Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 3 czerwca 2025 11:28
  • Data zakończenia: 3 czerwca 2025 11:42

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 10%
B. iAB = 0,5%
C. iAB = 5%
D. iAB = 1%
Prawidłowa odpowiedź to iAB = 1%. Aby obliczyć pochylenie linii łączącej dwa punkty A i B na podstawie odległości międzywarstwicowej oraz różnicy wysokości, stosujemy wzór na pochylenie, które wyraża się jako stosunek różnicy wysokości do poziomej odległości między punktami. W tym przypadku różnica wysokości wynosi 0,5 m, a pozioma odległość wynosi 50 m. Zatem pochylenie wyliczamy według wzoru: iAB = (wysokość / odległość) * 100%. Czyli: iAB = (0,5 m / 50 m) * 100% = 1%. Pochylenie to istotny parametr w geodezji, inżynierii lądowej oraz w planowaniu przestrzennym, ponieważ wpływa na projektowanie dróg, infrastruktury oraz systemów odwodnienia. Przykład praktycznego zastosowania można znaleźć w projektowaniu dróg, gdzie odpowiednie pochylenie zapewnia bezpieczną jazdę i efektywne odprowadzanie wody opadowej. Ponadto, znajomość pochylenia warstwic jest kluczowa w ocenie stabilności gruntów i w budownictwie. W kontekście standardów, pochylenia powinny być zgodne z wytycznymi zawartymi w normach geodezyjnych oraz budowlanych.

Pytanie 2

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. sprawozdanie techniczne
B. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
C. faktura za zrealizowane zlecenie
D. kopia zawodowych uprawnień geodety
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 3

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [α] = AK + AP - n × 200g
B. [α] = AK – AP + n × 200g
C. [β] = AP – AK + n × 200g
D. [β] = AP + AK - n × 200g
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 4

Średni błąd pomiaru długości odcinka 200 m wynosi ±5 cm. Jaki jest błąd względny tego pomiaru?

A. 1:400
B. 1:40
C. 1:4000
D. 1:4
Obliczanie błędu względnego wymaga zrozumienia, na czym polega ten termin oraz jak odpowiednio zinterpretować wartości błędu. Nieprawidłowe odpowiedzi sugerują błędne podejście do obliczeń lub do zrozumienia zasadności stosowania błędu względnego. Na przykład, odpowiedzi 1:40, 1:4 i 1:400 mogą wynikać z nieprawidłowego podziału błędu na jednostki lub pomijania istotnych przeliczeń. Często błąd myślowy polega na mylnym przyjęciu, że błąd pomiaru jest bezpośrednio porównywalny z całkowitym wynikiem bez uwzględnienia, że błąd ten powinien być proporcjonalny do faktycznej wielkości mierzonych. Dodatkowo, może to być wynik nieumiejętności przekształcania jednostek lub błędnego przyjęcia, że im mniejszy błąd pomiaru, tym większy błąd względny. Prawidłowe podejście do tego zagadnienia wymaga umiejętności analizy i przemyślenia powiązań pomiędzy wartością pomiaru a jego błędem, co ma kluczowe znaczenie w kontekście praktycznych zastosowań pomiarowych. Warto zatem zwrócić uwagę na metody analizy błędów oraz ich wpływ na końcowe wyniki pomiarów w różnych dziedzinach nauki i techniki.

Pytanie 5

Jakiej czynności nie przeprowadza się na stanowisku przed pomiarem kątów poziomych?

A. Ustawienia ostrości obrazu
B. Pomiaru wysokości teodolitu
C. Ustawienia ostrości krzyża kresek
D. Centrowania teodolitu
Chociaż wszystkie wymienione czynności są istotne w procesie pomiarów z użyciem teodolitu, pomiar wysokości teodolitu nie jest wykonywany przed pomiarem kątów poziomych, co może prowadzić do nieporozumień. Centrowanie teodolitu jest kluczowe, ponieważ zapewnia stabilną bazę pomiarową, a jego prawidłowe umiejscowienie wpływa na dokładność kątów wyznaczanych w kolejnych krokach. Ustawienie ostrości obrazu i ostrości krzyża kresek są także niezbędne do precyzyjnych pomiarów, gdyż pozwalają na wyraźne widzenie i właściwe celowanie w obiekt. Osoby, które mogą mylnie przyjąć pomiar wysokości za czynność wstępną, mogą nie dostrzegać, że ten krok jest typowy dla pomiarów kątów pionowych. Przykłady praktyczne pokazują, że pomiar wysokości jest realizowany w kontekście określania różnic wysokości i wykonuje się go po zrealizowaniu pomiaru kątów poziomych. Zrozumienie roli każdej z tych czynności jest kluczowe dla prawidłowego wykonania pomiarów geodezyjnych. Niedoinformowanie w zakresie kolejności działań może prowadzić do znaczących błędów pomiarowych, co w praktyce skutkuje naruszeniem standardów jakości i dokładności, które są fundamentem prac geodezyjnych.

Pytanie 6

Przyjmując pomiarową osnowę sytuacyjną, należy zrealizować pomiary liniowe z przeciętnym błędem pomiaru odległości

A. md ≤ 0,05 m + 70 mm/km
B. md ≤ 0,01 m + 0,01 m/km
C. md ≤ 0,07 m + 50 mm/km
D. md ≤ 0,01 m + 0,02 m/km
Odpowiedź md ≤ 0,01 m + 0,01 m/km jest poprawna, ponieważ spełnia wymogi dotyczące precyzji pomiarów liniowych w osnowach geodezyjnych. Średni błąd pomiaru odległości określa granice dopuszczalnej dokładności pomiarów, które są kluczowe w geodezji. W przypadku tej odpowiedzi, błąd systematyczny wynosi tylko 1 cm, co jest na poziomie zalecanym dla pomiarów precyzyjnych, a dodatkowy błąd na jednostkę długości wynosi 1 cm na każdy kilometr, co również jest akceptowalne w praktyce. Takie wartości są zgodne z normami geodezyjnymi, takimi jak PN-EN ISO 17123, które regulują metody pomiarów i wymagania dotyczące ich jakości. Przy pomiarach w warunkach terenowych, uzyskanie takiej dokładności jest osiągalne przy zastosowaniu nowoczesnych instrumentów geodezyjnych, jak tachymetry czy teodolity z automatyczną korekcją. Przykładem zastosowania są prace związane z budową dróg czy mostów, gdzie precyzyjne pomiary mają kluczowe znaczenie dla bezpieczeństwa i jakości realizacji inwestycji.

Pytanie 7

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
B. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
C. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
D. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 8

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Geodeta uprawniony
B. Marszałek Województwa
C. Geodeta Powiatowy
D. Starosta
Przekonania, że geodeta powiatowy, marszałek województwa lub geodeta uprawniony mogą zatwierdzić projekt osnowy geodezyjnej, bazują na niepełnym zrozumieniu struktury administracyjnej oraz roli poszczególnych osób w procesach geodezyjnych. Geodeta powiatowy, choć odpowiedzialny za nadzór nad działaniami geodezyjnymi w powiecie, nie ma kompetencji do zatwierdzania projektów. Jego rola polega raczej na doradztwie oraz kontroli przestrzegania przepisów przez geodetów wykonujących prace. Marszałek województwa, z kolei, zajmuje się sprawami na poziomie regionalnym i nie wchodzi w procesy lokalnego zatwierdzania projektów, co może prowadzić do nieporozumień w kontekście kompetencji. Z kolei geodeta uprawniony, mimo posiadania szerokiej wiedzy i umiejętności, również nie ma prawa do zatwierdzania projektów osnowy. Jego rola koncentruje się głównie na realizacji prac geodezyjnych i tworzeniu dokumentacji. Zrozumienie struktury hierarchii i odpowiedzialności w geodezji jest kluczowe, aby uniknąć błędnych wniosków i zapewnić, że procesy są zgodne z regulacjami prawnymi oraz dobrymi praktykami branżowymi.

Pytanie 9

Jakie jest zwiększenie współrzędnej ∆y1-2, jeśli zmierzona długość d1-2 = 100,00 m, a sinA1-2 = 0,8910 oraz cosA1-2 = 0,4540?

A. 89,10 m
B. 8,91 m
C. 45,40 m
D. 4,54 m
Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y1-2 można obliczyć, stosując wzór: ∆y = d1-2 * sin(A1-2), gdzie d1-2 to długość między dwoma punktami, a A1-2 to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d1-2 równą 100,00 m oraz sinA1-2 wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.

Pytanie 10

Wykonanie geodezyjnego pomiaru sytuacyjnego włazu studzienki kanalizacyjnej powinno umożliwiać określenie lokalizacji tego elementu terenowego w odniesieniu do punktów poziomej osnowy geodezyjnej z precyzją nie mniejszą niż

A. 0,10 m
B. 0,50 m
C. 0,30 m
D. 0,20 m
Ocena położenia włazu studzienki kanalizacyjnej z dokładnością nie mniejszą niż 0,10 m jest zgodna z obowiązującymi standardami geodezyjnymi. Tego rodzaju pomiary są kluczowe w kontekście projektowania oraz utrzymania infrastruktury wodno-kanalizacyjnej. W praktyce oznacza to, że pomiar powinien być realizowany z wykorzystaniem precyzyjnych narzędzi geodezyjnych, takich jak tachimetry czy systemy GPS, które umożliwiają osiągnięcie odpowiedniej dokładności. Na przykład, w przypadku budowy nowych sieci kanalizacyjnych, precyzyjne umiejscowienie włazów pozwala na późniejsze łatwiejsze przeprowadzanie prac konserwacyjnych oraz inspekcji. Dodatkowo, warto zauważyć, że w praktyce inżynieryjnej dąży się do minimalizowania błędów pomiarowych, co w konsekwencji przekłada się na większą efektywność i bezpieczeństwo eksploatacji infrastruktury.

Pytanie 11

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Repetycyjna
B. Kierunkowa
C. Reiteracyjna
D. Sektorowa
Metoda kierunkowa jest najbardziej korzystna w przypadku, gdy obserwacji podlega pięć celowych, ponieważ pozwala na precyzyjne pomiary kątów poziomych z zachowaniem dużej efektywności. Ta technika polega na pomiarze kąta w odniesieniu do wybranego kierunku, co minimalizuje błędy pomiarowe, które mogą wystąpić przy wielokrotnych pomiarach. W praktyce, metoda kierunkowa umożliwia szybkie i dokładne zbieranie danych, co jest kluczowe w geodezji i inżynierii lądowej. W sytuacji, gdy mamy do czynienia z wieloma celami, jak w tym przypadku, podejście kierunkowe przyczynia się do optymalizacji procesu pomiarowego poprzez ograniczenie liczby pomiarów niezbędnych do uzyskania wymaganej precyzji. Warto również zaznaczyć, że ta metoda jest zgodna z normami lokacyjnymi oraz standardami pomiarów geodezyjnych, co stanowi dodatkowy atut w kontekście profesjonalnych aplikacji inżynieryjnych i budowlanych. Stosując metodę kierunkową, praktycy mogą skutecznie zarządzać czasem i zasobami, co jest szczególnie ważne w projektach o ograniczonym budżecie i czasie realizacji.

Pytanie 12

W terenie zmierzono długość linii pomiarowej, która wynosi 164,20 m. Jaka będzie długość tej linii na mapie w skali 1:2000?

A. 41,05 mm
B. 164,20 mm
C. 82,10 mm
D. 328,40 mm
Prawidłowa odpowiedź to 82,10 mm, co wynika z zastosowania zasady przeliczeń w skali. Aby obliczyć rzeczywistą długość linii na mapie w skali 1:2000, należy podzielić rzeczywistą długość linii w metrach przez wartość skali. W tym przypadku: 164,20 m / 2000 = 0,0821 m, co po przeliczeniu na milimetry (1 m = 1000 mm) daje 82,10 mm. W praktyce, taka operacja jest niezbędna w geodezji i kartografii, gdzie precyzyjny pomiar i przedstawienie danych w różnych skalach są kluczowe. W projektowaniu map, geodeci muszą znać skale, aby poprawnie odzwierciedlić rzeczywiste odległości i umożliwić łatwe interpretowanie danych przez użytkowników. Zgodnie z normami, ważne jest, aby przy przeliczaniu długości w skali zachować odpowiednią dokładność, co wpływa na jakość finalnych produktów, takich jak mapy topograficzne czy plany zagospodarowania przestrzennego.

Pytanie 13

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to jego pole na mapie w skali 1:1000 będzie wynosić

A. 10,0 cm2
B. 0,1 cm2
C. 100,0 cm2
D. 1,0 cm2
Aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, należy najpierw przeliczyć długość boku kwadratu z metra na centymetry. Dla boku o długości 10 m, mamy 10 m x 100 cm/m = 1000 cm. Pole powierzchni kwadratu obliczamy ze wzoru P = a², gdzie a to długość boku. Zatem, pole wynosi 1000 cm x 1000 cm = 1 000 000 cm² w rzeczywistości. Na mapie w skali 1:1000, pole to będzie reprezentowane przez 1 000 000 cm² / 1 000 000 = 1 cm². Przykład zastosowania tej wiedzy można znaleźć w geodezji, gdzie skale map używane są do przedstawiania dużych obszarów na małych powierzchniach, a dokładne obliczenia są kluczowe dla prawidłowego odwzorowania terenu. Dobra praktyka wymaga, aby geodeci i kartografowie dokładnie przeliczywali wymiary obiektów, aby zapewnić dokładność mapy oraz informacji, które ona przekazuje.

Pytanie 14

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Niwelatora oraz tyczki
B. Teodolitu oraz tyczki
C. Niwelatora oraz łaty niwelacyjnej
D. Teodolitu oraz łaty niwelacyjnej
Wybór niepoprawnych zestawów przyrządów geodezyjnych często wynika z niepełnego zrozumienia metod pomiarowych. Na przykład, niwelator i tyczka są używane do pomiarów wysokości, ale nie pozwalają na precyzyjne pomiary kątów, co jest kluczowe w tachimetrii. Niwelator służy głównie do poziomowania i ustalania różnic wysokości, lecz nie może być użyty do określenia kątów poziomych. Dlatego jego użycie w kontekście tachimetrii jest niewłaściwe, gdyż nie dostarcza wszystkich niezbędnych danych do pełnej analizy geodezyjnej. Podobnie, teodolit i łata niwelacyjna, choć skutecznie współdziałają w pomiarach kątów i różnic wysokości, nie są skonfigurowane do pracy w ramach tachimetrii, która wymaga innego podejścia. Użycie teodolitu i tyczki również prowadzi do nieprawidłowych wyników, ponieważ tyczki służą do zaznaczania punktów w terenie, ale nie mają funkcji pomiarowych, które są kluczowe w tej metodzie. Przy pomiarach geodezyjnych niezwykle istotne jest zrozumienie, że każdy przyrząd geodezyjny ma swoje specyficzne zastosowanie, a ich niewłaściwe łączenie prowadzi do błędów pomiarowych oraz nieefektywności w realizacji projektów budowlanych. Zrozumienie tych różnic jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników w geodezji.

Pytanie 15

Jaką wartość ma rzędna Hp dla pokrywy studzienki kanalizacyjnej, gdy zmierzona wysokość osi celowej Hc wynosi 202,21 m, a odczyt wartości podziału łaty niwelacyjnej z kreski środkowej lunety niwelatora to s = 1,140?

A. Hp = 202,01 m
B. Hp = 203,35 m
C. Hp = 202,32 m
D. Hp = 201,07 m
Poprawna odpowiedź to Hp = 201,07 m, co wynika z zastosowania prawidłowej metody obliczania rzędnej pokrywy studzienki kanalizacyjnej. Rzędna pokrywy studzienki (Hp) jest obliczana na podstawie wysokości osi celowej (Hc) oraz odczytu wartości podziału łaty (s). Wzór na obliczenie rzędnej pokrywy studzienki można zapisać jako: Hp = Hc - s. W naszym przypadku, podstawiając wartości, otrzymujemy: Hp = 202,21 m - 1,140 m = 201,07 m. Jest to standardowa metoda stosowana w geodezji, zapewniająca dokładność pomiarów oraz zgodność z normami branżowymi. Zrozumienie tych zasad jest kluczowe, szczególnie w kontekście projektowania infrastruktury oraz prac budowlanych, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla bezpieczeństwa i funkcjonalności obiektów. Przykładem zastosowania takiej wiedzy w praktyce może być wyznaczanie poziomów wód gruntowych czy projektowanie systemów odwadniających, gdzie dokładne rzędne mają istotny wpływ na efektywność działania tych systemów.

Pytanie 16

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 18,5 mm
B. 23,4 mm
C. 24,3 mm
D. 15,8 mm
Poprawna odpowiedź to 24,3 mm, co odpowiada wartości 0,0243 m przedstawionej w raporcie z wyrównania współrzędnych punktów osnowy realizacyjnej. Błąd średni położenia punktu jest kluczowym parametrem w geodezji, ponieważ odzwierciedla precyzję i dokładność pomiarów. W praktyce, błąd średni pokazuje, jak daleko średnio zmierzone punkty odchylają się od rzeczywistej pozycji. Wartość 24,3 mm mieści się w akceptowalnym zakresie błędów dla pomiarów geodezyjnych, co jest zgodne z normami przyjętymi w branży, takimi jak ISO 17123. W przypadku pomiarów terenowych, odpowiedni błąd średni jest istotny, aby zapewnić wiarygodność i użyteczność danych geodezyjnych, które są wykorzystywane w projektach budowlanych, mapowaniu, a także w systemach informacji geograficznej (GIS). Dlatego umiejętność poprawnego odczytywania raportów z wyrównania i interpretacji błędów jest niezwykle cenna dla każdego geodety.

Pytanie 17

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. bolec żelazny
B. palik drewniany
C. słup granitowy
D. słup betonowy
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.

Pytanie 18

Teoretyczna suma kątów wewnętrznych zamkniętego pięcioboku wynosi

A. 600g
B. 1000g
C. 400g
D. 800g
Suma teoretyczna kątów wewnętrznych wielokąta obliczana jest za pomocą wzoru: (n - 2) × 180°, gdzie n jest liczbą boków wielokąta. Dla pięcioboku, n wynosi 5, więc suma kątów wynosi (5 - 2) × 180° = 3 × 180° = 540°. Zwróć uwagę, że w tym pytaniu chodzi o pięciobok zamknięty, co jest istotne, ponieważ w kontekście geometrii zamkniętej suma kątów wewnętrznych zawsze pozostaje stała i wynosi właśnie 540°. W praktyce, znajomość sumy kątów wewnętrznych jest kluczowa w architekturze i inżynierii, gdzie obliczenia dotyczące kształtów i konstrukcji budynków oraz innych obiektów są niezbędne. Na przykład, projektując dachy wielokątne, architekci muszą uwzględniać tę wartość, aby zapewnić prawidłowe wymiary i estetykę budynku. Wartości kątów są również istotne przy tworzeniu modeli 3D, gdzie dokładność geometrii ma bezpośrednie przełożenie na jakość wizualizacji i obliczeń fizycznych.

Pytanie 19

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. deformacji papieru
B. przeniesienia punktów z materiału wyjściowego na oryginał mapy
C. materiału wyjściowego, na podstawie którego powstała mapa
D. wysokościowych pomiarów terenowych
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.

Pytanie 20

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch pozycjach lunety?

A. Kolidacja
B. Libella rurkowa
C. Położenie zera
D. Inklinacja
W przypadku błędu instrumentalnego związanego z miejscem zera, kolimacją oraz inklinacją, pomiar kątów w dwóch położeniach lunety może skutecznie zredukować te błędy. Miejsce zera odnosi się do punktu, w którym teodolit wskazuje zero na skali — jeśli miejsce to jest źle ustawione, można to skorygować przez zmianę ustawienia lunety. Przykładem może być dostosowanie poziomu instrumentu, aby wskazania były zgodne z rzeczywistością. Kolimacja dotyczy poprawności ustawienia osi optycznej lunety w kierunku obiektu. Pomiar kątów z dwóch różnych pozycji pozwala na zniwelowanie błędów związanych z niewłaściwą kolimacją poprzez porównanie wyników z dwóch pomiarów. Inklinacja, czyli kąt nachylenia teodolitu, również może być korygowana przez wykonanie dwóch pomiarów w różnych położeniach, co pozwala na zidentyfikowanie i skorygowanie ewentualnych odchyleń. Powszechnym błędem jest założenie, że wszystkie błędy teodolitu można wyeliminować poprzez pomiar w dwóch położeniach lunety, co prowadzi do nieprawidłowych wniosków. W praktyce, aby uzyskać dokładne wyniki, konieczne jest kompleksowe podejście do kalibracji i regularne sprawdzanie wszystkich aspektów instrumentalnych teodolitu przed wykonaniem pomiarów.

Pytanie 21

Który z obiektów należy do I grupy dokładnościowej detali terenowych?

A. Skarpa bez umocnień
B. Słup telekomunikacyjny
C. Plac sportowy
D. Rura wodociągowa
Słup telekomunikacyjny to zdecydowanie obiekt, który trafia do I grupy dokładnościowej, bo ma konkretną, stałą lokalizację. W geodezji jest to super ważne, bo te słupy wykorzystywane są jako punkty odniesienia przy pomiarach. Dzięki nim łatwiej tworzy się mapy i plany. Z praktyki wiem, że często są one wykorzystywane w inwentaryzacji, co pokazuje, jak wielką rolę odgrywają w tworzeniu infrastruktury. Jak wiadomo, musimy mieć pewność co do ich pozycji, a technologia GNSS jest tu nieoceniona, bo daje naprawdę wysoką dokładność. Oprócz tego, te słupy mają spore znaczenie w analizie przestrzennej i planowaniu urbanistycznym. Ich lokalizacja może mocno wpływać na to, jak działają usługi telekomunikacyjne w danym rejonie.

Pytanie 22

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:30000
B. 1:30
C. 1:3000
D. 1:300
Analizując dostępne odpowiedzi, ważne jest, aby zrozumieć, jak oblicza się błąd względny oraz dlaczego wybrane metody mogą prowadzić do mylnych wyników. Wiele osób może mylnie zakładać, że błąd względny można określić w sposób prosty, traktując błąd pomiaru jako jedynie procent od całkowitej długości. Na przykład, odpowiedzi takie jak 1:30000 mogą wynikać z błędnego zrozumienia, że im mniejszy błąd pomiarowy, tym lepsza jakość pomiaru, co jest uproszczeniem. Taka interpretacja ignoruje rzeczywisty kontekst pomiaru, który w tym przypadku jest określony przez stosunek błędu do długości zmierzonego odcinka. Ponadto, podejście do 1:30 może sugerować, że błąd pomiarowy jest znacznie większy niż rzeczywiście, co może wynikać z niewłaściwego oszacowania wielkości błędu w kontekście stosunków, jakie są typowe dla tej długości. Kolejna odpowiedź, 1:300, może być oparta na błędnej kalkulacji wartości błędu, zniekształcając rzeczywisty wpływ błędu na pomiar. Aby efektywnie unikać takich błędów, kluczowe jest zrozumienie metodyki pomiarowej oraz odpowiedniego stosowania wzorów do obliczeń. W profesjonalnym środowisku, jak inżynieria lądowa czy geodezja, błąd względny jest stosowany do oceny precyzji i dokładności, co jest niezbędne do uzyskania wiarygodnych wyników.

Pytanie 23

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 300÷400g
B. 0÷100g
C. 200÷300g
D. 100÷200g
Zrozumienie azymutów i ich zakresów jest kluczowe w geodezji i inżynierii lądowej. Odpowiedzi sugerujące przedziały 200÷300g, 0÷100g, czy 300÷400g są błędne z powodu niewłaściwej interpretacji różnic współrzędnych. Przedział 0÷100g sugeruje kierunki północno-wschodnie, gdzie zarówno ΔX, jak i ΔY byłyby dodatnie, co jest sprzeczne z danymi, ponieważ ΔX jest ujemne. Natomiast przedział 200÷300g obejmuje azymuty w kierunku południowym, które nie pasują do sytuacji, gdy ΔY jest dodatnie, a ΔX ujemne. Przedział 300÷400g, który odpowiada kierunkowi południowo-zachodniemu, również nie jest właściwy w obliczeniach, ponieważ ten azymut oznacza, że zarówno współrzędne X, jak i Y byłyby skierowane w kierunku południowym. Zrozumienie, jak różnice współrzędnych wpływają na określenie azymutu, jest kluczowe dla uniknięcia takich błędów w przyszłości. W praktycznych zastosowaniach geodezyjnych, precyzyjne obliczenia tych wartości są niezbędne do określenia właściwych kierunków w pracy terenowej oraz w inżynierii, a także w systemach informacji geograficznej, gdzie dokładność obliczeń wpływa na efektywność wykonania projektów.

Pytanie 24

Na szkicu osnowy pomiarowej nie są umieszczane

A. rzędne i odcięte w szczegółach sytuacyjnych
B. uśrednione długości linii pomiarowych
C. numery punktów osnowy
D. wyrównane wartości kątów poziomych
W szkicu pomiarowej osnowy sytuacyjnej umieszczanie wyrównanych wartości kątów poziomych, numerów punktów osnowy i średnich długości linii może się zdawać zgodne z zasadami geodezyjnymi, ale nie do końca. Wyrównane kąty są ważne, bo dzięki nim możemy lepiej zrozumieć, jak punkty są rozmieszczone, co potem ułatwia dalsze pomiary. Numery punktów to też istotna sprawa, bo pozwalają na identyfikację i późniejsze wykorzystywanie w różnych projektach. Uśrednione długości linii też dostarczają nam info o odległościach. Niemniej jednak, rzędne i odcięte do szczegółów sytuacyjnych są informacjami, które nie powinny się tam znaleźć, bo robią zamieszanie i mogą być zbędne w kontekście podstawowych pomiarów. Zbyt duża ilość detali może prowadzić do nieporozumień i utrudniać późniejsze analizy, więc ważne jest, żeby każdy dokument był jasny i funkcjonalny.

Pytanie 25

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. celownikiem
B. alidadą
C. limbusem
D. spodarką
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 26

Który z wymienionych obiektów może mieć domiar przekraczający 25 m, jeżeli pomiary szczegółów terenowych są realizowane metodą ortogonalną?

A. Drewnianej podpory mostowego.
B. Elementu podziemnej sieci gazowej.
C. Stabilizowanego punktu załamania granicy działki.
D. Trwałego ogrodzenia.
W przypadku drewnianej podpory mostu, element ten powinien być bardzo precyzyjnie umiejscowiony w terenie, aby zapewnić odpowiednią stabilność i nośność konstrukcji. Odpowiednie normy budowlane, takie jak PN-EN 1991, kładą duży nacisk na dokładność pomiarów dla tego typu obiektów, ponieważ jakiekolwiek odchylenia mogą prowadzić do poważnych konsekwencji konstrukcyjnych. W związku z tym, pomiary ortogonalne dla drewnianych podpór mostów są ograniczone do domiarów nieprzekraczających ustalonych norm, co zazwyczaj nie powinno przekraczać 25 m. W przypadku trwałego ogrodzenia, które jest elementem mającym na celu wyznaczanie granic terenu, również kluczowa jest precyzja w pomiarach, aby uniknąć sporów granicznych. W standardach geodezyjnych kładzie się ogromny nacisk na dokładność pomiarów, aby granice były jednoznacznie określone. Stabilizowane punkty załamania granicy działki również powinny być umiejscowione z wysoką precyzją, aby zapobiec przyszłym nieporozumieniom oraz zapewnić dokładność w odniesieniu do istniejącej dokumentacji geodezyjnej. Wszelkie odchylenia mogą prowadzić do konfliktów prawnych oraz problemów z ustaleniem rzeczywistego przebiegu granicy. W związku z tym, wszystkie wymienione obiekty wymagają precyzyjnych pomiarów, a dopuszczenie domiarów większych niż 25 m w tych przypadkach jest niezgodne z przyjętymi praktykami w geodezji.

Pytanie 27

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. znaków z kamienia.
B. trzpieni.
C. bolców.
D. palików drewnianych.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 28

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. aktualizacji danych w bazie obiektów topograficznych
B. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
C. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
D. inwentaryzacji po zakończeniu budowy obiektu
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 29

Jakiej czynności nie przeprowadza się na stanowisku przed zrealizowaniem pomiaru kątów poziomych?

A. Dokonania pomiaru wysokości teodolitu
B. Centrowania teodolitu
C. Regulacji ostrości obrazu
D. Regulacji ostrości krzyża kresek
Ustawianie ostrości obrazu, ostrości krzyża kresek oraz centrowanie teodolitu to kluczowe czynności, które należy wykonać przed pomiarem kątów poziomych. Wiele osób może myśleć, że pomiar wysokości teodolitu jest równie ważny, co te czynności, jednak zrozumienie ich przeznaczenia jest kluczowe dla prawidłowego wykorzystania instrumentu. Ustawienie ostrości obrazu jest niezbędne, aby uzyskać wyraźny obraz punktu docelowego, co umożliwia dokładne odczytywanie kątów. Ustawienie ostrości krzyża kresek pozwala na precyzyjne wyznaczenie kierunku, co jest niezbędne dla uzyskania wiarygodnych wyników. Centrowanie teodolitu natomiast zapewnia, że punkt pomiarowy znajduje się dokładnie pod osią instrumentu, co jest fundamentalne dla osiągnięcia wysokiej dokładności pomiarów. Nieprawidłowe zrozumienie hierarchii tych czynności prowadzi do błędów pomiarowych, które mogą w konsekwencji wpływać na całą pracę geodezyjną. W praktyce, pomiar wysokości teodolitu jest realizowany w innym kontekście, związanym z pomiarami wysokościowymi, a nie pomiarami kątów poziomych. Dlatego istotne jest, aby przed rozpoczęciem pomiarów kątowych, upewnić się, że wszystkie przygotowania związane z ustawieniem instrumentu są wykonane poprawnie, aby uniknąć błędów i nieprawidłowości.

Pytanie 30

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. sozologicznej
B. topograficznej
C. zasadniczej
D. klasyfikacyjnej
Wyniki wywiadu terenowego, które są kluczowe w procesie pomiarów geodezyjnych, powinny być zaznaczone na mapie zasadniczej. Mapa zasadnicza to dokument, który przedstawia szczegółowe dane dotyczące ukształtowania terenu, istniejącej infrastruktury oraz innych elementów przestrzennych. Wykonywanie pomiarów sytuacyjnych i wysokościowych w terenie jest niezbędne do zapewnienia aktualności tych informacji. Zgodnie z obowiązującymi standardami geodezyjnymi, wyniki pomiarów powinny być wprowadzane do mapy zasadniczej w sposób, który umożliwia ich późniejsze wykorzystanie w różnych dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska czy inwestycje budowlane. Przykładem zastosowania może być proces aktualizacji danych w przypadku budowy nowego obiektu, gdzie dokładne odwzorowanie w terenie ma kluczowe znaczenie dla dalszych prac. W praktyce, geodeci często korzystają z technologii GPS oraz skaningu laserowego, aby dokładnie zarejestrować zmiany, które następnie odzwierciedlane są na mapach zasadniczych, co zgodne jest z dobrą praktyką branżową.

Pytanie 31

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 213,00 m
B. 215,00 m
C. 211,00 m
D. 217,00 m
Wybór 211,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu jest właściwą decyzją, gdyż jest to wartość, która pozwala na uzyskanie stabilnej bazy odniesienia dla analizy wysokości punktów. W pomiarach niwelacyjnych, istotne jest, aby wybrać poziom, który odzwierciedla najniższy z punktów w badanym obszarze. W tym przypadku, 211,00 m jest wartością poniżej wszystkich zarejestrowanych wysokości punktów, co umożliwia łatwe odczytywanie różnic wysokości. Przykładowo, jeśli będziemy porównywać wysokości punktów 1-6 w kontekście ich lokalizacji na profilu, odniesienie do 211,00 m będzie sprzyjać większej przejrzystości analiz i wizualizacji. W praktyce, wybór takiego poziomu porównawczego jest zgodny z zasadą, że wszelkie wymiary i różnice powinny być przedstawiane względem wspólnej, stabilnej bazy, co jest kluczowe w inżynierii lądowej i geodezji. Dodatkowo, zapewnia to zgodność z normami branżowymi dotyczącymi precyzyjnych pomiarów i analiz terenowych, co wpływa na efektywność dalszych prac projektowych.

Pytanie 32

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. punktem celowania a horyzontem instrumentu
B. reperami a punktem celowania
C. punktem celowania a stanowiskiem instrumentu
D. sąsiednimi reperami
Przewyższenie w niwelacji trygonometrycznej to kluczowy element w procesie pomiarów geodezyjnych, odnoszący się do różnicy wysokości pomiędzy punktem celowania a horyzontem instrumentu. Oznacza to, że aby poprawnie określić różnice wysokości na danym terenie, geodeta musi zrozumieć, jak działa instrument niwelacyjny. Horyzont instrumentu jest poziomą linią, która służy jako odniesienie do pomiarów, a punkt celowania to punkt, w który kieruje się niwelator. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektach budowlanych, infrastrukturze drogowej oraz w geodezyjnych pomiarach terenowych. Prawidłowe określenie przewyższenia jest kluczowe dla zapewnienia, że konstrukcje będą zgodne z wymaganiami projektowymi, a także w celu uniknięcia błędów, które mogłyby prowadzić do problemów w przyszłości. W geodezji stosuje się standardy takie jak normy PN-EN 2878, które wskazują na metodyki pomiarów i interpretacji wyników, co jest istotne w kontekście precyzyjnych prac geodezyjnych oraz inżynieryjnych.

Pytanie 33

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. całkowitą liczbę metrów w jednym odcinku trasy
B. liczbę hektometrów w danym kilometrze trasy
C. kompletną liczbę kilometrów od startu trasy
D. numer hektometra w konkretnej sekcji kilometra
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego systemu oznaczania. Na przykład, odpowiedź wskazująca na numer hektometra w danym kilometrze sugeruje, że cyfra 2 odnosi się do odcinka hektometrowego, co jest mylące. W rzeczywistości nie stosuje się takiego zapisu w kontekście punktów pomiarowych. Koncepcja ta może prowadzić do błędnych założeń, ponieważ punkt 2 w schemacie 2/5 nie odnosi się do jednostek hektometrycznych, które są używane na bardziej lokalnym poziomie. Z kolei odniesienie do pełnej liczby metrów w jednym odcinku trasy pomija kluczowy aspekt systemu, który wyraźnie definiuje pełne kilometry. Może to być mylące, zwłaszcza gdy rozważamy różnice w jednostkach pomiarowych. Trzeba również brać pod uwagę, że standardy branżowe, które regulują oznaczanie tras, jasno określają, jak powinny być przedstawiane odległości, co jeszcze bardziej podkreśla, że numeracja kilometrów jest fundamentalna dla właściwego zrozumienia struktury tras. Często popełnianym błędem jest niezweryfikowanie kontekstu, w jakim są używane konkretne oznaczenia, co skutkuje wyborem odpowiedzi, które wydają się mieć sens, ale w rzeczywistości są sprzeczne z ustalonymi normami. Ważne jest, aby zawsze odnosić się do najnowszych standardów i praktyk w branży, aby unikać nieporozumień.

Pytanie 34

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. al.
B. dr.
C. pl.
D. ul.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 35

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,20 m
B. 0,30 m
C. 0,50 m
D. 0,10 m
Pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej to sprawa dość poważna, więc wymagana dokładność 0,10 m to w sumie nic dziwnego. Jak wiemy, precyzyjne pomiary są mega ważne w geodezji. Na przykład, jeśli właz jest w miejscu, gdzie jest dużo zabudowań, to każda zmiana w układzie drogowym może wpłynąć na to, jak studzienki są lokalizowane. Jak się pomyli w pomiarze, to później mogą być problemy z dostępem do tych studzienek, a to nie jest to, co chcemy. Przykłady standardów, jak norma PN-EN ISO 17123, pokazują, że taka dokładność to nie jest tylko wymysł, ale konieczność w inwentaryzacji budynków. Starając się trzymać tych wytycznych, dajemy sobie szansę na bezpieczną i efektywną pracę z infrastrukturą, która jest pod ziemią.

Pytanie 36

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. spodarką
B. pionem
C. alidadą
D. limbusem
Spodarka jest kluczowym elementem teodolitu, którego funkcją jest zapewnienie stabilnej i wypoziomowanej podstawy dla urządzenia pomiarowego. Dzięki zastosowaniu spodarki, możliwe jest precyzyjne wykonywanie pomiarów kątów poziomych i pionowych, co jest niezwykle istotne w geodezji oraz budownictwie. Spodarka często jest konstruowana w sposób umożliwiający łatwe dostosowanie poziomu urządzenia, co jest niezbędne do uzyskania dokładnych wyników. W praktyce geodezyjnej, teodolity z odpowiednio dostosowaną spodarką pozwalają na realizację skomplikowanych pomiarów terenowych, takich jak wyznaczanie linii prostych, kątów oraz różnic wysokości. Istotne jest, aby podczas pracy z teodolitem, zwłaszcza w trudnym terenie, zachować ostrożność przy poziomowaniu spodarki, co z kolei wpływa na dokładność pomiarów. Dobre praktyki w tej dziedzinie obejmują regularne kalibracje i kontrole sprzętu, co zapewnia wysoką jakość wyników pomiarowych oraz zgodność z obowiązującymi standardami branżowymi.

Pytanie 37

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,01 m
B. 0,001 m
C. 0,004 m
D. 0,02 m
Wybór innych wartości, takich jak 0,02 m, 0,001 m czy 0,004 m, wskazuje na brak zrozumienia wymagań dotyczących precyzyjnego pozycjonowania w kontekście technologii GNSS. W przypadku 0,02 m, chociaż może to wydawać się akceptowalnym poziomem dokładności, w rzeczywistości jest to zbyt duży błąd, który może prowadzić do poważnych nieścisłości w pomiarach, zwłaszcza w geodezji, gdzie standardy w zakresie dokładności są szczególnie surowe. Przykłady zastosowań, gdzie dokładność jest kluczowa, obejmują monitoring deformacji gruntu czy precyzyjne pomiary w inżynierii lądowej. Zastosowanie 0,001 m jako wymaganej dokładności również jest niepraktyczne, ponieważ w rzeczywistości osiągnięcie tak wysokiej precyzji w warunkach terenowych jest niezwykle trudne i kosztowne. Wreszcie, wybór 0,004 m również nie odpowiada rzeczywistym potrzebom, ponieważ nie zapewnia odpowiedniego marginesu bezpieczeństwa w kontekście pomiarów, które mogą być narażone na różne źródła błędów, takie jak interferencje atmosferyczne czy multipath. W związku z tym, dla zastosowań wymagających precyzji, ustalanie wysokości anteny odbiornika z dokładnością 0,01 m jest najbardziej odpowiednim rozwiązaniem, które nie tylko spełnia standardy branżowe, ale również odpowiada rzeczywistym wymaganiom projektowym.

Pytanie 38

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Reperów
B. Punktów rozproszonych
C. Geometryczna
D. Trygonometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 39

Który z poniższych dokumentów jest wymagany przy wykonywaniu inwentaryzacji powykonawczej budowli?

A. Instrukcja obsługi tachimetru
B. Mapa topograficzna
C. Projekt budowlany
D. Mapa zasadnicza
Podczas wykonywania inwentaryzacji powykonawczej budowli, kluczowym dokumentem jest projekt budowlany. To właśnie on zawiera wszystkie niezbędne informacje dotyczące struktury, wymiarów oraz specyfikacji technicznej budowli, które są niezbędne do prawidłowej oceny zgodności wykonanego obiektu z założeniami projektowymi. Projekt budowlany stanowi podstawowy punkt odniesienia, umożliwiający ocenę, czy budowla została zrealizowana zgodnie z założeniami, a także identyfikację ewentualnych odchyleń. Praktyka branżowa wymaga, aby pomiary powykonawcze były precyzyjnie porównywane z danymi zawartymi w projekcie, co umożliwia uzyskanie dokładnych wyników. Projekt budowlany jest też często wymagany przez różne instytucje kontrolne i jest podstawowym dokumentem w procesie odbioru technicznego budowli. Warto również zaznaczyć, że posiadanie aktualnego projektu budowlanego jest kluczowe nie tylko dla samej inwentaryzacji, ale także dla przyszłych prac konserwacyjnych czy modernizacyjnych, które mogą być planowane w przyszłości. Dlatego w kontekście inwentaryzacji powykonawczej, projekt budowlany jest niezbędnym dokumentem, który umożliwia precyzyjną i wiarygodną ocenę wykonanej pracy.

Pytanie 40

Długości boków działki o kształcie kwadratu, którego powierzchnia wynosi 1 hektar, zmierzono z przeciętnym błędem ±0,10 m. Jaką wartość ma średni błąd w obliczaniu powierzchni tej działki?

A. ±100 m2
B. ±200 m2
C. ±10 m2
D. ±20 m2
Analiza błędów pomiarowych w kontekście wyznaczania powierzchni działki wymaga znajomości podstawowych zasad geometrii oraz matematyki stosowanej w inżynierii. Wybór błędnych odpowiedzi wynika najczęściej z nieprawidłowego zastosowania wzorów dotyczących obliczeń błędów. Na przykład, odpowiedź wskazująca na ±100 m² nie uwzględnia, że błąd w pomiarze długości nie przekłada się proporcjonalnie na błędy w obliczaniu powierzchni. Rozszerzając tę myśl, warto zauważyć, że błąd w jednej jednostce długości nie jest równy błędowi w jednostce powierzchni, ponieważ działka ma dwie wymiary – długość i szerokość. Inny typowy błąd to przyjęcie, że błąd obliczenia powierzchni można uzyskać przez dodanie błędów pomiarowych, co nie jest zgodne z zasadą propagacji błędów w przypadku funkcji nieliniowych, takich jak pole powierzchni. Również niepoprawne jest myślenie, że większy błąd pomiarowy długości boku automatycznie oznacza większy błąd powierzchniowy w sposób liniowy. W rzeczywistości zmiana długości boku wpływa na pole powierzchni w sposób kwadratowy. To zrozumienie jest kluczowe dla każdej osoby pracującej w branży geodezyjnej, architektonicznej czy budowlanej, gdzie precyzyjne pomiary mają kluczowe znaczenie dla sukcesu projektów.