Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 30 maja 2025 08:09
  • Data zakończenia: 30 maja 2025 09:33

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. II
C. I
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 2

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn < UL
C. RA ∙ IΔn ≤ UL
D. RA ∙ IΔn > UL
Odpowiedź RA ∙ IΔn ≤ UL jest prawidłowa, ponieważ odnosi się do zasad ochrony przeciwporażeniowej w instalacjach elektrycznych typu TT. W tym typie sieci, urządzenia ochronne różnicowoprądowe (RCD) mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników. Zależność RA ∙ IΔn ≤ UL oznacza, że rezystancja uziemienia (RA) pomnożona przez wartość prądu różnicowego, przy którym urządzenie zaczyna działać (IΔn), musi być mniejsza lub równa poziomowi napięcia dotykowego (UL). W praktyce oznacza to, że w momencie, gdy dojdzie do uszkodzenia izolacji, a prąd różnicowy przekroczy wartość IΔn, urządzenie RCD zadziała, odcinając zasilanie i minimalizując ryzyko porażenia prądem. Standardy, takie jak PN-EN 61008, podkreślają znaczenie prawidłowego doboru wartości IΔn oraz zapewnienia odpowiedniej rezystancji uziemienia, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania tej zasady może być instalacja w budynku mieszkalnym, gdzie odpowiedni dobór RCD chroni domowników przed skutkami ewentualnych awarii elektrycznych.

Pytanie 3

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Żarówki
B. Lampy fluorescencyjne
C. Lampy ze rtęcią
D. Lampy indukcyjne
Zarówno świetlówki, lampy rtęciowe, jak i lampy indukcyjne oferują wyższą skuteczność świetlną w porównaniu do tradycyjnych żarówek. Świetlówki, na przykład, mogą osiągać skuteczność od 35 do 100 lumenów na wat, co czyni je znacznie bardziej efektywnymi w wytwarzaniu światła. Wybór świetlówek zamiast żarówek tradycyjnych w biurach i innych przestrzeniach komercyjnych jest powszechną praktyką, mającą na celu zmniejszenie kosztów energii oraz ograniczenie emisji dwutlenku węgla. Lampy rtęciowe, stosowane zazwyczaj w oświetleniu ulicznym, również charakteryzują się przyzwoitym poziomem efektywności, osiągając od 50 do 70 lumenów na wat. Lampy indukcyjne, z drugiej strony, mogą nawet przekraczać 100 lumenów na wat, co czyni je idealnym wyborem do oświetlenia dużych powierzchni przemysłowych. Wybór odpowiedniego źródła światła powinien być zatem zgodny z zasadami efektywności energetycznej oraz potrzebami konkretnego zastosowania. Typowe błędy polegają na myleniu żarówek z innymi źródłami światła w kontekście ich efektywności i zastosowania, co często prowadzi do nieoptymalnych decyzji zakupowych i większych kosztów eksploatacji.

Pytanie 4

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd znamionowy.
B. Napięcie znamionowe i prąd zadziałania.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie probiercze i prąd znamionowy.
Na tym urządzeniu widzimy oznaczenia "230V AC" i "16A 250VAC cosφ=1", co jasno pokazuje jakich mamy do czynienia z parametrami. Napięcie 230V oznacza, że jest ono przystosowane do standardowego zasilania w Europie. Z kolei prąd 16A przy 250V AC pokazuje maksymalny prąd, który urządzenie może bezpiecznie obsłużyć. Zrozumienie tych wartości jest mega ważne, żeby zapewnić bezpieczeństwo i efektywność w pracy urządzeń elektrycznych. W praktyce znajomość tych danych pozwala nam na dobór odpowiednich zabezpieczeń, jak na przykład wyłączniki nadprądowe dopasowane do tych wartości. Dodatkowo, wiedza o współczynniku mocy (cosφ=1) mówi nam, że urządzenie działa w idealnych warunkach, bez strat energii. Spełnianie norm takich jak IEC 60364 jest kluczowe, bo zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 5

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Obciążenie prądowe i czas reakcji
B. Prąd różnicowy oraz czas reakcji
C. Napięcie w sieci oraz prąd obciążeniowy
D. Napięcie w sieci oraz prąd różnicowy
Wybór parametrów, takich jak prąd obciążenia oraz czas zadziałania, nie jest odpowiedni dla oceny działania wyłącznika różnicowoprądowego. Prąd obciążenia odnosi się do natężenia prądu, które przepływa przez obwód w normalnych warunkach pracy, ale nie dostarcza informacji na temat ewentualnych upływów prądu. Zrozumienie różnicy między prądem obciążenia a prądem różnicowym jest kluczowe, ponieważ to prąd różnicowy jest wskaźnikiem zagrożenia dla bezpieczeństwa. Czas zadziałania w połączeniu z prądem obciążenia nie dostarczy pełnego obrazu skuteczności wyłącznika w sytuacjach awaryjnych. Podobnie, pomiar napięcia sieciowego oraz prądu różnicowego w aspekcie bezpieczeństwa jest niewłaściwy, ponieważ napięcie nie jest bezpośrednio związane z funkcjonowaniem wyłącznika różnicowoprądowego. W kontekście bezpieczeństwa elektrycznego, kluczowe jest, aby wyłącznik reagował na upływ prądu do ziemi, co wskazuje prąd różnicowy, a nie tylko na obciążenie czy napięcie. Ignorowanie tych fundamentalnych różnic prowadzi do błędnego rozumienia działania wyłączników różnicowoprądowych, co może mieć poważne konsekwencje w kwestii bezpieczeństwa użytkowników.

Pytanie 6

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Nasadowym.
C. Imbusowym.
D. Płaskim.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 7

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
B. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
C. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Wskazanie, że instalacja elektryczna nie musi być poddawana konserwacji w sytuacjach, gdy stwierdzone zostało uszkodzenie instalacji, jest błędne. W rzeczywistości, jakiekolwiek uszkodzenie instalacji elektrycznej, takie jak przetarte kable czy luźne połączenia, powinno niezwłocznie skutkować podjęciem działań naprawczych. Ignorowanie takich uszkodzeń może prowadzić do poważnych zagrożeń, w tym ryzyka pożaru czy porażenia prądem. Podobnie, jeśli eksploatacja instalacji stwarza zagrożenie dla bezpieczeństwa obsługi lub otoczenia, konieczne jest przeprowadzenie niezwłocznych działań konserwacyjnych lub naprawczych. W przypadku, gdy stan techniczny instalacji jest zły lub wartości parametrów odbiegają od tych określonych w dokumentacji, również powinno się przeprowadzić niezbędne kontrole i naprawy. Ignorowanie tych stanów prowadzi nie tylko do obniżenia efektywności działania instalacji, ale również naraża osoby korzystające z tych instalacji na potencjalne niebezpieczeństwo. Kluczowe jest, aby pamiętać o regularnych przeglądach i konserwacji instalacji, zgodnych z normami branżowymi, co przyczyni się do zwiększenia bezpieczeństwa i długowieczności systemów elektrycznych.

Pytanie 8

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Tuleja redukcyjna
C. Podkładka sprężysta
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 9

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Watomierza
B. Amperomierza
C. Omomierza
D. Megaomomierza
Wybór watomierza, amperomierza lub megaomomierza w celu sprawdzenia ciągłości przewodu jest nieprawidłowy, ponieważ każdy z tych instrumentów ma inne funkcje i zastosowania, które nie odpowiadają wymaganiom zadania. Watomierz jest używany do pomiaru mocy elektrycznej w obwodzie, co oznacza, że mierzy ilość energii zużywanej przez urządzenia. Nie jest użyteczny w kontekście sprawdzania ciągłości przewodów, ponieważ nie dostarcza informacji o oporze elektrycznym ani o ewentualnych przerwach w obwodzie. Amperomierz natomiast służy do pomiaru natężenia prądu, co również nie jest adekwatne w przypadku testowania ciągłości. Przyrząd ten nie wykryje, czy przewód jest zerwany czy uszkodzony, a jedynie zmierzy ilość przepływającego prądu, co ma znaczenie tylko w pełnoobciążonym obwodzie. Megaomomierz, z kolei, jest narzędziem przeznaczonym do pomiaru oporu izolacji, a nie ciągłości przewodu. Jego zastosowanie jest kluczowe w testach urządzeń wysokiego napięcia oraz w ocenie stanu izolacji, ale nie jest on przeznaczony do sprawdzania samej ciągłości przewodów. Typowym błędem jest mylenie funkcji tych przyrządów i ich zastosowań, co może prowadzić do nieprawidłowych diagnoz i potencjalnych zagrożeń w instalacjach elektrycznych.

Pytanie 10

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA

A. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
D. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 11

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. maksymalnego prądu obciążenia.
B. prądu zadziałania zabezpieczenia.
C. znamionowego prądu instalacji.
D. spodziewanego prądu zwarcia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 12

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód ochronny
B. Przewód fazowy
C. Przewód neutralny
D. Przewód uziemiający
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 13

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 300/300 V
B. 600/1000 V
C. 450/750 V
D. 300/500 V
Wybór napięcia znamionowego izolacji przewodów w instalacjach trójfazowych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemu. Przewody o napięciach 300/500 V oraz 300/300 V są niewystarczające dla instalacji 230/400 V, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia izolacji, zwarcia, a nawet pożary. Napięcie 300/500 V jest stosowane w mniej wymagających instalacjach, gdzie nie występują znaczące różnice potencjałów ani długotrwałe obciążenia, co jest nieadekwatne w kontekście instalacji trójfazowych. Napięcie 300/300 V jest jeszcze bardziej niewłaściwe, ponieważ nie zapewnia wystarczającej ochrony w przypadku awarii, co może skutkować niebezpiecznymi sytuacjami. Przewody o napięciu 450/750 V są projektowane tak, aby wytrzymały znacznie większe obciążenia oraz stresy mechaniczne, co czyni je bardziej odpornymi na uszkodzenia i wydłuża ich żywotność. Wybór niewłaściwej wartości napięcia izolacji często wynika z niepełnego zrozumienia norm oraz wymagań dotyczących bezpieczeństwa w instalacjach elektrycznych. Projektanci i wykonawcy muszą być świadomi, że niedostosowanie przewodów do standardów może prowadzić do tragicznych w skutkach wypadków oraz poważnych strat materialnych.

Pytanie 14

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H05V-U
B. H05V-K
C. H03VH-H
D. H03W-F
Analizując inne oznaczenia przewodów, warto zauważyć, że H03VH-H jest przeznaczone do pracy w warunkach, gdzie przewody są narażone na działanie wysokich temperatur i chemikaliów, jednak ich napięcie robocze wynosi jedynie 300/500 V, co powoduje, że nie spełniają one wymagań dla aplikacji, które wymagają większej odporności na obciążenia elektryczne. Oznaczenie H05V-K, z kolei, odnosi się do przewodów o mniejszej elastyczności, a ich konstrukcja nie jest przystosowana do zastosowań w trudnych warunkach, co ogranicza ich zastosowanie w porównaniu do H05V-U. Ostatnia z rozważanych opcji, H03W-F, również nie jest odpowiednia, ponieważ jest to typ przewodu wykorzystywanego głównie w instalacjach, gdzie odporność na działanie wilgoci lub substancji chemicznych jest priorytetowa. Wybór niewłaściwego oznaczenia często wynika z niepełnej wiedzy na temat specyfikacji technicznych lub mylenia cech przewodów z ich przeznaczeniem. Ważne jest, aby przy doborze przewodów kierować się nie tylko ich oznaczeniem, ale także specyfiką zastosowania, co pozwoli na długoterminową i bezpieczną eksploatację instalacji elektrycznych. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla osób zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych.

Pytanie 15

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Czasu działania wyłącznika RCD
C. Prądu zadziałania wyłącznika RCD
D. Rezystancji izolacji
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 16

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka imbusowego.
B. Wkrętaka płaskiego.
C. Szczypiec uniwersalnych.
D. Szczypiec typu Segera.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 17

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza kablowego
B. przyłącza napowietrznego
C. instalacji wewnętrznej
D. wewnętrznej linii zasilającej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 18

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Watomierz
C. Fazomierz
D. Waromierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fazomierz to przyrząd, który służy do pomiaru kątów fazowych prądu i napięcia w obwodach elektrycznych. W kontekście pomiaru cosinus kąta (cos φ), fazomierz jest nieocenionym narzędziem, ponieważ pozwala na bezpośrednie określenie tego parametru, który jest kluczowy w ocenie charakterystyki obciążenia elektrycznego. W praktyce, pomiar cos φ ma istotne znaczenie w zarządzaniu energią oraz w poprawie efektywności energetycznej systemów elektrycznych. Umożliwia on monitorowanie współczynnika mocy, co jest istotne dla zapobiegania stratom energii oraz redukcji kosztów operacyjnych. Właściwe zarządzanie współczynnikiem mocy jest także zgodne z normami jakości energii, takimi jak PN-EN 50160, które definiują wymagania dotyczące jakości energii w sieciach elektroenergetycznych. Przykładem zastosowania fazomierza może być analiza obciążeń w zakładach przemysłowych, gdzie poprawne dopasowanie obciążeń do parametrów zasilania przekłada się na niższe koszty i większą trwałość urządzeń.

Pytanie 19

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. MR11
B. E27
C. G9
D. GU10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 20

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Tester, wkrętak, lutownica
B. Szczypce, wkrętak, lutownica
C. Ściągacz izolacji, wkrętak, próbnik
D. Ściągacz izolacji, lutownica, tester

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 21

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,5% + 3 cyfry
C. ±1,0% + 4 cyfry
D. ±2,0% + 2 cyfry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 22

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
C. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
D. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 23

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia urządzeń w rozdzielniach
B. wymiany gniazd zasilających
C. czyszczenia lamp oświetleniowych
D. montażu nowych punktów świetlnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 24

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C-S
B. IT
C. TN-C
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 25

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Zamiana przewodu neutralnego z ochronnym
B. Zamiana przewodu neutralnego z fazowym
C. Poluzowany przewód neutralny w głównym złączu budynku
D. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 26

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik liniowy
B. Silnik synchroniczny trójfazowy
C. Silnik krokowy
D. Silnik indukcyjny jednofazowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 27

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
C. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
D. wyłącznie zwarć w obwodach prądu stałego i przemiennego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 28

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 29

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 150 mA
B. 100 mA
C. 200 mA
D. 500 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar ciągłości elektrycznej przewodów ochronnych jest kluczowym aspektem zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku połączeń wyrównawczych oraz pierścieniowych obwodów odbiorczych, zastosowanie prądu o wartości co najmniej 200 mA jest zgodne z normami oraz dobrymi praktykami branżowymi. Użycie takiej wartości prądu pozwala na dokładne sprawdzenie ciągłości przewodów ochronnych, co jest niezbędne do zapewnienia właściwego działania systemu ochrony przeciwporażeniowej. W praktyce oznacza to, że w przypadku wykrycia jakiejkolwiek przerwy w przewodach ochronnych, prąd o tej wartości będzie w stanie wywołać odpowiednią reakcję w zabezpieczeniach, takich jak wyłączniki różnicowoprądowe. Taki pomiar powinien być przeprowadzany regularnie w ramach przeglądów okresowych instalacji elektrycznych, aby zminimalizować ryzyko uszkodzeń i zagrożeń dla użytkowników. Warto również podkreślić, że zgodnie z normą PN-EN 61557-4, pomiary te powinny być wykonywane przez wykwalifikowany personel z użyciem odpowiedniego sprzętu pomiarowego.

Pytanie 30

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 1,0 m
B. 0,6 m
C. 1,2 m
D. 0,5 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,6 m jest okej, bo według zasad dotyczących instalacji elektrycznych w wilgotnych miejscach, takich jak łazienki, gniazdo musi być umieszczone w bezpiecznej odległości od wody. Strefa II w łazience to obszar do 0,6 m od krawędzi wanny czy brodzika. Dzięki temu zabezpieczamy użytkowników przed niebezpieczeństwem porażenia prądem, co się może zdarzyć, gdy woda dostanie się do gniazda. Przykładowo, gniazdo zasilające dla pralki powinno być w miejscu, gdzie nie ma ryzyka kontaktu z wodą. Dobrze jest planować instalację gniazd tak, żeby były jak najdalej od potencjalnych źródeł wody. Pamiętaj, że zgodnie z normą PN-EN 61140, urządzenia elektryczne w takich pomieszczeniach muszą być dobrze zabezpieczone, a gniazdka powinny mieć odpowiednią klasę ochrony, na przykład IP44. To wszystko znacznie zwiększa bezpieczeństwo.

Pytanie 31

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i trzy zaciski
B. Dwa klawisze i cztery zaciski
C. Jeden klawisz i cztery zaciski
D. Jeden klawisz i trzy zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 32

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. zdemontować gniazdo i zaślepić puszkę
B. zakleić gniazdo taśmą izolacyjną
C. wymienić gniazdo na nowe
D. uszczelnić pęknięcia za pomocą kleju do tworzywa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 33

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz

A. 4,5 µF i połączyć równolegle.
B. 4,5 µF i połączyć szeregowo.
C. 18 µF i połączyć szeregowo.
D. 18 µF i połączyć równolegle.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź jest poprawna, ponieważ połączenie równoległe dwóch kondensatorów o pojemności 4,5 µF tworzy łączną pojemność równą 9 µF, co jest dokładnie wymagane do zastąpienia uszkodzonego kondensatora. W praktyce, w przypadku układów elektrycznych, zachowanie odpowiedniej pojemności jest kluczowe dla stabilności działania urządzenia. Połączenie równoległe jest również zgodne z dobrymi praktykami projektowania układów elektronicznych, gdyż pozwala na zwiększenie pojemności, podczas gdy napięcie pracy kondensatorów musi być zgodne z wymaganiami sieci, w tym przypadku 230 VAC. Wybierając kondensatory, zwróć uwagę na ich maksymalne napięcie pracy oraz pojemność. Takie podejście zapewnia nie tylko bezpieczeństwo, ale także długotrwałe i niezawodne działanie zasilanych układów. Upewnij się, że nowo zastosowane kondensatory są odpowiednio zabezpieczone przed przeciążeniem, co może znacząco wpłynąć na ich żywotność.

Pytanie 34

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. instalacji elektrycznej.
B. linii napowietrznej niskiego napięcia.
C. instalacji odgromowej budynku.
D. linii kablowej zasilającej budynek.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 35

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. wyłożenie izolacją żłobkową
B. zabezpieczenie klinami ochronnymi
C. nałożenie lakieru elektroizolacyjnego
D. nałożenie oleju elektroizolacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 36

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. priorytetowym, zostaje wyłączony obwód niepriorytetowy
B. niepriorytetowym, zostaje wyłączony obwód priorytetowy
C. priorytetowym, zostaje wyłączony obwód priorytetowy
D. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 37

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Maksymalny prąd zwarciowy
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
D. Najwyższy czas zadziałania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod literowo-cyfrowy C10 umieszczony na wyłączniku nadmiarowo-prądowym odnosi się do charakterystyki czasowo-prądowej oraz prądu znamionowego wyłącznika. W przypadku 'C' oznacza to, że wyłącznik jest przeznaczony do ochrony urządzeń, które mogą mieć duże prądy rozruchowe, jak silniki elektryczne. Liczba '10' wskazuje, że prąd znamionowy wynosi 10 A. Tego rodzaju wyłączniki są powszechnie stosowane w instalacjach elektrycznych, gdzie konieczne jest zabezpieczenie przed przeciążeniem oraz zwarciami, a jednocześnie umożliwienie chwilowego przepływu większego prądu, co jest istotne w przypadku urządzeń indukcyjnych. Dobrze dobrany wyłącznik nadmiarowo-prądowy chroni instalację przed uszkodzeniami, a także zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że wybór odpowiedniego wyłącznika powinien być zgodny z normami PN-EN 60898, które regulują wymagania i metody badań związanych z wyłącznikami nadmiarowo-prądowymi.

Pytanie 38

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Kontrola braku zwarć międzyzwojowych
B. Pomiar oporu izolacji
C. Weryfikacja stanu szczelin komutatora
D. Wyważenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 39

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V AC
B. 500 V AC
C. 500 V DC
D. 200 V DC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 40

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
B. Nóż monterski, szczypce boczne, szczypce monterskie
C. Szczypce długie, nóż monterski, szczypce czołowe
D. Nóż monterski, szczypce boczne, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.