Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 13 maja 2025 12:43
  • Data zakończenia: 13 maja 2025 13:08

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Gwiazdy.
B. Pierścienia.
C. Siatki.
D. Drzewa.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 2

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Zwrotnicy antenowej
B. Zasilacza komputerowego
C. Symetryzatora antenowego
D. Czujnika kontaktronowego
Zasilacze komputerowe to naprawdę ważne elementy w każdym komputerze, bo to właśnie one dostarczają prąd do wszystkich podzespołów. Ważne, żeby pamiętać o regularnym czyszczeniu elementów chłodzących, takich jak wentylatory i radiatory. Gromadzący się kurz może znacznie ograniczyć ich działanie i prowadzić do przegrzewania zasilacza, co w efekcie może uszkodzić sprzęt. Czyszczenie to nie tylko kwestia wyglądu, ale też bezpieczeństwa i wydajności całego systemu. Z mojego doświadczenia, warto robić to co kilka miesięcy, w zależności od tego, w jakich warunkach pracujemy. Używanie odkurzaczy antystatycznych czy sprężonego powietrza to dobre sposoby na pozbycie się zanieczyszczeń. Troska o zasilacz to klucz do dłuższej żywotności komputera oraz stabilnej pracy.

Pytanie 3

Zawartość pamięci EPROM może zostać utracona w wyniku

A. braku napięcia zasilającego
B. niesprawnego układu odświeżającego
C. obniżenia napięcia zasilającego poniżej 2,5 V
D. bezpośredniego wpływu promieni słonecznych
Zanik napięcia zasilającego nie prowadzi do bezpośredniej utraty danych w pamięci EPROM, ponieważ pamięci te zachowują swoje dane w sposób trwały, nawet w przypadku braku zasilania. EPROM jest zaprojektowany tak, aby przechowywać dane w stanie stabilnym, co oznacza, że nawet po odłączeniu zasilania, informacje zapisane w pamięci pozostaną nienaruszone. Błąd myślowy, który może prowadzić do takiego wniosku, to mylenie EPROM z pamięciami typu RAM, które wymagają ciągłego zasilania do zachowania danych. Z kolei spadek napięcia poniżej 2,5 V również nie wpływa bezpośrednio na EPROM, ponieważ te układy nie tracą danych w wyniku chwilowych wahań napięcia zasilającego. W przypadku wadliwego układu odświeżającego, problem ten dotyczy głównie pamięci dynamicznych (DRAM), które wymagają regularnego odświeżania, aby utrzymać dane. Warto zwrócić uwagę na to, że EPROM jest pamięcią statyczną, a nie dynamiczną, co oznacza, że nie wymaga odświeżania i jest bardziej odporna na takie problemy. Takie nieporozumienia mogą wynikać z braku zrozumienia różnic pomiędzy różnymi typami pamięci, co jest kluczowe dla właściwego projektowania systemów elektronicznych. Właściwa wiedza w tym zakresie jest niezbędna przy wyborze odpowiednich rozwiązań pamięciowych do określonych zastosowań.

Pytanie 4

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. wymiana rejestratora cyfrowego
B. naprawa kontrolera ethernet
C. dostosowanie zwory elektromagnetycznej
D. konfiguracja czasu alarmowania
Regulacja zwory elektromagnetycznej jest kluczowym elementem konserwacji systemu kontroli dostępu, ponieważ to właśnie zwora odpowiada za fizyczne zabezpieczenie drzwi. Zwory elektromagnetyczne działają na zasadzie przyciągania magnetycznego, które utrzymuje drzwi zamknięte, gdy system jest aktywowany. Właściwa regulacja zapewnia, że zwora działa zgodnie z normami bezpieczeństwa, minimalizując ryzyko nieautoryzowanego dostępu. Przykładem zastosowania regulacji może być sytuacja, w której zwora nie trzyma drzwi wystarczająco mocno, co może prowadzić do ich łatwego otwarcia przez osoby trzecie. Regularne kontrole i dostosowania zwory są zgodne z najlepszymi praktykami branżowymi, które zalecają monitoring stanu mechanizmów zabezpieczeń. Ponadto, zwory powinny być sprawdzane pod kątem ewentualnych uszkodzeń oraz korozji, aby zapewnić ich długoterminową efektywność. Odpowiednie szkolenie personelu w zakresie konserwacji i regulacji systemu zabezpieczeń, w tym zwór, jest również istotnym aspektem utrzymania bezpieczeństwa w obiektach.

Pytanie 5

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
B. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
C. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
D. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
Odpowiedzi wskazujące na inne funkcje zwrotnicy antenowej są błędne i wynikają z nieporozumień dotyczących jej rzeczywistego zastosowania. Rozdzielanie sygnału telewizyjnego na kilka odbiorników nie jest zadaniem zwrotnicy, lecz rozdzielacza sygnału, który ma na celu dostarczenie tego samego sygnału do wielu urządzeń. Z kolei przesuwanie pasma częstotliwości sygnału telewizji satelitarnej jest funkcjonalnością, która dotyczy konwerterów LNB, a nie zwrotnic. Umożliwienie podłączenia anteny z wyjściem symetrycznym do asymetrycznego wejścia w odbiorniku telewizyjnym jest również błędnym stwierdzeniem, ponieważ do tego celu stosuje się transformator impedancji, a nie zwrotnicę. Takie nieporozumienia mogą prowadzić do nieefektywnego projektu instalacji antenowej, co skutkuje nie tylko pogorszeniem jakości sygnału, ale również problemami z kompatybilnością urządzeń. Dlatego ważne jest, aby zrozumieć specyfikę tych elementów systemu antenowego oraz zasady ich poprawnej pracy, co pozwala na stworzenie wydajnej i niezawodnej instalacji. W praktyce, dobór odpowiednich komponentów oraz ich prawidłowe zastosowanie zgodnie z normami branżowymi jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 6

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. zwiększyć napięcie zasilania elektrozaczepu.
B. dostosować poziom głośności w unifonie.
C. zwiększyć poziom głośności w panelu.
D. regulować napięcie w kasecie rozmownej.
Podwyższenie poziomu głośności w panelu, a nie w unifonie, nie rozwiązuje problemu pisków, ponieważ to unifon jest bezpośrednim źródłem dźwięku. Zwiększenie głośności na panelu może jedynie intensyfikować problem, zamiast go eliminować. W praktyce, niezrozumienie, że unifon powinien mieć własną regulację głośności, prowadzi do błędnych wniosków. Podobnie, wyregulowanie napięcia w kasecie rozmownej nie jest odpowiednią metodą na rozwiązanie problemu z dźwiękiem. Kasa rozmowna pełni rolę zasilającą i sterującą, a nie audio, więc zmiana napięcia w tym miejscu nie wpłynie na jakość dźwięku. Co więcej, podwyższenie napięcia zasilania elektrozaczepu nie ma związku z problemami audio w unifonie. Elektrozaczep odpowiada za otwieranie drzwi, a nie za przekazywanie dźwięku. Typowym błędem w takich sytuacjach jest mylenie funkcji poszczególnych elementów systemu domofonowego, co prowadzi do nieefektywnych rozwiązań. Zrozumienie, że każdy komponent pełni swoją unikalną funkcję, jest kluczowe dla prawidłowej obsługi systemów audio-wideo, a także działania całego systemu domofonowego.

Pytanie 7

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektrostatyczne
B. pole elektromagnetyczne
C. dyspersja chromatyczna
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 8

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. światłowodu
B. linii radiowej
C. skrętki nieekranowanej
D. skrętki ekranowanej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 9

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Nośniku optycznym
B. Ekranie LCD
C. Monitorze CRT
D. Dysku twardym
Twarde dyski, panele LCD oraz napędy optyczne nie bazują na zjawisku odchylania elektronów w polu elektromagnetycznym. Twarde dyski działają na zasadzie magnetyzmu i wykorzystują mechaniczne elementy do odczytu i zapisu danych, co różni się od wykorzystania elektronów w monitorach CRT. W przypadku paneli LCD, obraz jest generowany przez manipulację światłem, które przechodzi przez ciekłe kryształy, a nie przez odchylanie elektronów. Technologia LCD nie wykorzystuje elektronów w sposób, w jaki robi to CRT; zamiast tego, kontroluje intensywność światła poprzez zmiany w orientacji cząsteczek ciekłych kryształów. Napędy optyczne, takie jak napędy DVD, działają na zasadzie lasera, który odczytuje dane zapisane na płytach, co również jest całkowicie różne od zjawiska odchylania elektronów. W wyborach odpowiedzi na takie pytania, kluczowe jest zrozumienie, jak konkretne technologie działają na poziomie fizycznym i technicznym, aby uniknąć mylnych wniosków. Nieprawidłowe odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między technologiami oraz ich zastosowań w praktyce, co jest istotne w kontekście zawodów związanych z informatyką i inżynierią.

Pytanie 10

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. RJ-45
B. JACK
C. DIN
D. BNC
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 11

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. nałożyć krem.
B. oczyścić jałową gazą.
C. nałożyć maść.
D. obmyć strumieniem zimnej wody.
Posmarowanie oparzonej dłoni kremem, maścią czy przetarcie jałową gazą jest niewłaściwe w przypadku oparzenia substancją żrącą. Takie działania mogą prowadzić do poważnych konsekwencji, ponieważ aplikacja jakiegokolwiek preparatu na uszkodzoną skórę może zablokować dalsze wydostawanie się substancji chemicznej oraz spowodować pogorszenie stanu skóry poprzez wprowadzenie dodatkowych zanieczyszczeń. Kremy i maści często zawierają substancje, które mogą reagować z chemikaliami, prowadząc do pogłębienia oparzenia. Z kolei przetarcie jałową gazą może powodować uszkodzenia już i tak wrażliwej skóry, co w efekcie przyczyni się do większego bólu i ryzyka infekcji. Warto pamiętać, że oparzenia chemiczne wymagają natychmiastowego schłodzenia i neutralizacji, co nie jest możliwe poprzez stosowanie kremów czy maści. W takich sytuacjach kluczowym błędem jest przekonanie, że stosowanie preparatów mogących "ukoić" ból jest działaniem wystarczającym. Takie myślenie często wynika z braku wiedzy na temat odpowiednich procedur w udzielaniu pierwszej pomocy. W przypadku oparzeń chemicznych zawsze należy pamiętać o pierwszym kroku, jakim jest spłukanie oparzonego miejsca wodą, aby zminimalizować skutki działania substancji. Dopiero po tym kroku można myśleć o dalszej pomocy medycznej.

Pytanie 12

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. spawarka
B. zaciśniacz
C. zgrzewarka
D. który służy do lutowania
Spawarka światłowodowa jest kluczowym narzędziem w procesie łączenia włókien optycznych, które są niezbędne w nowoczesnych systemach komunikacyjnych. Dzięki zastosowaniu technologii spawania, można precyzyjnie łączyć włókna, minimalizując straty sygnału i zapewniając wysoką jakość połączenia. Proces spawania polega na sklejaniu końcówek włókien w wysokotemperaturowym łuku elektrycznym, co umożliwia uzyskanie niemal idealnego połączenia, które jest odporne na wpływy zewnętrzne. W praktyce, spawarki umożliwiają szybkie i efektywne łączenie włókien, co jest szczególnie istotne w kontekście budowy sieci telekomunikacyjnych czy instalacji światłowodowych w budynkach. Warto również zwrócić uwagę na normy, jak np. IEC 61300-3-34, które definiują wymagania dotyczące metod łączenia włókien, potwierdzając znaczenie spawania jako najczęściej rekomendowanej metody w branży. Dodatkowo, umiejętność obsługi spawarki światłowodowej jest niezbędna w zawodach związanych z instalacją i konserwacją sieci optycznych.

Pytanie 13

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. spliter
B. generator
C. modulator
D. dekoder
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 14

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 12 V/V
B. KUMAX = 260 V/V
C. KUMAX = 2,4 V/V
D. KUMAX = 24 V/V
Odpowiedź KUMAX = 12 V/V jest poprawna, ponieważ wzmocnienie napięciowe definiuje się jako stosunek napięcia wyjściowego do napięcia wejściowego. W tym przypadku, dla częstotliwości środkowej 260 Hz, napięcie wyjściowe wynosi 2,4 V, a napięcie wejściowe to 200 mV (0,2 V). Obliczając wzmocnienie, uzyskujemy wartość 12 V/V, co oznacza, że napięcie wyjściowe jest 12 razy większe od napięcia wejściowego. W praktyce, takie wzmocnienie jest istotne w układach wzmacniaczy, gdzie precyzyjne dostosowanie wzmocnienia napięcia jest kluczowe dla osiągnięcia pożądanej jakości sygnału. Dobrze zaprojektowane układy wzmacniaczy wykorzystują stabilne źródła napięcia i precyzyjne komponenty, co pozwala na uzyskanie wysokiej linearności i niskich zniekształceń sygnału. Standardy dotyczące wzmacniaczy, takie jak normy IEEE, podkreślają konieczność dokładnych pomiarów wzmocnienia, aby zapewnić niezawodność i efektywność działania całego systemu elektronicznego.

Pytanie 15

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. omomierza
B. amperomierza
C. watomierza
D. woltomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 16

Aby ocenić sprawność kabla krosowego, należy zastosować

A. testera kabli sieciowych, gdy kabel jest odłączony od wszystkich urządzeń
B. testera kabli sieciowych, gdy kabel jest podłączony do sieci komputerowej
C. wobulatora, gdy kabel jest podłączony do sieci komputerowej
D. wobulatora, gdy kabel jest odłączony od wszystkich urządzeń
Wykorzystywanie testera kabli sieciowych przy kablu włączonym do sieci komputerowej może prowadzić do błędnych wyników diagnostycznych. Dzieje się tak, ponieważ inne urządzenia podłączone do sieci mogą wpływać na sygnały przesyłane przez badany kabel, co może skutkować fałszywymi wskazaniami błędów, które nie są rzeczywiście związane z jego stanem. Podobnie, korzystanie z wobulatora w trakcie pracy kabla w sieci komputerowej nie jest zalecane, ponieważ wobulator, który jest urządzeniem do analizy sygnałów, również może być zakłócony przez inne urządzenia, co czyni jego pomiary nieprecyzyjnymi. W przypadku kabla odłączonego od wszystkich urządzeń, możemy uzyskać czystsze wyniki, co pozwala na skuteczną diagnostykę. Warto również zwrócić uwagę, że błędne podejście do testowania kabli może prowadzić do pomijania istotnych problemów, które mogą wpływać na wydajność całej sieci, takich jak uszkodzenia w okablowaniu czy niewłaściwe połączenia. To z kolei może prowadzić do frustracji użytkowników, a także do kosztownych przestojów w pracy systemów. Dlatego do testowania kabli zawsze należy podchodzić z należytą starannością i przestrzegać dobrych praktyk inżynieryjnych, które podkreślają znaczenie izolacji kabla od innych elementów sieci podczas badania jego stanu.

Pytanie 17

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Temperatura otoczenia
B. Liczba użytkowników
C. Poziom wilgotności powietrza
D. Grubość ścian oraz stropów
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 18

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. ustawienia czujek ruchu
B. linii sabotażowych
C. faktury zakupu
D. stanu akumulatora
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 19

W procesie technologicznym konieczne jest, aby w pomieszczeniu o objętości 18 m3 utrzymywana była temperatura 40 st. C +- 5 st. C. Najczęściej wybieranym urządzeniem do sterowania elementami grzejnymi będzie

A. regulator tyrystorowy mocy
B. system sterowania czasowego
C. regulator dwustawny
D. system sterowania manualnego
Regulator dwustawny jest najbardziej odpowiednim rozwiązaniem w przypadku utrzymania temperatury w pomieszczeniu o kubaturze 18 m3, w którym wymagane jest zachowanie stabilnej temperatury 40°C z dopuszczalnym odchyleniem ±5°C. Regulator ten działa na zasadzie włączania i wyłączania źródła ciepła, co skutkuje szybkim osiągnięciem wymaganej temperatury. Przykładem zastosowania regulatora dwustawnego jest systemy grzewcze w domach jednorodzinnych, gdzie często występuje potrzeba szybkiej reakcji na zmiany temperatury. Dodatkowo, w przypadku sterowania grzejnikami, regulator ten może być skonfigurowany do automatycznego włączania się, gdy temperatura spadnie poniżej 35°C i wyłączania, gdy osiągnie 45°C. W przemyśle i budynkach użyteczności publicznej, stosowanie regulatorów dwustawnych pozwala na spełnienie norm dotyczących komfortu cieplnego, takich jak PN-EN 15251. Dobrą praktyką jest również zastosowanie czujników temperatury, które pozwalają na precyzyjniejsze monitorowanie warunków panujących w pomieszczeniu.

Pytanie 20

Podczas zdejmowania charakterystyki pasma przenoszenia filtrów wyniki zanotowano w poniższej tabeli. Jakiego rodzaju filtr był badany, jeżeli napięcie wejściowe wynosiło 2 V?

Uwyj=2 V
f1 Hz10 Hz100 Hz1 kHz10 kHz100 kHz1 MHz
Uwyj0,1 V0,2 V0,2 V1,5 V1,9 V2 V2 V

A. Środkowoprzepustowy.
B. Dolnoprzepustowy.
C. Górnoprzepustowy.
D. Środkowozaporowy.
Odpowiedź "Górnoprzepustowy" jest poprawna, ponieważ analizując dane z tabeli, zauważamy, że napięcie wyjściowe (Uwyj) zbliża się do napięcia wejściowego (Uwe=2V) przy wysokich częstotliwościach, co jest kluczowym wskaźnikiem dla filtrów górnoprzepustowych. Tego rodzaju filtry pozwalają na przepuszczanie sygnałów o wysokich częstotliwościach, podczas gdy sygnały o niskich częstotliwościach są tłumione. W praktyce, filtry górnoprzepustowe są szeroko stosowane w różnych aplikacjach, takich jak systemy audio, gdzie eliminują niskie tony, pozwalając na klarowność dźwięku. Także w telekomunikacji, filtry te są wykorzystywane do eliminacji zakłóceń w sygnałach wysokiej częstotliwości. Architektura takich filtrów często wykorzystuje elementy pasywne, takie jak kondensatory i cewki, oraz może być projektowana zgodnie z normami IEEE, co zapewnia ich funkcjonalność oraz zgodność z zasadami inżynieryjnymi. Warto również zwrócić uwagę na różne topologie filtrów górnoprzepustowych, które mogą być dostosowane do specyficznych potrzeb aplikacji, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektronicznej.

Pytanie 21

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Rozdzielczość
B. Typ mocowania obiektywu
C. Czułość
D. Kąt widzenia kamery
Rozdzielczość jest istotnym parametrem kamery, ale nie wpływa bezpośrednio na zdolność widzenia w słabym oświetleniu. Wyższa rozdzielczość oznacza więcej pikseli w obrazie, co przekłada się na większą szczegółowość. Niemniej jednak, nawet kamery o wysokiej rozdzielczości mogą mieć problem z uchwyceniem detali w warunkach słabego oświetlenia, jeśli ich czułość jest niska. Typ mocowania obiektywu dotyczy kompatybilności sprzętu, a nie zdolności kamery do pracy w nocy. Kąt widzenia kamery, choć wpływa na zakres obserwacji, również nie jest związany z jej wydajnością przy niskim oświetleniu. W praktyce, podczas wyboru kamery do monitoringu, kluczowym czynnikiem staje się czułość, ponieważ z odpowiednią wartością ISO można osiągnąć zadowalające rezultaty w trudnych warunkach. Nieprawidłowe zrozumienie roli czułości w kontekście niskiego oświetlenia prowadzi do błędnych decyzji zakupowych, gdzie użytkownicy mogą wybrać kamerę z wysoką rozdzielczością, ale niską czułością, co nie spełni ich oczekiwań w trudnych warunkach oświetleniowych.

Pytanie 22

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. poparzenie dłoni
B. wysuszenie skóry dłoni
C. uszkodzenie wzroku
D. krwawienie podskórne
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 23

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. usterkę toru odchylania poziomego
B. uszkodzenie toru odchylania poziomego
C. przerwę w torze zasilania
D. zwarcia międzyelektrodowe
Zjawisko samoczynnego wyłączania się odbiornika telewizyjnego z lampą kineskopową oraz towarzyszący mu chwilowy rozbłysk ekranu w jednym z podstawowych kolorów najczęściej wskazuje na zwarcia międzyelektrodowe. Takie zwarcia mogą występować pomiędzy elektrodami wewnątrz kineskopu, prowadząc do nieprawidłowego działania odbiornika. W momencie wystąpienia zwarcia, elektronika telewizora interpretuje to jako błąd w sygnale, co skutkuje wyłączeniem odbiornika. Praktycznie, użytkownicy mogą zaobserwować takie problemy, gdy odbiornik nagle gaśnie, a ekran na moment zmienia kolor, co może sugerować problemy z emisją elektronów. Dobre praktyki dotyczące diagnostyki telewizorów sugerują systematyczne sprawdzanie stanu kineskopów oraz elektrod, aby zminimalizować ryzyko wystąpienia podobnych problemów. W przypadku identyfikacji takich usterek, zaleca się wymianę kineskopu, co jest zgodne z normami serwisowymi i zapewnia długotrwałą oraz niezawodną pracę urządzenia.

Pytanie 24

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 12 V; 9 A; 0,75 mm2
B. 30 V; 3 A; 0,5 mm2
C. 230 V; 1,25 A; 0,4 mm2
D. 30 V; 9 A; 0,75 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 25

Jakość sygnału z anten satelitarnych mocno uzależniona jest od warunków pogodowych, co prowadzi do tzw. efektu pikselizacji lub utraty obrazu. W przypadku anten o jakiej średnicy to zjawisko jest najbardziej zauważalne?

A. 100 cm
B. 85 cm
C. 60 cm
D. 110 cm
Wybór większych średnic anten, takich jak 100 cm, 110 cm czy nawet 85 cm, w kontekście zjawiska pikselizacji, może być mylący. Wiele osób sądzi, że większa średnica anteny automatycznie przekłada się na lepszą jakość sygnału, co nie jest do końca prawdą. W rzeczywistości, podczas trudnych warunków atmosferycznych, większe anteny mogą być bardziej odporne na zjawiska odbicia i zaniku sygnału, jednak nie eliminują problemów, które występują przy odbiorze sygnałów z mniejszych anten. Dlatego zjawisko pikselizacji jest najbardziej widoczne w antenach o średnicy 60 cm, ponieważ ich mniejsza powierzchnia zbiorcza sygnału sprawia, że są bardziej podatne na utratę jakości sygnału. Co więcej, większe anteny mogą być użyteczne w warunkach, gdzie sygnał jest silniejszy, ale w przypadku trudnych warunków atmosferycznych, jak intensywne opady deszczu, ich zalety są ograniczone. Dlatego istotne jest, aby dobrać odpowiednią antenę do specyficznych warunków lokalizacyjnych oraz atmosferycznych, a nie tylko kierować się wielkością jej średnicy. Użytkownicy powinni również być świadomi, że jakość sygnału może być poprawiana przez inne czynniki, jak jakość instalacji, stosowane kable oraz dodatkowe urządzenia wzmacniające sygnał, co jest szczególnie istotne w przypadku większych anten, które mogą wymagać bardziej skomplikowanej instalacji.

Pytanie 26

Jakie oznaczenie skrótowe stosuje się dla komponentów obwodów elektronicznych, które są przeznaczone do montażu powierzchniowego w drukowanych płytkach?

A. LCD
B. CCD
C. SMD
D. SSD
Skrót SMD oznacza 'Surface Mount Device', czyli elementy elektroniczne przeznaczone do montażu powierzchniowego. Technologia SMD zrewolucjonizowała produkcję elektroniki, umożliwiając miniaturyzację układów i zwiększenie gęstości montażu. Elementy SMD są montowane bezpośrednio na powierzchni płytki drukowanej (PCB), co eliminuje potrzebę wiercenia otworów, jak ma to miejsce w przypadku tradycyjnych komponentów przewlekanych. Dzięki temu, płytki PCB mogą być cieńsze, co jest kluczowe w nowoczesnych urządzeniach, takich jak smartfony, laptopy i urządzenia IoT. W branży elektronicznej standardy IPC (Institute for Printed Circuits) promują zasady projektowania i montażu elementów SMD, co zapewnia wysoką jakość i niezawodność produktów. Dodatkowo, stosowanie SMD przyczynia się do zwiększenia efektywności produkcji, ponieważ automatyzacja montażu pozwala na szybsze i tańsze wytwarzanie. Elementy te są również dostępne w różnych rozmiarach, co daje inżynierom dużo swobody w projektowaniu obwodów.

Pytanie 27

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 15 kΩ
B. 10 kΩ
C. 90 kΩ
D. 60 kΩ
Kiedy mamy rezystory połączone równolegle, całkowita rezystancja R obliczamy według wzoru: 1/R = 1/R1 + 1/R2 + 1/R3. Dla trzech rezystorów, każdy o rezystancji 30 kΩ, wygląda to tak: 1/R = 1/30k + 1/30k + 1/30k, co możemy uprościć do 1/R = 3/30k. Po przekształceniu dostajemy R = 30k/3, co daje nam 10kΩ. W praktyce, połączenie równoległe rezystorów jest często używane w układach, gdzie chcemy obniżyć całkowitą rezystancję, a więc zwiększyć przepływ prądu. Na przykład w układach audio, gdzie więcej rezystorów równolegle pomaga obniżyć impedancję, co jest super dla wzmocnienia sygnału. Dobrze jest też rozumieć, jak wartości rezystancji wpływają na charakterystykę całego obwodu, bo to kluczowa sprawa w projektowaniu systemów elektronicznych.

Pytanie 28

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. układanie w pozycji bocznej
B. masaż serca
C. udrożnienie dróg oddechowych
D. sztuczne oddychanie
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 29

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. usunęcia kondensatora filtrującego
B. podłączenia obciążenia sztucznego
C. odłączenia układu od zasilania
D. zwarcia wejścia układu
Odłączenie układu od zasilania przed przystąpieniem do wymiany uszkodzonego tranzystora stopnia końcowego przetwornicy napięcia jest kluczowym krokiem zapewniającym bezpieczeństwo oraz ochronę sprzętu. Przed rozpoczęciem jakichkolwiek prac serwisowych, zawsze należy zidentyfikować źródło zasilania i je odłączyć, aby uniknąć porażenia prądem oraz uszkodzenia komponentów. Dobre praktyki inżynieryjne w elektronice nakazują stosowanie takich protokołów, aby zapewnić, że wszelkie potencjalnie niebezpieczne napięcia są wyeliminowane. W przypadku przetwornic napięcia, które często operują przy wysokich napięciach i prądach, jest to szczególnie istotne. Po odłączeniu zasilania, można bezpiecznie wymontować uszkodzony tranzystor, a następnie zainstalować nowy, mając pewność, że nie ma ryzyka dla technika ani dla innych elementów układu. Należy również pamiętać o odpowiednim wyładowaniu wszelkich kondensatorów, które mogą przechowywać ładunek elektryczny, co również jest częścią standardowych procedur konserwacyjnych.

Pytanie 30

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. izolacji wewnętrznej.
B. izolacji zewnętrznej.
C. ekranu.
D. żyły.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 31

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. opadów deszczu.
B. promieniowania X.
C. wyładowań atmosferycznych.
D. niskich temperatur.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 32

Jakie oznaczenie skrócone odnosi się do zakresu fal radiowych o częstotliwości mieszczącej się pomiędzy 30 MHz a 300 MHz, w którym swoje audycje nadają stacje radiowe wykorzystujące modulację FM?

A. VHF
B. UHF
C. LF
D. MF
W odpowiedziach, które nie wyszły, widać, że nieco pomyliłeś się z klasyfikacją fal radiowych. LF to skrót od Low Frequency, czyli niskie częstotliwości, i obejmuje zakres od 30 kHz do 300 kHz, co jakby nie pasuje do podanego pytania. Z kolei MF, czyli Medium Frequency, ma zakres od 300 kHz do 3 MHz, co również nie jest tym, czego szukaliśmy. A UHF, oznaczający Ultra High Frequency, to już od 300 MHz do 3 GHz, co głównie używa się w telekomunikacji i telewizji. Często ludzie myślą, że te terminy się pokrywają, ale w praktyce jest inaczej. Każde pasmo ma swoje specyficzne zastosowania, co jest istotne dla inżynierów dźwięku czy ludzi zajmujących się radiem. Dlatego warto zrozumieć te różnice, bo to naprawdę przydaje się w pracy z systemami komunikacji.

Pytanie 33

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. C.
B. B.
C. A.
D. D.
Wybór innej opcji jako odpowiedzi na to pytanie może wynikać z niepoprawnego zrozumienia zasad działania funkcji logicznych oraz ich zastosowania w praktycznych sytuacjach. Funkcje te opierają się na podstawowych zasadach algebraicznych, gdzie każda zmienna (sygnał) może przyjąć wartość "0" lub "1", a ich kombinacje determinują końcowy wynik. Często zdarza się, że błędne odpowiedzi są efektem mylenia sygnałów negowanych z ich rzeczywistymi wartościami. Na przykład, niektóre opcje mogły zostać wybrane, ponieważ zawierały wartości "1" dla sygnałów, które w danej funkcji wymagają wartości "0". Taki błąd logiczny może wynikać z typowych nieporozumień dotyczących negacji sygnałów, co prowadzi do fałszywych wniosków. Ważne jest, aby zwracać uwagę na każdy element funkcji przy ustalaniu, które wartości spełniają wymagania. Ponadto, w praktyce inżynierskiej, znajomość operacji logicznych i umiejętność ich stosowania jest kluczowa w projektowaniu systemów, które muszą działać zgodnie z określonymi zasadami. Używanie diagramów prawdy oraz metod analizy może znacząco zwiększyć skuteczność w zrozumieniu i zastosowaniu tych koncepcji w praktyce. Dlatego też zrozumienie i poprawne zastosowanie zasad logiki cyfrowej jest fundamentem dla efektywnego projektowania układów elektronicznych.

Pytanie 34

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną fd = 0,1 Hz oraz górną częstotliwość graniczną fg = 150 Hz. Jaki to typ wzmacniacza?

A. selektywny
B. szerokopasmowy
C. dla górnej części pasma akustycznego
D. dla dolnej części pasma akustycznego
Odpowiedź "dla dolnej części pasma akustycznego" jest prawidłowa, ponieważ wzmacniacz z dolną częstotliwością graniczną fd = 0,1 Hz i górną częstotliwością graniczną fg = 150 Hz jest przystosowany do przetwarzania sygnałów w niskich zakresach częstotliwości. Wzmacniacze tego typu są istotne w zastosowaniach, gdzie wymagane jest wzmocnienie sygnałów o niskiej częstotliwości, takich jak sygnały z mikrofonów, instrumentów muzycznych lub w systemach akustycznych. Przykładowo, w systemach audio wzmacniacze te mogą być używane do obsługi niskich tonów, co jest kluczowe w produkcjach muzycznych oraz w instalacjach dźwiękowych, gdzie reprodukcja basów jest istotna. Wzmacniacze te kategorii są projektowane w sposób umożliwiający efektywne wzmocnienie sygnałów w dolnym zakresie pasma akustycznego, co jest zgodne z normami branżowymi dotyczącymi jakości dźwięku. Dobre praktyki w projektowaniu takich wzmacniaczy obejmują minimalizację zniekształceń i szumów, co przekłada się na lepszą jakość dźwięku oraz większe zadowolenie użytkowników.

Pytanie 35

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. światłowodach
B. matrycach LCD
C. matrycach LED RGB
D. ogniwach fotowoltaicznych
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 36

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Ferrodynamiczny
B. Elektrodynamiczny
C. Magnetoelektryczny
D. Elektromagnetyczny
Odpowiedź "Magnetoelektryczny" jest poprawna, ponieważ symbol przedstawiony na rysunku odnosi się do ustroju magnetoelektrycznego, który jest kluczowym elementem w analogowych przyrządach pomiarowych. Mierniki magnetoelektryczne działają na zasadzie interakcji między polem magnetycznym wytworzonym przez magnes trwały a polem magnetycznym generowanym przez prąd przepływający przez cewkę. W wyniku tego zjawiska, cewka ruchoma przemieszcza się, co powoduje wychylenie wskazówki na skali pomiarowej. Tego rodzaju urządzenia są szeroko stosowane w laboratoriach oraz w przemyśle, ponieważ zapewniają wysoką dokładność pomiarów napięcia. Standardy ISO oraz normy IEC definiują wymagania dotyczące projektowania i kalibracji tych urządzeń, co gwarantuje ich niezawodność i precyzyjność w różnych warunkach pracy. Znajomość zasad działania ustrojów magnetoelektrycznych jest niezbędna dla inżynierów i techników zajmujących się pomiarami elektrycznymi.

Pytanie 37

Który z niżej wymienionych elementów nie wpływa na jakość odbioru sygnału telewizji cyfrowej?

A. Zjawisko burzy
B. Temperatura otoczenia
C. Odległość od stacji nadawczej
D. Stan kabla antenowego
Temperatura zewnętrzna rzeczywiście nie ma wpływu na odbiór sygnału telewizji naziemnej, ponieważ sygnał telewizyjny jest transmitowany na określonych częstotliwościach radiowych, które są stosunkowo odporne na zmiany temperatury. W praktyce, czynniki takie jak odległość od nadajnika oraz stan przewodu antenowego mają kluczowe znaczenie dla jakości odbioru. Na przykład, im większa odległość od nadajnika, tym sygnał staje się słabszy z powodu rozpraszania i tłumienia w atmosferze. Z tego powodu, odpowiednia lokalizacja anteny oraz jej ustawienie są kluczowe dla uzyskania optymalnej jakości odbioru. Warto również pamiętać, że podczas instalacji systemów antenowych, stosuje się różne techniki i technologie, takie jak wzmacniacze sygnału, aby zminimalizować problemy związane z odległością. Dodatkowo, dobre praktyki branżowe zalecają regularne sprawdzanie stanu przewodów i złączy, aby zredukować potencjalne straty sygnału. W związku z tym, zrozumienie, że temperatura zewnętrzna nie wpływa na odbiór, pozwala skupić się na istotnych aspektach zapewniających właściwą jakość sygnału.

Pytanie 38

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. LgY
B. YDYp
C. DY
D. YDY
Wybór oznaczeń takich jak DY, YDY czy YDYp może wynikać z niepełnego zrozumienia klasyfikacji przewodów elektrycznych. Oznaczenie DY odnosi się do przewodów z izolacją polwinitową, które nie są tak elastyczne jak linki LgY i wykorzystywane są głównie w instalacjach stacjonarnych. Ta pomyłka może wynikać z mylnego założenia, że wszystkie przewody z izolacją polwinitową mają podobne właściwości giętkości. Z kolei YDY to oznaczenie, które odnosi się do przewodów o dużej elastyczności, ale zbudowanych z innych materiałów, które niekoniecznie są tak elastyczne jak te z miedzi. Ostatnie oznaczenie, YDYp, sugeruje przewody o większej odporności na uszkodzenia mechaniczne, ale ich strukturą nie jest tak optymalna do zastosowań wymagających dużej giętkości. Tego rodzaju myśli mogą prowadzić do wyboru niewłaściwego przewodu dla danej aplikacji, co może skutkować problemami z wydajnością i niezawodnością połączeń elektrycznych. Dlatego ważne jest, aby dokładnie zrozumieć różnice między różnymi oznaczeniami oraz ich zastosowaniami w praktyce, aby unikać błędów w obrębie projektowania i realizacji instalacji elektrycznych.

Pytanie 39

Jakie narzędzie wykorzystuje się do usuwania resztek topnika z płytek drukowanych?

A. pędzelka
B. gąbki
C. ligniny
D. wacika
Wybór gąbki, ligniny lub wacika do usuwania resztek topnika z płytek drukowanych nie jest właściwy z kilku istotnych powodów. Gąbki, mimo że są absorbujące, mogą zostawiać włókna, co jest niepożądane w kontekście precyzyjnych urządzeń elektronicznych. Włókna te mogą stać się źródłem zwarcia lub wpływać na działanie elementów elektronicznych, prowadząc do ich degradacji lub awarii. Lignina, choć może być stosowana w kontekście czyszczenia, nie jest odpowiednia ze względu na swoją szorstkość oraz możliwości zostawiania resztek, co może prowadzić do zanieczyszczenia płytki. Z kolei waciki, które mogą wydawać się praktyczne, także nie są idealnym rozwiązaniem, gdyż ich struktura może zarysować delikatne powierzchnie lub również pozostawić włókna. Każda z tych alternatyw nie spełnia wymogów dotyczących dokładności oraz bezpieczeństwa, które są kluczowe w procesach związanych z elektroniką. Stosowanie niewłaściwych narzędzi czyszczących może prowadzić do uszkodzenia komponentów, co w dłuższej perspektywie generuje dodatkowe koszty i obniża jakość wyrobów. Dlatego w branży elektroniki zdefiniowane są specjalistyczne narzędzia i metody czyszczenia, które zapewniają dokładność oraz minimalizują ryzyko uszkodzeń, a pędzelek jest jednym z najczęściej zalecanych narzędzi w takich sytuacjach.

Pytanie 40

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Kontroluje pracę siłownika
B. Wizualizuje procesy przemysłowe
C. Przekształca sygnał z czujnika
D. Rejestruje działanie sieci
Wybór odpowiedzi, która zakłada, że przetwornik rejestruje pracę sieci, jest błędny, ponieważ nie jest to funkcja przypisana do przetworników. Rejestracja pracy sieci to zadanie dla innych urządzeń, takich jak rejestratory danych lub systemy SCADA, które mają za zadanie monitorować i archiwizować informacje o stanie sieci. Przetworniki natomiast koncentrują się na konwersji sygnałów, a nie na ich dokumentacji. Kolejne nieporozumienie dotyczy roli przetwornika jako urządzenia sterującego siłownikami. Stanowisko to jest zarezerwowane dla kontrolerów lub regulatorów, które podejmują decyzje o aktywacji siłowników na podstawie przetworzonych danych. Siłowniki mogą być aktywowane na podstawie sygnałów generowanych przez systemy automatyki, ale to nie przetwornik pełni tę funkcję. Wizualizacja procesów przemysłowych to zadanie dla interfejsów użytkownika i systemów HMI, które przekształcają dane z różnych źródeł, w tym z przetworników, w przystępną formę graficzną. Dlatego kluczowe jest zrozumienie, że każda z tych funkcji jest realizowana przez różne urządzenia w ekosystemie automatyki, a przetwornik jest tylko jednym z elementów, który przekształca i nie wykonuje zadań rejestracyjnych, sterujących ani wizualizacyjnych.