Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 08:49
  • Data zakończenia: 1 kwietnia 2025 09:11

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. pirometru
B. luksomierza
C. multimetru
D. kalorymetru
Multimetr to przyrząd pomiarowy, który służy do mierzenia napięcia, prądu oraz oporu elektrycznego. Chociaż jego wszechstronność sprawia, że jest to niezwykle użyteczne narzędzie w elektrotechnice, nie nadaje się do bezdotykowego pomiaru temperatury. Multimetry mogą mieć wbudowaną funkcję pomiaru temperatury, ale do ich wykorzystania zazwyczaj wymagana jest sonda, co oznacza, że wymaga on kontaktu z obiektem, co jest sprzeczne z definicją pomiaru bezdotykowego. Luksomierz to urządzenie przeznaczone do pomiaru natężenia światła, a kalorymetr służy do obliczania ilości ciepła wydzielającego się w wyniku reakcji chemicznych lub fizycznych. Zastosowanie tych urządzeń w kontekście pomiaru temperatury jest błędne, gdyż każde z nich ma swoje specyficzne przeznaczenie i nie spełnia wymogów dotyczących bezdotykowej metody pomiaru ciepłoty. Typowym błędem myślowym jest mylenie funkcji przyrządów pomiarowych, co prowadzi do nieprawidłowych wniosków o ich zastosowaniach. Zrozumienie specyfiki urządzeń pomiarowych oraz ich przeznaczenia jest kluczowe w kontekście wyboru odpowiedniego narzędzia do danej aplikacji.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. korekcji amplitudowej dźwięku
B. wzmocnienia sygnałów o małej amplitudzie
C. redukcji szumów
D. podbicia niskich tonów w urządzeniu
Koncepcje związane z podbiciem niskich tonów, korekcją amplitudową dźwięku oraz wzmocnieniem sygnałów o małej amplitudzie nie mają zastosowania w kontekście funkcji systemów Dolby. Podbicie niskich tonów odnosi się do procesów equalizacji, które mają na celu zmiany w charakterystyce dźwięku, a nie redukcję szumów. Korekcja amplitudowa dźwięku, z kolei, dotyczy zmiany poziomów głośności sygnałów audio, co również nie jest bezpośrednio związane z eliminacją niepożądanych zakłóceń. Wzmocnienie sygnałów o małej amplitudzie odnosi się do technologii wzmacniaczy, które nie są specyficzne dla systemów Dolby. Co więcej, błędne przekonania na temat tych zagadnień często wynikają z nieodpowiedniego zrozumienia funkcji różnych systemów audio. Użytkownicy mogą mylić pojęcia związane z analogowym przetwarzaniem dźwięku, co może prowadzić do fałszywych wniosków dotyczących roli i zastosowania systemów redukcji szumów. Zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania technologii audio oraz dla osiągnięcia pożądanej jakości dźwięku w różnych kontekstach.

Pytanie 4

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. wkrętaka płaskiego
B. szczypiec płaskich
C. klucza płaskiego
D. cążków bocznych
Wkrętak płaski to takie must-have, jeśli chodzi o montowanie elementów na szynie DIN. Dzięki niemu możesz łatwo i dokładnie dokręcać śruby i wkręty, które są naprawdę popularne, gdy mocujemy różne urządzenia elektryczne, jak moduły zabezpieczeń czy przekaźniki. W praktyce, jak już zakładamy te elementy na szynę, ważne jest, żeby śruby były dobrze dokręcone. To daje stabilność całej instalacji i zmniejsza ryzyko luźnych połączeń, które mogą narobić problemów. Z tego, co wiem, każdy element powinien być zamontowany zgodnie z odpowiednim momentem obrotowym, a wkrętak płaski daje możliwość dostosowania siły dokręcania do konkretnego komponentu. No i warto dodać, że wkrętaki płaskie są w różnych rozmiarach, więc można je używać w różnych sytuacjach. Poza tym, korzystanie z wkrętaka płaskiego zamiast innych narzędzi, jak klucz płaski czy cążki, jest lepsze dla ergonomii pracy i bezpieczeństwa, bo daje większą kontrolę podczas montażu.

Pytanie 5

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. miernik zniekształceń
B. woltomierz cyfrowy
C. oscyloskop jednokanałowy
D. analyzer widma
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 6

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Źródło prądowe oparte na tranzystorze bipolarnym
B. Ogranicznik prądowy zrealizowany w technologii bipolarnej
C. Wzmacniacz z tranzystorem bipolarnym w układzie OC
D. Wzmacniacz z tranzystorem bipolarnym w układzie OB
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.

Pytanie 7

W jakich systemach wykorzystywany jest sterownik PLC?

A. w transmisji światłowodowej
B. w automatyce przemysłowej
C. w sieciach komputerowych
D. w telewizji dozorowej
Wybór odpowiedzi związanej z sieciami komputerowymi czy transmisją światłowodową pokazuje, że może nie do końca rozumiesz, do czego służą sterowniki PLC. One są głównie do automatyki przemysłowej i odpowiadają za sterowanie procesami. Oczywiście, są interfejsy, które łączą PLC z systemami komputerowymi, ale same sterowniki nie zajmują się zarządzaniem sieciami. Podobnie z transmisją światłowodową – PLC nie obsługują sygnałów optycznych, tylko elektroniczne. Co do telewizji dozorowej, to prawda, że mogą być częścią systemów monitoringu, ale nie odpowiadają za ich działanie. Ważne by zrozumieć, co te technologie potrafią, żeby unikać takich pomyłek. Odpowiednie zrozumienie roli PLC w automatyce jest kluczowe, żeby dobrze projektować i wdrażać systemy.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Aby ocenić sprawność kabla krosowego, należy zastosować

A. testera kabli sieciowych, gdy kabel jest podłączony do sieci komputerowej
B. wobulatora, gdy kabel jest odłączony od wszystkich urządzeń
C. wobulatora, gdy kabel jest podłączony do sieci komputerowej
D. testera kabli sieciowych, gdy kabel jest odłączony od wszystkich urządzeń
Wykorzystywanie testera kabli sieciowych przy kablu włączonym do sieci komputerowej może prowadzić do błędnych wyników diagnostycznych. Dzieje się tak, ponieważ inne urządzenia podłączone do sieci mogą wpływać na sygnały przesyłane przez badany kabel, co może skutkować fałszywymi wskazaniami błędów, które nie są rzeczywiście związane z jego stanem. Podobnie, korzystanie z wobulatora w trakcie pracy kabla w sieci komputerowej nie jest zalecane, ponieważ wobulator, który jest urządzeniem do analizy sygnałów, również może być zakłócony przez inne urządzenia, co czyni jego pomiary nieprecyzyjnymi. W przypadku kabla odłączonego od wszystkich urządzeń, możemy uzyskać czystsze wyniki, co pozwala na skuteczną diagnostykę. Warto również zwrócić uwagę, że błędne podejście do testowania kabli może prowadzić do pomijania istotnych problemów, które mogą wpływać na wydajność całej sieci, takich jak uszkodzenia w okablowaniu czy niewłaściwe połączenia. To z kolei może prowadzić do frustracji użytkowników, a także do kosztownych przestojów w pracy systemów. Dlatego do testowania kabli zawsze należy podchodzić z należytą starannością i przestrzegać dobrych praktyk inżynieryjnych, które podkreślają znaczenie izolacji kabla od innych elementów sieci podczas badania jego stanu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. oscyloskopu i zasilacza
B. woltomierza
C. omomierza
D. oscyloskopu i generatora funkcyjnego
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 100 mV
B. 32 mV
C. 320 mV
D. 10 mV
Odpowiedzi 100 mV, 32 mV oraz 320 mV są wynikiem niepoprawnych obliczeń dotyczących rozdzielczości napięciowej przetwornika 8-bitowego. Można zauważyć, że często popełnianym błędem jest mylenie jednostek oraz niewłaściwe interpretowanie zakresu przetwornika. Na przykład, rozdzielczość 100 mV sugerowałaby, że przetwornik reprezentuje tylko 25 poziomów napięcia w skali od 0 V do 2,56 V, co jest niezgodne z jego 256 poziomami. Z kolei rozdzielczość 320 mV w ogóle nie mieści się w zakresie od 0 V do 2,56 V, ponieważ jest większa od maksymalnego napięcia. Niektóre z tych odpowiedzi mogą wynikać z błędnej logiki dzielenia zakresu przez liczbę bitów, zamiast przez liczby poziomów. W praktyce, do obliczania rozdzielczości przetwornika, kluczowe jest zrozumienie, że różnice napięcia muszą być dzielone przez całkowitą liczbę poziomów, co prowadzi do dokładnych i wiarygodnych wyników. Ignorowanie tego fundamentalnego aspektu może prowadzić do poważnych błędów w projektach inżynieryjnych oraz zastosowaniach przemysłowych, gdzie precyzyjne pomiary mają bezpośredni wpływ na efektywność i jakość produkcji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. miernika z pomiarem MER
B. testera wytrzymałości dielektrycznej
C. multimetru z pomiarem R
D. analizatora sieci strukturalnych
Miernik z pomiarem MER (Modulation Error Ratio) jest narzędziem stosowanym w telekomunikacji, często w kontekście analizy sygnałów cyfrowych, ale nie jest to odpowiednie narzędzie do weryfikacji poprawności instalacji sieci komputerowej. MER mierzy jakość sygnału, jednak nie dostarcza informacji o fizycznych aspektach samej instalacji, takich jak integralność kabli czy poprawność połączeń. Tester wytrzymałości dielektrycznej jest urządzeniem stosowanym do oceny izolacji kabli, co jest ważne, ale nie odnosi się bezpośrednio do weryfikacji całej sieci komputerowej ani do jej funkcjonalności po instalacji. Z kolei multimetr z pomiarem R (oporu) pozwala na sprawdzenie ciągłości przewodów, co jest istotne, jednak nie dostarcza kompleksowych informacji o jakości sygnałów ani o wydajności sieci. Typowym błędem w myśleniu technicznym jest przekonanie, że te narzędzia można używać zamiennie z analizatorami sieci strukturalnych. W rzeczywistości, każde z tych narzędzi ma specyficzne zastosowania, które nie pokrywają się z wymaganiami dotyczącymi weryfikacji instalacji sieci komputerowej. Dla zapewnienia efektywności i niezawodności sieci, konieczne jest użycie odpowiednich narzędzi, które pozwalają na pełną diagnostykę oraz spełnienie norm branżowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PE o impedancji 75 Ω
B. z PVC o impedancji 75 Ω
C. z PE o impedancji 50 Ω
D. z PVC o impedancji 50 Ω
Odpowiedź "z PE o impedancji 75 Ω" jest poprawna, ponieważ przewód antenowy do instalacji telewizyjnej powinien mieć impedancję 75 Ω, co jest standardem dla większości systemów telewizyjnych. Użycie przewodu z materiału PE (polietylen) zapewnia dodatkową odporność na warunki atmosferyczne, co jest kluczowe w przypadku zastosowań zewnętrznych. Przewody te są w stanie znieść działanie promieni UV oraz wilgotność, co wydłuża ich żywotność. Na przykład, w instalacjach satelitarnych oraz antenowych do odbioru telewizji kablowej wykorzystuje się głównie przewody o impedancji 75 Ω, aby zminimalizować straty sygnału i zapewnić wysoką jakość odbioru. Przestrzeganie tych standardów jest kluczowe dla efektywności systemu, co potwierdzają normy branżowe dotyczące instalacji telewizyjnych. Zastosowanie wysokiej jakości przewodów z PE poprawia również stabilność sygnału oraz zmniejsza ryzyko zakłóceń zewnętrznych.

Pytanie 23

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
B. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
C. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
D. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Elementy i podzespoły elektroniczne, które są uszkodzone lub zużyte, powinny być

A. wyrzucone do najbliższego pojemnika na odpady
B. przechowywane z zamiarem ich przyszłego wykorzystania
C. przekazane do odpowiednich firm w celu ich utylizacji
D. oddane do najbliższego punktu skupu złomu
Przekazywanie uszkodzonych lub zużytych elementów oraz podzespołów elektronicznych do odpowiednich firm zajmujących się utylizacją jest kluczowym działaniem w kontekście ochrony środowiska i zgodności z przepisami prawa. Takie firmy są wyspecjalizowane w odpowiednim przetwarzaniu odpadów elektronicznych, co pozwala na odzysk surowców wtórnych oraz minimalizowanie negatywnego wpływu na środowisko. Przykładowo, w procesie utylizacji urządzeń elektronicznych, takich jak telewizory czy komputery, przeprowadza się demontaż, segregację oraz recykling materiałów, dzięki czemu metale, szkło czy tworzywa sztuczne mogą być ponownie wykorzystane w produkcji nowych wyrobów. Dodatkowo, przekazywanie odpadów do wyspecjalizowanych firm pozwala na właściwe zarządzanie substancjami niebezpiecznymi, takimi jak rtęć czy ołów, co jest zgodne z dyrektywami Unii Europejskiej, takimi jak RoHS czy WEEE. W związku z tym, odpowiedzialne postępowanie z odpadami elektronicznymi jest nie tylko kwestią etyczną, ale także prawną, a jego znajomość jest niezbędna w dzisiejszym zglobalizowanym świecie.

Pytanie 26

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. zwiększyć poziom głośności w panelu.
B. zwiększyć napięcie zasilania elektrozaczepu.
C. regulować napięcie w kasecie rozmownej.
D. dostosować poziom głośności w unifonie.
Wyregulowanie poziomu głośności w unifonie jest kluczowe, ponieważ pisk w słuchawce wskazuje na nieprawidłowe ustawienia audio. Unifony są wyposażone w odpowiednie regulatory, które pozwalają na dostosowanie głośności dźwięku do indywidualnych potrzeb użytkownika. Ustawienie głośności powinno być dostosowane do warunków akustycznych w pomieszczeniu, a także do osobistych preferencji. Warto pamiętać, że zbyt wysoki poziom głośności może prowadzić do zniekształceń dźwięku oraz dyskomfortu słuchowego. Przykładowo, jeżeli w otoczeniu panuje duży hałas, użytkownik może potrzebować wyższej głośności, natomiast w cichym pomieszczeniu wystarczy niższe ustawienie. Odpowiednia regulacja głośności jest zgodna z dobrymi praktykami instalacyjnymi, które sugerują, aby każdy system audio był dostosowany do specyfiki miejsca jego użytkowania, co zapewnia optymalną jakość dźwięku oraz komfort użytkowania.

Pytanie 27

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. dyrektorami
B. symetryzatorami
C. fiderami
D. dipolami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 28

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. 2EOL
B. EOL
C. NO
D. NC
Konfiguracja EOL (End of Line) polega na zastosowaniu rezystorów na końcu linii czujników, co jest przydatne w bardziej skomplikowanych systemach, gdzie chcemy monitorować stan obwodu na całej jego długości. Jednak w przypadku obwodu sabotażowego bez rezystorów, zastosowanie tej konfiguracji nie jest możliwe, ponieważ wymaga ona dodatkowych komponentów, których w tym przypadku nie ma. Ustawienia NO (Normally Open) również nie są właściwe, ponieważ w tej konfiguracji obwód jest domyślnie otwarty, co w sytuacji sabotażu może nie wywołać alarmu, co jest sprzeczne z zamiarem zabezpieczenia. W przypadku sabotażu, gdy obwód jest otwarty, nie zostanie wysłany żaden sygnał, co prowadzi do poważnego ryzyka. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują niepełne zrozumienie zasad działania obwodów lub mylenie ich z innymi zastosowaniami. Wybór opcji 2EOL jest także niewłaściwy w kontekście danej kwestii, ponieważ ta metoda również zakłada użycie rezystorów na końcu linii, co nie jest zgodne z wymaganiami pytania. Ostatecznie, zrozumienie różnicy między tymi konfiguracjami oraz ich zastosowaniem w systemach alarmowych jest kluczowe dla skutecznego projektowania i wdrażania zabezpieczeń.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Czym jest przerwanie w procesorze?

A. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
B. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
C. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
D. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
Przerwanie w procesorze to mechanizm, który pozwala na tymczasowe zawieszenie aktualnie wykonywanego programu w celu obsługi zadania o wyższym priorytecie. Taki mechanizm jest kluczowy w systemach operacyjnych czasu rzeczywistego, gdzie nieprzerwana obsługa krytycznych zadań jest niezbędna dla zapewnienia stabilności i bezpieczeństwa operacji. Przykładem może być sytuacja w systemie sterowania silnikiem, gdzie priorytetowe zadanie, takie jak reakcja na awarię, musi być wykonane natychmiastowo, nawet kosztem dłużej trwającego przetwarzania mniej krytycznych zadań. Ważne jest, aby procesory i systemy operacyjne implementowały odpowiednie algorytmy do zarządzania priorytetami, takie jak algorytm Round-robin czy FIFO, co zapewnia sprawną i efektywną obsługę zadań. Przerwania wspierają także złożoną synchronizację i komunikację między procesami, co jest fundamentem dla współczesnych architektur komputerowych. W praktyce, znając zasady działania przerwań, inżynierowie mogą skuteczniej projektować systemy, które są odporne na błędy i mają zapewnioną wydajność operacyjną.

Pytanie 31

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Wizualizuje procesy przemysłowe
B. Kontroluje pracę siłownika
C. Rejestruje działanie sieci
D. Przekształca sygnał z czujnika
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 32

W tabeli przedstawiono wybrane dane techniczne regulatora. Który czujnik można podłączyć bezpośrednio do wejścia tego urządzenia?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. Ciśnienia atmosferycznego.
B. Przepływu.
C. Natężenia oświetlenia.
D. Temperatury.
Wybór jakiegokolwiek czujnika innego niż czujnik temperatury może wynikać z nieporozumienia dotyczącego funkcji i zastosowań poszczególnych typów czujników. Czujniki przepływu, na przykład, są zaprojektowane do mierzenia prędkości lub objętości cieczy przepływających przez system, co w zupełności odbiega od wymagań regulacji temperatury. W kontekście automatyki, ich sygnały są przetwarzane w zupełnie inny sposób i nie mogą być bezpośrednio interpretowane przez urządzenia zaprojektowane do pracy z czujnikami temperatury. Podobnie, czujniki ciśnienia atmosferycznego mają zastosowanie w pomiarze ciśnienia gazów w atmosferze, a ich sygnały są również niekompatybilne z wejściem regulatora, które wymaga sygnałów temperatury. Wybór czujnika natężenia oświetlenia to kolejny typowy błąd. Czujniki te mierzą intensywność światła, co jest zupełnie inną kategorią danych niż temperatura. Zrozumienie, że każdy z tych czujników ma swoje specyficzne zastosowania i kompatybilność, jest kluczowe dla prawidłowego doboru urządzeń w systemach automatyki. W praktyce, użycie nieodpowiedniego czujnika może prowadzić do błędnych pomiarów oraz niewłaściwej pracy systemu, co z kolei może skutkować poważnymi konsekwencjami operacyjnymi.

Pytanie 33

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym dodatnim napięciem na wyjściu
B. regulowanym dodatnim napięciem na wyjściu
C. regulowanym ujemnym napięciem na wyjściu
D. nieregulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

PAL B/G, PAL, SECAM, NTSC - jakie skróty dotyczą?

A. metod kodowania sygnału AUDIO
B. nazwa obszarów w półprzewodnikach
C. metod kodowania kolorów w sygnale telewizyjnym
D. nazwa szyn systemowych mikrokontrolera 8051
Podejście do właściwego zrozumienia skrótów PAL, NTSC, SECAM i PAL B/G powinno być ściśle związane z ich fundamentalnym znaczeniem w kontekście kodowania sygnału wideo. Odpowiedzi dotyczące nazw szyn systemowych mikrokontrolera 8051 lub obszarów w półprzewodnikach wskazują na nieporozumienie dotyczące zastosowania tych terminów. Mikrokontrolery 8051 są związane z systemami embedded i nie mają bezpośredniego związku z telewizją analogową czy cyfrową, podczas gdy obszary w półprzewodnikach odnoszą się do struktury materiałów półprzewodnikowych, takich jak tranzystory czy diody, a nie do standardów telewizyjnych. Również odpowiedzi dotyczące sposobów kodowania sygnału audio są mylące, ponieważ audio i wideo są różnymi rodzajami sygnałów, które są przesyłane i przetwarzane w odmienny sposób. W rzeczywistości, standardy telewizyjne, takie jak PAL, NTSC i SECAM, koncentrują się na kolorze oraz synchronizacji obrazu, co jest kluczowe dla zapewnienia wysokiej jakości wizji podczas odbioru telewizyjnego. Ignorowanie tych różnic prowadzi do błędnych wniosków i nieporozumień, które mogą skutkować w problemach technicznych, jak również w niezdolności do prawidłowego odbioru sygnału telewizyjnego. Dlatego zrozumienie kontekstu i zastosowania tych terminów jest kluczowe w dziedzinie technologii audiowizualnych.

Pytanie 40

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. matrycach LED RGB
B. matrycach LCD
C. światłowodach
D. ogniwach fotowoltaicznych
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.