budynku murowanego z drewnianym dachem, to naprawdę ważna sprawa. Dzięki temu dbamy o bezpieczeństwo i ułatwiamy sobie całą robotę. Te instalacje, jak rury wodociągowe czy systemy grzewcze, mogą sprawić kłopoty, jeżeli będą przypadkowo uszkodzone. Na przykład, jeśli najpierw pozbędziemy się tych instalacji, to zmniejszamy ryzyko wycieków wody, które mogłyby zniszczyć strukturę budynku, a to z kolei wiązałoby się z dodatkowymi kosztami napraw. W zgodzie z normami budowlanymi, jak chociażby PN-EN 16272, powinniśmy dokładnie sprawdzić, co mamy w budynku przed rozpoczęciem rozbiórki. Z mojego doświadczenia, dobre przygotowanie i wcześniejsze usunięcie urządzeń sanitarnych to nie tylko wymóg prawny, ale też mądra praktyka w budowlance. Dzięki temu rozbiórka idzie sprawnie i bez problemów.

Pytanie 28

Który z podanych tynków należy do tynków o cienkiej warstwie?

A. Ciągnięty
B. Ciepłochronny
C. Akrylowy
D. Wypalony
Tynki akrylowe zaliczają się do tynków cienkowarstwowych ze względu na ich charakterystyczną budowę i sposób aplikacji. Tynki te mają zazwyczaj grubość od 1 do 3 mm i są stosowane na zewnętrzne i wewnętrzne powierzchnie budynków. Ich główną zaletą jest elastyczność, co pozwala na odporność na pęknięcia wywołane ruchami podłoża oraz różnicami temperatur. Tynki akrylowe charakteryzują się dobrą przyczepnością do podłoża, co czyni je idealnymi do stosowania na różnych materiałach, takich jak beton, cegła czy płyty gipsowo-kartonowe. Przykładem zastosowania tynków akrylowych jest ich użycie w systemach ociepleń budynków, gdzie pełnią rolę zarówno estetyczną, jak i ochronną. Dzięki różnorodności kolorów i faktur, tynki akrylowe umożliwiają architektom oraz inwestorom uzyskanie pożądanych efektów wizualnych, nie rezygnując jednocześnie z funkcji użytkowych. Warto zauważyć, że tynki akrylowe są zgodne z normami europejskimi, co potwierdza ich wysoką jakość oraz bezpieczeństwo stosowania.

Pytanie 29

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 1020 zł
B. 2420 zł
C. 2000 zł
D. 1200 zł
Nie trafiłeś w dobrą odpowiedź, ale nic się nie martw. Często zdarza się, że błędy wynikają z niewłaściwych obliczeń. Na przykład, jeśli ktoś wybiera 1020 zł, to może pomylić się przy dodawaniu kosztu robocizny do kosztów materiałów. Z 2000 zł może wynikać niezrozumienie, że procent od materiałów dodaje się tylko do samej kwoty materiałów, a nie do całego kosztu. A wybór 2420 zł może sugerować, że myślisz, że robocizna musi być droższa, ale to nie pasuje do tego pytania. W budownictwie ważne jest, żeby dobrze wszystko spisać i dokładnie policzyć, bo złe założenia mogą naprawdę skomplikować cały projekt.

Pytanie 30

Jakie ściany powinny być zbudowane z materiałów charakteryzujących się niskim współczynnikiem przewodzenia ciepła oraz niewielką gęstością pozorną?

A. Osłonowe
B. Fundamentowe
C. Piwniczne
D. Nośne
Zauważ, że ściany fundamentowe, nośne i piwniczne mają różne funkcje w budynku i to zmienia sposób ich wykonania. Ściany fundamentowe muszą być mocne, bo są narażone na duże obciążenia, więc używać się powinno materiałów bardziej wytrzymałych, jak beton czy bloczki. Izolacyjne materiały w tym miejscu mogą osłabiać konstrukcję, co nie jest dobrym pomysłem. Z kolei ściany nośne przenoszą ciężar z wyższych pięter, więc też muszą być solidne. A jeśli chodzi o ściany piwniczne, to one chronią przed wilgocią i naciskiem ziemi, więc powinny być mocne i odporne na wodę. Użycie lżejszych materiałów w tym wypadku może prowadzić do problemów, jak deformacje czy uszkodzenia. Często myli się funkcje ścian osłonowych z innymi typami ścian, co wynika z braku zrozumienia podstaw projektowania budynków. Trochę to dziwne, ale zrozumienie tych różnic jest kluczowe, jeśli chcemy projektować budynki, które są funkcjonalne, bezpieczne i energooszczędne.

Pytanie 31

Jaką minimalną grubość powinny mieć ścianki oddzielające kanały dymowe w kominach wykonanych z cegły?

A. 3/4 cegły
B. 1 cegła
C. 1/2 cegły
D. 1/4 cegły
Grubość przegródek między kanałami dymowymi w kominach murowanych z cegły, która wynosi 1/2 cegły, jest czymś, co naprawdę powinno być brane pod uwagę. Taka grubość to nie tylko wymóg norm budowlanych, ale także świetna praktyka, jeśli chodzi o budowę kominów. Dzięki temu mamy zapewnioną dobrą izolację termiczną, co jest ważne, żeby nie było problemów z przegrzewaniem się konstrukcji i niskim ryzykiem pożaru. Oprócz tego, taka grubość sprawia, że kanały dymowe działają efektywnie, co pozwala na odpowiedni ciąg kominowy i odprowadzanie spalin. Moim zdaniem, projektując kominy, zawsze warto trzymać się wymagań norm, na przykład PN-EN 1443, bo to pomaga w zapewnieniu bezpieczeństwa i funkcjonalności systemów kominowych. Generalnie rzecz biorąc, trzymając się tych wytycznych, można mieć pewność, że cały system będzie działał jak należy i nie będzie problemów w użytkowaniu.

Pytanie 32

Zanim przystąpi się do otynkowania stalowych części konstrukcji budynku, ich powierzchnię należy

A. zaimpregnować
B. oszlifować
C. nawilżyć wodą
D. chronić siatką stalową
Odpowiedź "osłonić siatką stalową" jest poprawna, ponieważ przed nałożeniem tynku na stalowe elementy konstrukcyjne należy zapewnić ich odpowiednią ochronę. Siatka stalowa działa jako zbrojenie, które zwiększa przyczepność tynku do powierzchni oraz zapobiega pękaniu i odspajaniu się warstwy tynkowej. Dodatkowo, stosowanie siatki stalowej jest zgodne z normami budowlanymi, które podkreślają jej rolę w systemach ociepleń oraz w zabezpieczaniu elementów narażonych na różne obciążenia mechaniczne. Przykładem zastosowania siatki stalowej może być budowa elewacji, gdzie odpowiednie przygotowanie podłoża przyczynia się do trwałości oraz estetyki wykończenia. Właściwe wykonanie tego etapu prac budowlanych jest kluczowe, aby uniknąć wad budowlanych i kosztownych napraw w przyszłości.

Pytanie 33

Aby zapewnić odpowiednią przyczepność tynku do ceglanego muru, konieczne jest

A. nanosić na mur preparat poprawiający przyczepność
B. nanosić na mur rzadką zaprawę z wapna
C. wykonać mur z pełnymi spoinami
D. wykonać mur z niepełnymi spoinami
Wykonanie muru na pełne spoiny nie jest zalecaną praktyką w kontekście tynkowania murów z cegieł, ponieważ może prowadzić do problemów z przyczepnością tynku. W przypadku pełnych spoin, zaprawa tynkarska ma ograniczone możliwości wnikania w szczeliny między cegłami, co skutkuje słabszym połączeniem. Pełne spoiny mogą również powodować, że tynk nie przylega do muru w równomierny sposób, co zwiększa ryzyko odspajania się tynku w przyszłości. Ponadto, naniesienie preparatu adhezyjnego na powierzchnię muru, mimo że może poprawić przyczepność, nie zastępuje właściwej konstrukcji muru. Preparaty te są stosowane w specyficznych sytuacjach, a ich nadużywanie może prowadzić do dodatkowych kosztów i nieefektywności. Z kolei rzadkie zaprawy wapienne, choć mogą działać jako łącznik, nie są odpowiednie dla większości zastosowań tynkarskich, gdyż ich niska gęstość i konsystencja mogą utrudniać uzyskanie trwałego wykończenia. W praktyce budowlanej kluczowe jest zrozumienie, że odpowiednia struktura muru oraz zastosowanie właściwej metody tynkowania mają kluczowe znaczenie dla trwałości i estetyki wykończeń budowlanych.

Pytanie 34

Oblicz wynagrodzenie zatrudnionego za przeprowadzenie obustronnego tynkowania ściany o wymiarach 10 × 3 m, jeśli stawka godzinowa tynkarza wynosi 15,00 zł, a czas pracy na wykonanie 1 m2 tynku zwykłego wynosi 1,4 r-g?

A. 450,00 zł
B. 1 260,00 zł
C. 900,00 zł
D. 630,00 zł
Niepoprawne odpowiedzi mogą wynikać z błędów w obliczeniach lub niepełnego zrozumienia problemu. Przy obliczaniu wynagrodzenia, kluczowe jest dokładne zrozumienie wymagań dotyczących tynkowania. Przykładowo, odpowiedzi takie jak 900,00 zł mogą wynikać z obliczenia kosztów dla jednej strony tynkowania, co jest niepełne, ponieważ pytanie dotyczy obustronnego tynkowania. Inna odpowiedź, 630,00 zł, może być skutkiem błędnego oszacowania liczby roboczogodzin, co prowadzi do nieprawidłowego wyniku. Dodatkowo, odpowiedzi takie jak 450,00 zł mogą sugerować, że osoba dokonująca obliczeń nie uwzględniła stawki godzinowej, co jest kluczowym elementem obliczeń. W przypadku tynkowania, identyfikacja nakładu pracy na metr kwadratowy oraz przeliczenie go na roboczogodziny są niezbędne dla uzyskania zgodnego wyniku. Również, wiedza o standardach branżowych dotyczących pracy budowlanej i normatywów robocizny jest kluczowa, aby uniknąć błędnych wniosków. Takie nieporozumienia mogą prowadzić do nieadekwatnych ofert cenowych oraz problemów z budżetowaniem, co jest istotne w kontekście zarządzania projektami budowlanymi.

Pytanie 35

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 15,00 m
B. 7,50 m
C. 1,50 m
D. 0,75 m
Rozważając niepoprawne odpowiedzi, wiele osób może zrobić błędne założenie, że długość ściany w rzeczywistości odpowiada długości na rysunku. Odpowiedź 1,50 m sugeruje, że uczestnik mógł pomylić jednostki miary lub nie zastosować zasady przeliczenia skali. Rysunek w skali 1:50 oznacza, że każdemu centymetrowi na rysunku przypisuje się 50 centymetrów w rzeczywistości. Dlatego długość 15 cm na rysunku nie może być bezpośrednio przeliczona na metry bez uwzględnienia skali. Odpowiedzi 0,75 m oraz 15,00 m również wynikają z niepoprawnych obliczeń. Odpowiedź 0,75 m sugeruje, że respondent mógł przyjąć błędny współczynnik przeliczeniowy, a odpowiedź 15,00 m całkowicie ignoruje zasadę przeliczenia skali. Często przyczyną takich pomyłek jest nieuwaga lub brak zrozumienia, jak ważne jest przeliczenie wymiarów w kontekście skali. Umiejętność poprawnej interpretacji rysunków technicznych oraz znajomość reguł przeliczania skali są kluczowe w procesie projektowania, budowy oraz renowacji budynków i innych obiektów. W praktyce, błędne rozumienie tych zasad może prowadzić do poważnych konsekwencji, takich jak niewłaściwe oszacowanie potrzebnych materiałów, co z kolei może wpłynąć na budżet oraz harmonogram prac budowlanych. Wiedza na temat przeliczania skali jest zatem podstawą każdego projektu budowlanego i architektonicznego.

Pytanie 36

Który rodzaj tynku jest odporny na wodę?

A. Gipsowy
B. Wapienny
C. Mozaikowy
D. Renowacyjny
Wybór niewłaściwego rodzaju tynku może prowadzić do nieodpowiednich rezultatów w kontekście odporności na wodę. Tynk wapienny, chociaż ma swoje zalety, w tym ekologiczność i zdolność do regulacji wilgotności, nie jest materiałem wodoodpornym. Jego główną wadą jest wysoka nasiąkliwość, co sprawia, że w długotrwałym kontakcie z wodą może ulegać degradacji, a także sprzyjać rozwojowi pleśni i grzybów. Tynk gipsowy z kolei, mimo swojej popularności w zastosowaniach wykończeniowych, również nie nadaje się do stref o wysokiej wilgotności, ponieważ gips jest materiałem hygroskopijnym, który wchłania wilgoć i osłabia swoje właściwości strukturalne. Tynk renowacyjny, przeznaczony głównie do odnawiania zabytków, ma swoje specyficzne zastosowanie, ale również nie zapewnia wodoodporności. Zrozumienie tych właściwości jest kluczowe w przypadku planowania zastosowania tynku w projektach budowlanych. Często błąd polega na mylnym założeniu, że każdy tynk ma podobne właściwości ochronne, co może prowadzić do poważnych problemów związanych z wilgocią i trwałością konstrukcji. Wiedza na temat właściwości różnych materiałów budowlanych jest niezbędna dla osiągnięcia sukcesu w każdym projekcie budowlanym.

Pytanie 37

Który z wymienionych typów tynków kwalifikuje się jako tynki szlachetne?

A. Wodoszczelny
B. Ciepłochronny
C. Nakrapiany
D. Pocieniony
Tynki wodoszczelne, ciepłochronne oraz pocienione, mimo że pełnią ważne funkcje, nie są klasyfikowane jako tynki szlachetne. Tynki wodoszczelne, stosowane głównie w obszarach narażonych na działanie wody, jak piwnice czy fundamenty, mają na celu ochronę przed wilgocią. Jednak ich funkcjonalność nie obejmuje estetycznych aspektów, które są kluczowe dla tynków szlachetnych. Z kolei tynki ciepłochronne, zaprojektowane z myślą o poprawie izolacyjności termicznej, skupiają się na efektywności energetycznej budynku, a nie na jego wyglądzie. Co więcej, tynki pocienione, które mają na celu zmniejszenie ciężaru powłok tynkarskich, również nie są uznawane za szlachetne, gdyż ich właściwości estetyczne są ograniczone. Typowe błędne podejście polega na utożsamianiu wszelkich tynków spełniających określone funkcje z tynkami szlachetnymi, co wynika z braku zrozumienia różnorodności i specyfiki zastosowań tynków. Tynki szlachetne są przede wszystkim cenione za swoje walory estetyczne oraz zdolność do nadawania unikalnego charakteru budynkom, co w przypadku wymienionych rodzajów tynków nie występuje.

Pytanie 38

Tynki doborowe to tynki standardowe

A. dwuwarstwowymi o równej i gładkiej powierzchni
B. dwuwarstwowymi o równej, lecz szorstkiej powierzchni
C. trójwarstwowymi o równej i bardzo gładkiej powierzchni
D. trójwarstwowymi o równej, lecz szorstkiej powierzchni
Wybór tynków dwuwarstwowych, jak sugerują niektóre odpowiedzi, jest niezgodny z definicją tynków doborowych, które wymagają zaawansowanego podejścia w budowie. Tynki dwuwarstwowe składają się z warstwy podkładowej oraz wykończeniowej, co nie zapewnia takich samych właściwości funkcjonalnych i estetycznych, jak tynki trójwarstwowe. Warstwa zbrojona, obecna w tynkach trójwarstwowych, ma na celu nie tylko wzmocnienie struktury, ale również poprawę izolacyjności akustycznej i termicznej, co jest kluczowe w budynkach mieszkalnych i komercyjnych. Ponadto, tynki dwuwarstwowe zazwyczaj prowadzą do uzyskania powierzchni mniej gładkiej, co może skutkować problemami przy dalszym wykańczaniu ścian. Odrzucenie tynków gładkich w kontekście tynków doborowych wskazuje na niedostateczne zrozumienie istoty tych systemów. Wiele osób myli także tynki gładkie z tynkami o powierzchni szorstkiej, co prowadzi do błędnych wniosków dotyczących ich zastosowania i właściwości. Aby uniknąć takich pomyłek, ważne jest, aby zrozumieć różnice między różnymi typami tynków oraz ich wpływ na jakość wykończenia wnętrz. Zastosowanie niewłaściwego typu tynku może nie tylko obniżyć estetykę pomieszczenia, ale także wpłynąć na jego trwałość oraz energooszczędność.

Pytanie 39

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 105 kg
B. 70 kg
C. 210 kg
D. 42 kg
Aby obliczyć ilość tynku maszynowego potrzebnego do otynkowania ściany o wymiarach 5 m x 3 m przy grubości tynku 5 mm, należy najpierw obliczyć powierzchnię ściany. Powierzchnia ta wynosi 15 m² (5 m x 3 m). Następnie musimy uwzględnić grubość tynku. Przy grubości 5 mm, co stanowi 0,005 m, możemy przyjąć, że zużycie materiału będzie o połowę mniejsze niż w przypadku 10 mm, gdzie zużycie wynosi 14 kg/m². Obliczamy zużycie dla 5 mm, co daje 7 kg/m² (14 kg/m² / 2). Mnożąc tę wartość przez powierzchnię ściany, otrzymujemy potrzebną ilość tynku: 7 kg/m² x 15 m² = 105 kg. Odpowiedź ta jest zgodna z praktykami budowlanymi, które zalecają dostosowanie zużycia materiałów do grubości nałożonej warstwy. Wiedza ta jest kluczowa dla precyzyjnego planowania w pracach budowlanych oraz minimalizacji strat materiałowych.

Pytanie 40

W kolejnych warstwach w wiązaniu kowadełkowym jakie powinno być przesunięcie spoin pionowych?

A. 1/4 cegły
B. 1/2 cegły
C. 1/3 cegły
D. 2/3 cegły
Stosowanie przesunięcia spoin pionowych w wiązaniu kowadełkowym, które wynosi inne wartości niż 1/4 cegły, prowadzi do wielu niekorzystnych skutków. Przesunięcia takie jak 1/3, 1/2 czy 2/3 cegły mogą powodować powstawanie słabych miejsc w konstrukcji, co w konsekwencji może prowadzić do osłabienia jej integralności. Gdy spoiny są przesunięte zbyt blisko siebie, może dojść do powstawania linii słabości, co zwiększa ryzyko pęknięć oraz osiadania budynku. W praktyce, błędne podejście do przesunięcia spoin może wynikać z nieznajomości zasad projektowania, co może prowadzić do poważnych problemów podczas realizacji projektu budowlanego. Na przykład przesunięcie 1/2 cegły w pionie może skutkować niewłaściwym przenoszeniem obciążeń, a w dłuższym okresie użytkowania prowadzić do uszkodzeń muru. Warto również zauważyć, że nieprzestrzeganie standardów przesunięcia może wpływać negatywnie na właściwości cieplne i akustyczne budynku, co jest szczególnie istotne w kontekście współczesnych wymagań dotyczących komfortu mieszkańców. Dlatego kluczowe jest, aby w praktyce budowlanej stosować się do sprawdzonych praktyk i norm, które zalecają określone przesunięcia, aby zapewnić trwałość oraz bezpieczeństwo konstrukcji.