Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 maja 2025 11:55
  • Data zakończenia: 12 maja 2025 12:06

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Graficzny symbol ukazany na ilustracji oznacza

Ilustracja do pytania
A. przełącznik
B. koncentrator
C. bramę
D. most
Symbol graficzny przedstawiony na rysunku rzeczywiście oznacza przełącznik sieciowy co jest zgodne z odpowiedzią numer trzy Przełącznik jest kluczowym urządzeniem w infrastrukturze sieci komputerowych odpowiadającym za efektywne kierowanie ruchem sieciowym w ramach lokalnej sieci komputerowej LAN Działa na poziomie drugiego modelu ISO/OSI czyli warstwie łącza danych Jego podstawową funkcją jest przekazywanie pakietów pomiędzy urządzeniami w ramach tej samej sieci lokalnej poprzez analizę adresów MAC Dzięki temu przełączniki potrafią znacząco zwiększać wydajność sieci poprzez redukcję kolizji danych i efektywne zarządzanie pasmem sieciowym W praktyce przełączniki są wykorzystywane w wielu zastosowaniach od małych sieci domowych po zaawansowane sieci korporacyjne W środowiskach korporacyjnych przełączniki mogą obsługiwać zaawansowane funkcje takie jak VLAN wirtualne sieci LAN zapewniające segregację ruchu sieciowego oraz Quality of Service QoS umożliwiające priorytetyzację ruchu Odpowiednie zarządzanie i konfiguracja przełączników są kluczowe dla zachowania bezpieczeństwa i wydajności całej infrastruktury sieciowej Współczesne przełączniki często integrują technologię Power over Ethernet PoE co umożliwia zasilanie urządzeń sieciowych takich jak telefony VoIP czy kamery IP bezpośrednio przez kabel sieciowy co upraszcza instalację i obniża koszty eksploatacji

Pytanie 2

Aby chronić systemy sieciowe przed zewnętrznymi atakami, należy zastosować

A. narzędzie do zarządzania połączeniami
B. serwer DHCP
C. protokół SSH
D. zapory sieciowej
Zapora sieciowa, czyli firewall, to mega ważny element w zabezpieczaniu sieci. Jej główna robota to monitorowanie i kontrolowanie, co właściwie się dzieje w ruchu sieciowym, zgodnie z ustalonymi zasadami. Dzięki niej możemy zablokować nieautoryzowane dostępy i odrzucać niebezpieczne połączenia. To znacznie zmniejsza ryzyko ataków hakerskich czy wirusów. Przykładem może być to, jak firma używa zapory na granicy swojej sieci, żeby chronić swoje zasoby przed zagrożeniami z Internetu. W praktyce zapory mogą być sprzętowe albo programowe, a ich ustawienia powinny być zgodne z najlepszymi praktykami w branży, jak zasada minimalnych uprawnień, co oznacza, że dostęp mają tylko ci, którzy naprawdę go potrzebują. Różne standardy, na przykład ISO/IEC 27001, podkreślają, jak ważne jest zarządzanie bezpieczeństwem danych, w tym stosowanie zapór w szerszej strategii ochrony informacji.

Pytanie 3

To narzędzie może być wykorzystane do

Ilustracja do pytania
A. mierzenia długości analizowanego kabla sieciowego
B. pomiaru napięcia w zasilaczu
C. podgrzewania i montażu elementów elektronicznych
D. dbania o czystość drukarki
Urządzenie przedstawione na zdjęciu to multimetr cęgowy który jest wykorzystywany do pomiaru różnych parametrów elektrycznych w tym napięcia prądu zmiennego i stałego. Multimetry są kluczowym narzędziem w pracy elektryków i inżynierów elektronicznych ponieważ umożliwiają dokładne pomiary niezbędne do diagnostyki i konserwacji urządzeń elektrycznych. Pomiar napięcia jest jedną z podstawowych funkcji multimetru i polega na podłączeniu sond pomiarowych do odpowiednich punktów w układzie elektrycznym. Multimetry mogą również mierzyć inne wielkości jak prąd czy opór co czyni je niezwykle wszechstronnymi. W kontekście bezpieczeństwa i zgodności z normami takimi jak IEC 61010 użytkowanie multimetru wymaga znajomości jego funkcji i właściwej obsługi. Regularna kalibracja jest również kluczowa aby zapewnić dokładność pomiarów. Multimetry cęgowe dodatkowo umożliwiają pomiar prądu bez konieczności rozłączania obwodu co zwiększa ich funkcjonalność w sytuacjach gdzie rozłączanie obwodu jest trudne lub niemożliwe. Multimetr jest więc niezbędnym narzędziem w pracy z zasilaczami i innymi urządzeniami elektrycznymi umożliwiając precyzyjne i bezpieczne pomiary napięcia.

Pytanie 4

Główną metodą ochrony sieci komputerowej przed zewnętrznymi atakami jest wykorzystanie

A. zapory sieciowej
B. programu antywirusowego
C. serwera Proxy
D. blokady portu 80
Zapora sieciowa, znana również jako firewall, to kluczowy element zabezpieczeń sieciowych, który monitoruje i kontroluje ruch sieciowy w oparciu o określone zasady bezpieczeństwa. Jej głównym zadaniem jest blokowanie nieautoryzowanego dostępu do sieci oraz ochrona przed atakami z zewnątrz. W praktyce zapory sieciowe mogą być zarówno sprzętowe, jak i programowe, co pozwala na ich elastyczne zastosowanie w różnych środowiskach. Przykładem zastosowania zapory sieciowej może być konfiguracja reguł, które pozwalają na dostęp do zasobów jedynie z zaufanych adresów IP, a blokują wszystkie inne połączenia. Ponadto, zapory sieciowe mogą być zintegrowane z systemami wykrywania włamań (IDS) oraz rozwiązaniami typu Unified Threat Management (UTM), co dodatkowo zwiększa poziom ochrony. Stosowanie zapory sieciowej jest zgodne z najlepszymi praktykami branżowymi, takimi jak model bezpieczeństwa wielowarstwowego, w którym różne technologie ochrony współpracują w celu zwiększenia ogólnego bezpieczeństwa sieci. Standardy takie jak ISO/IEC 27001 podkreślają znaczenie skutecznego zarządzania ryzykiem związanym z bezpieczeństwem informacji, co obejmuje również wdrażanie efektywnych zapór sieciowych.

Pytanie 5

Narzędziem wykorzystywanym do diagnozowania połączeń między komputerami w systemie Windows jest

A. ping
B. ipconfig
C. route
D. traceroute
Wybrane odpowiedzi, takie jak 'traceroute', 'ipconfig' oraz 'route', zawierają istotne funkcje diagnostyczne, lecz nie są narzędziami bezpośrednio służącymi do diagnozowania połączeń między hostami w taki sam sposób, jak ping. Traceroute, na przykład, jest narzędziem, które służy do analizy trasy, jaką pokonują pakiety w sieci, pokazując poszczególne węzły, przez które przechodzą. Jego głównym celem jest identyfikacja opóźnień w trasie i lokalizacja potencjalnych problemów w sieci, a nie bezpośrednie testowanie dostępności hostów. Z kolei narzędzie 'ipconfig' jest używane do wyświetlania konfiguracji interfejsów sieciowych w systemie Windows, co pomaga w zrozumieniu, jakie adresy IP są przypisane do poszczególnych interfejsów, ale nie wykonuje testów połączeń. Ostatnia z wymienionych odpowiedzi, 'route', jest narzędziem do zarządzania tablicą routingu systemu, co jest bardziej zaawansowaną funkcją, związaną z kierowaniem ruchu sieciowego, niż jego diagnozowaniem. Trudnością, która może prowadzić do błędnych wniosków, jest mylenie funkcji różnych narzędzi diagnostycznych oraz niewłaściwe zrozumienie, że każde z nich ma swoje unikalne zastosowanie w ramach ogólnego zarządzania siecią. Użytkownicy często nie doceniają roli podstawowych narzędzi takich jak ping, które powinny być stosowane jako pierwsze w procesie diagnostyki sieciowej.

Pytanie 6

Jakie jest połączenie używane do wymiany informacji pomiędzy urządzeniami mobilnymi, które stosuje cyfrową transmisję optyczną w trybie bezprzewodowym do przesyłania danych na stosunkowo krótką odległość?

A. IEEE 1394c
B. IEEE 1394a
C. Bluetooth
D. IrDA
Wybór IEEE 1394a i IEEE 1394c jako odpowiedzi na to pytanie jest błędny, ponieważ te standardy dotyczą interfejsu FireWire, który zazwyczaj jest używany w kontekście łączności przewodowej pomiędzy urządzeniami, takimi jak kamery cyfrowe, dyski twarde i urządzenia audio-wideo. FireWire umożliwia transfer danych na dużą odległość, zazwyczaj do 4.5 metra, co jest znacznie więcej niż typowy zasięg technologii IrDA. Dodatkowo, FireWire obsługuje wiele urządzeń podłączonych w szereg, co czyni go odpowiednim dla zastosowań multimedialnych, jednak nie jest to technologia bezprzewodowa. Z kolei Bluetooth to technologia bezprzewodowa, ale jest stworzona do komunikacji na średnie odległości, zazwyczaj do 100 metrów, i nie wykorzystuje technologii optycznej, lecz radiowej. Bluetooth jest powszechnie stosowany w urządzeniach audio, słuchawkach i smartfonach do przesyłania danych, jednak w kontekście krótkodystansowej transmisji optycznej, jak w przypadku IrDA, nie jest właściwym rozwiązaniem. Typowym błędem myślowym jest nieodróżnienie technologii bezprzewodowej od przewodowej oraz mylenie różnych standardów komunikacyjnych pod względem ich zastosowania i charakterystyki. Warto zrozumieć, że każdy z tych standardów ma swoje unikalne cechy i zastosowania, które należy brać pod uwagę przy wyborze odpowiedniego rozwiązania dla określonego problemu komunikacyjnego.

Pytanie 7

Administrator dostrzegł, że w sieci LAN występuje wiele kolizji. Jakie urządzenie powinien zainstalować, aby podzielić sieć lokalną na mniejsze domeny kolizji?

A. Modem
B. Switch
C. Huba
D. Router
Przełącznik to urządzenie, które efektywnie zarządza ruchem danych w sieci lokalnej, dzieląc ją na mniejsze domeny kolizji. Dzięki temu, gdy urządzenie wysyła dane, przełącznik może skierować je tylko do odpowiedniego odbiorcy, eliminując kolizje, które występują, gdy wiele urządzeń próbuje jednocześnie nadawać w tym samym czasie. Przełączniki działają na warstwie drugiej modelu OSI, co oznacza, że operują na adresach MAC. W praktyce, jeśli w sieci lokalnej mamy dużą liczbę urządzeń, zainstalowanie przełącznika może znacząco poprawić wydajność i przepustowość sieci. Na przykład w biurze, gdzie wiele komputerów łączy się z serwerem plików, zastosowanie przełącznika pozwala na płynne przesyłanie danych między urządzeniami, minimalizując ryzyko kolizji i opóźnień. Zgodnie z zaleceniami branżowymi, przełączniki są kluczowym elementem nowoczesnych sieci lokalnych, w przeciwieństwie do koncentratorów, które nie mają zdolności do inteligentnego kierowania ruchem. Przełączniki są również bardziej efektywne energetycznie i oferują zaawansowane funkcje zarządzania ruchem, takie jak VLAN czy QoS.

Pytanie 8

Jaką częstotliwość odświeżania należy ustawić, aby obraz na monitorze był odświeżany 85 razy na sekundę?

A. 850 Hz
B. 0,085 kHz
C. 8,5 Hz
D. 85 kHz
Częstotliwość odświeżania monitora określa, ile razy na sekundę obraz na ekranie jest aktualizowany. W przypadku potrzebnego odświeżania na poziomie 85 razy na sekundę, co odpowiada 85 Hz, właściwa jednostka to kilohercy (kHz), w której 1 kHz to 1000 Hz. Dlatego 85 Hz przelicza się na 0,085 kHz. Takie ustawienie jest istotne w kontekście zapewnienia płynności obrazu, co jest szczególnie ważne w zastosowaniach multimedialnych i graficznych, takich jak gry komputerowe czy edycja wideo. Standardy branżowe, takie jak VESA (Video Electronics Standards Association), rekomendują, aby częstotliwość odświeżania odpowiadała wymaganiom wizualnym użytkowników oraz możliwościom sprzętu. Prawidłowe ustawienie częstotliwości odświeżania pozwala na uniknięcie efektu migotania ekranu, co ma kluczowe znaczenie dla komfortu oglądania i zdrowia wzroku użytkowników. W praktyce, w przypadku wyższych częstotliwości odświeżania, monitor jest w stanie wyświetlić więcej klatek na sekundę, co przekłada się na lepsze wrażenia wizualne.

Pytanie 9

Jak wiele adresów IP można wykorzystać do przypisania komputerom w sieci o adresie 192.168.100.0 z maską 255.255.255.0?

A. 255
B. 254
C. 253
D. 256
Adres IP 192.168.100.0 z maską 255.255.255.0 to typowa sieć klasy C. W tej klasie można utworzyć 256 adresów, obejmujących zakres od 192.168.100.0 do 192.168.100.255. Tylko, że w każdej sieci dwa adresy są zarezerwowane: jeden to adres sieci (czyli ten 192.168.100.0), a drugi to adres rozgłoszeniowy, który w tym wypadku to 192.168.100.255. Tak więc, do wykorzystania dla komputerów w tej sieci pozostaje 254 adresy. Wiedza o tym jest super ważna, szczególnie w dużych firmach, gdzie dobrze zorganizowana sieć to podstawa. Jak administratorzy mają do dyspozycji 254 adresy, to łatwiej im zarządzać tymi zasobami i unikać problemów z adresami. Dobrze jest też zapisywać, które adresy są przydzielone, bo to zdecydowanie ułatwia wszelkie naprawy czy zarządzanie.

Pytanie 10

W przypadku sieci strukturalnej rekomendowane jest zainstalowanie jednego punktu abonenckiego na obszarze wynoszącym

A. 30m2
B. 5m2
C. 20m2
D. 10m2
Odpowiedź 10m2 jest prawidłowa, ponieważ w sieciach strukturalnych, zgodnie z wytycznymi branżowymi, zaleca się umieszczanie jednego punktu abonenckiego na powierzchni 10m2. Takie rozplanowanie zapewnia optymalną jakość sygnału oraz odpowiednią ilość pasma, co jest kluczowe dla efektywności działania sieci. Przykładem zastosowania tej zasady może być projektowanie sieci lokalnych w biurach, gdzie każde biurko lub strefa pracy powinna mieć dedykowany punkt abonencki, aby zapewnić stabilne połączenie z siecią. Utrzymanie tej proporcji przyczynia się do prawidłowego funkcjonowania usług, takich jak VoIP czy przesył danych, co jest istotne w kontekście ciągłego rozwoju technologii komunikacyjnych. W praktyce, stosowanie się do tego standardu pozwala również na łatwiejsze planowanie rozbudowy sieci w przyszłości, co jest ważne w kontekście zmieniających się potrzeb użytkowników i rosnącego zapotrzebowania na pasmo. Warto również wspomnieć, że wiele organizacji bazuje na normach takich jak ISO/IEC 11801, które określają wymagania dotyczące projektowania sieci strukturalnych.

Pytanie 11

Element elektroniczny przedstawiony na ilustracji to

Ilustracja do pytania
A. rezystor
B. cewka
C. kondensator
D. tranzystor
Tranzystor to kluczowy element w nowoczesnej elektronice służący do wzmacniania sygnałów i przełączania. Składa się z trzech warstw półprzewodnikowych które tworzą dwa złącza p-n: emiter bazę i kolektor. Istnieją różne typy tranzystorów takie jak bipolarne (BJT) i polowe (FET) które działają na zasadzie różnych mechanizmów fizycznych. Tranzystory bipolarne są używane do wzmacniania prądu podczas gdy tranzystory polowe są często stosowane w układach cyfrowych jako przełączniki. Tranzystory są nieodłączną częścią układów integracyjnych i odgrywają kluczową rolę w procesorach komputerowych i innych urządzeniach elektronicznych. Ich mały rozmiar i możliwość masowej produkcji pozwalają na tworzenie skomplikowanych układów scalonych. Tranzystory pomagają w redukcji zużycia energii co jest istotne w projektowaniu nowoczesnych układów elektronicznych. W praktyce tranzystory są używane w obwodach takich jak wzmacniacze radiowe i telewizyjne oraz w urządzeniach komunikacji bezprzewodowej. Przy projektowaniu układów tranzystorowych ważne są zasady takie jak polaryzacja złącza oraz znajomość parametrów takich jak wzmocnienie prądowe i napięcie nasycenia. Właściwe zrozumienie działania tranzystorów jest kluczowe dla każdego inżyniera elektronika i technika pracującego w dziedzinie elektroniki.

Pytanie 12

Aby skanera działał prawidłowo, należy

A. zweryfikować temperaturę komponentów komputera
B. nie umieszczać kartek ze zszywkami w podajniku urządzenia, gdy jest on automatyczny
C. smarować łożyska wentylatorów chłodzenia jednostki centralnej
D. mieć w systemie zainstalowany program antywirusowy
Właściwe funkcjonowanie skanera, zwłaszcza w przypadku automatycznych podajników, jest kluczowe dla efektywności procesu skanowania. Wkładanie kartek ze zszywkami do podajnika może prowadzić do zacięć lub uszkodzeń mechanizmu skanującego, co w konsekwencji skutkuje zwiększonym czasem przestoju urządzenia oraz kosztami naprawy. Zszywki mogą również porysować powierzchnię skanera, co obniża jakość skanowanych dokumentów. Aby zminimalizować ryzyko awarii, należy przestrzegać zasad użytkowania urządzenia, które zazwyczaj są opisane w instrukcji obsługi. Zgodnie z najlepszymi praktykami, przed umieszczeniem dokumentów w podajniku, warto upewnić się, że są one wolne od wszelkich elementów, które mogą zakłócić ich przepływ przez urządzenie. Prowadzenie regularnych przeglądów i konserwacji skanera, zgodnie z zaleceniami producenta, również przyczynia się do jego długoterminowej niezawodności oraz efektywności operacyjnej.

Pytanie 13

Wskaż rysunek ilustrujący symbol używany do oznaczania portu równoległego LPT?

Ilustracja do pytania
A. rys. B
B. rys. D
C. rys. A
D. rys. C
Wskaźnik A przedstawia symbol USB który jest nowoczesnym interfejsem komunikacyjnym stosowanym w większości współczesnych urządzeń do transmisji danych i zasilania. W przeciwieństwie do portu LPT USB oferuje znacznie wyższą przepustowość, wsparcie dla hot-swappingu oraz uniwersalność. Symbol B z kolei ilustruje złącze audio powszechnie używane w urządzeniach dźwiękowych takich jak słuchawki czy głośniki. Złącza te nie są powiązane z komunikacją równoległą ani przesyłem danych typowym dla portów LPT. Natomiast C symbolizuje złącze FireWire, które jest interfejsem komunikacyjnym opracowanym przez Apple do szybkiego przesyłu danych głównie w urządzeniach multimedialnych. FireWire choć szybkie i wydajne zastąpiło porty równoległe w kontekście przesyłu dużych plików multimedialnych ale nie było używane w kontekście tradycyjnej komunikacji z drukarkami tak jak porty LPT. Błędne wybory mogą wynikać z mylenia nowoczesnych technologii z tradycyjnymi standardami. Rozpoznawanie odpowiednich symboli portów i ich kontekstu zastosowania jest kluczowe w zrozumieniu historycznego i technicznego rozwoju interfejsów komputerowych co pomaga w efektywnym rozwiązywaniu problemów sprzętowych.

Pytanie 14

Za co odpowiada protokół DNS?

A. ustalanie wektora ścieżki między różnymi autonomicznymi sieciami
B. przekazywanie zaszyfrowanej wiadomości e-mail do serwera pocztowego
C. konwertowanie nazw mnemonicznych na adresy IP
D. określenie adresu MAC na podstawie adresu IP
Protokół DNS (Domain Name System) jest kluczowym elementem infrastruktury internetu, odpowiadającym za tłumaczenie nazw mnemonicznych, takich jak www.example.com, na adresy IP, które są używane do identyfikacji urządzeń w sieci. Proces ten umożliwia użytkownikom korzystanie z przyjaznych dla oka nazw, zamiast pamiętania skomplikowanych ciągów cyfr. Gdy użytkownik wpisuje adres URL w przeglądarkę, system operacyjny najpierw sprawdza lokalną pamięć podręczną DNS, a jeśli nie znajdzie odpowiedniej informacji, wysyła zapytanie do serwera DNS. Serwer ten przeszukuje swoją bazę danych i zwraca odpowiedni adres IP. Na przykład, gdy wpiszesz www.google.com, DNS tłumaczy tę nazwę na adres IP 172.217.0.46, co umożliwia przeglądarki połączenie się z serwerem Google. Zastosowanie protokołu DNS jest nie tylko praktyczne, ale również zabezpieczone poprzez implementacje takie jak DNSSEC (Domain Name System Security Extensions), które chronią przed atakami typu spoofing. Zrozumienie działania DNS jest fundamentalne dla każdego specjalisty IT, ponieważ pozwala na efektywne zarządzanie sieciami oraz zapewnienie ich bezpieczeństwa.

Pytanie 15

Kondygnacyjny punkt dystrybucji jest połączony z

A. centralnym punktem dystrybucji
B. centralnym punktem sieci
C. budynkowym punktem dystrybucji
D. gniazdem abonenckim
Kondygnacyjny punkt dystrybucyjny pełni kluczową rolę w strukturze sieci telekomunikacyjnej, służąc jako węzeł, który wspiera komunikację między różnymi elementami systemu. Jego głównym zadaniem jest efektywne przesyłanie sygnałów do gniazd abonenckich, które są bezpośrednio zainstalowane w pomieszczeniach użytkowników końcowych. Użycie okablowania poziomego, takiego jak kable typu U/FTP czy S/FTP, zapewnia wysoką jakość sygnału oraz zgodność z normami, takimi jak ISO/IEC 11801. W praktyce, funkcjonalność kondygnacyjnego punktu dystrybucyjnego jest kluczowa dla instalacji w biurach, budynkach mieszkalnych i obiektach komercyjnych, gdzie wymagana jest niezawodna i stabilna łączność. Dobrze zaprojektowany system okablowania poziomego nie tylko zwiększa wydajność sieci, ale także pozwala na łatwe skalowanie oraz modernizację bez konieczności dużych zmian infrastrukturalnych.

Pytanie 16

Na ilustracji widać zrzut ekranu ustawień strefy DMZ na routerze. Aktywacja opcji "Enable DMZ" spowoduje, że komputer z adresem IP 192.168.0.106

Ilustracja do pytania
A. będzie publicznie widoczny w Internecie
B. będzie zabezpieczony firewallem
C. zostanie zamaskowany w lokalnej sieci
D. straci dostęp do Internetu
Istnieje kilka błędnych przekonań dotyczących funkcji DMZ na routerze. Przede wszystkim warto zrozumieć, że włączenie DMZ nie powoduje utraty dostępu do Internetu dla wybranego komputera. W rzeczywistości, DMZ zapewnia, że komputer ma pełny dostęp do sieci zewnętrznej, co może być konieczne dla serwerów wymagających swobodnej komunikacji z wieloma zewnętrznymi klientami. Kolejnym błędnym przekonaniem jest to, że komputer w strefie DMZ jest chroniony przez firewall. W rzeczywistości, funkcja DMZ działa poprzez wykluczenie danego hosta z reguł firewalla, czyniąc go bardziej narażonym na ataki z Internetu. Należy także wyjaśnić, że umiejscowienie komputera w DMZ nie powoduje jego ukrycia w sieci lokalnej. DMZ ma na celu umożliwienie komputerowi komunikacji z zewnętrznym światem, co jest przeciwieństwem ukrywania go w sieci wewnętrznej. Ważne jest także zrozumienie, że DMZ jest używane w specyficznych przypadkach, gdzie wymagany jest bezpośredni dostęp do usług hostowanych na komputerze, dlatego nie należy stosować tego rozwiązania bez odpowiedniego zabezpieczenia i rozważenia potencjalnych zagrożeń związanych z bezpieczeństwem. Kluczowe jest zachowanie środków bezpieczeństwa i zgodność z najlepszymi praktykami, aby zminimalizować ryzyko związane z korzystaniem z DMZ, jak również regularne monitorowanie i audytowanie aktywności na DMZ w celu zapewnienia integralności systemów i danych. Te wszystkie elementy są kluczowe dla właściwego zarządzania infrastrukturą IT, zwłaszcza w kontekście ochrony przed cyberzagrożeniami.

Pytanie 17

Użytkownik napotyka trudności z uruchomieniem systemu Windows. W celu rozwiązania tego problemu skorzystał z narzędzia System Image Recovery, które

A. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
B. naprawia pliki startowe, używając płyty Recovery
C. przywraca system, wykorzystując punkty przywracania
D. odtwarza system na podstawie kopii zapasowej
Narzędzie System Image Recovery jest kluczowym elementem w systemie Windows, które umożliwia przywrócenie systemu operacyjnego na podstawie wcześniej utworzonej kopii zapasowej. Użytkownicy mogą skorzystać z tej funkcji w sytuacjach kryzysowych, takich jak awarie sprzętowe czy uszkodzenia systemowe, które uniemożliwiają normalne uruchomienie systemu. Proces przywracania systemu za pomocą obrazu dysku polega na odtworzeniu stanu systemu w momencie, gdy wykonano kopię zapasową, co oznacza, że wszystkie zainstalowane programy, ustawienia oraz pliki osobiste są przywracane do tego punktu. Dobrą praktyką jest regularne tworzenie kopii zapasowych systemu, aby zminimalizować ryzyko utraty danych. Warto również pamiętać, że obrazy systemu mogą być przechowywane na różnych nośnikach, takich jak zewnętrzne dyski twarde czy chmury, co zwiększa bezpieczeństwo danych. Użytkując to narzędzie, można skutecznie przywrócić system do działania bez konieczności reinstalacji, co oszczędza czas i umożliwia szybsze odzyskanie dostępu do danych.

Pytanie 18

Urządzenie klienckie automatycznie uzyskuje adres IP od serwera DHCP. W sytuacji, gdy serwer DHCP przestanie działać, karcie sieciowej przydzielony zostanie adres IP z przedziału

A. 224.0.0.1 ÷ 224.255.255.254
B. 169.254.0.1 ÷ 169.254.255.254
C. 127.0.0.1 ÷ 127.255.255.255.254
D. 192.168.0.1 ÷ 192.168.255.254
Odpowiedź 169.254.0.1 ÷ 169.254.255.254 jest prawidłowa, ponieważ zakres ten należy do mechanizmu automatycznego przydzielania adresów IP znanego jako link-local addressing. Adresy IP w tej puli są przypisywane, gdy urządzenie nie może uzyskać adresu z serwera DHCP. Link-local adresy są używane do komunikacji w lokalnej sieci bez potrzeby konfigurowania serwera DHCP. Dzięki temu, urządzenia mogą się komunikować w sieci lokalnej, co jest szczególnie przydatne w sytuacjach, gdy serwer DHCP jest niedostępny. Przykładem zastosowania tej funkcjonalności może być sytuacja, gdy komputer przenośny łączy się z siecią Wi-Fi, ale nie może uzyskać adresu IP z routera. W takim przypadku przydzielany jest automatycznie adres z puli link-local, co umożliwia mu komunikację z innymi urządzeniami w tej samej sieci. Stosowanie link-local adresów jest zgodne z normami IETF, co podkreśla ich istotność w funkcjonowaniu nowoczesnych sieci komputerowych.

Pytanie 19

Jednym z programów ochronnych, które zabezpieczają system przed oprogramowaniem, które bez zgody użytkownika zbiera i przesyła jego dane osobowe, numery kart kredytowych, informacje o odwiedzanych stronach WWW, hasła oraz używane adresy e-mail, jest aplikacja

A. Spyboot Search & Destroy
B. HDTune
C. Reboot Restore Rx
D. FakeFlashTest
Spybot Search & Destroy to narzędzie antywirusowe i antyspyware, które skutecznie chroni system operacyjny przed zagrożeniami związanymi z oprogramowaniem szpiegującym. Oprogramowanie to jest zaprojektowane do identyfikowania, usuwania oraz ochrony przed różnorodnymi zagrożeniami, w tym przed programami, które nieautoryzowanie zbierają dane osobowe użytkowników. Spybot Search & Destroy skanuje system w poszukiwaniu wirusów, spyware, adware oraz innych form złośliwego oprogramowania, a także oferuje funkcje, takie jak immunizacja, która zapobiega instalacji potencjalnie szkodliwego oprogramowania. Przykładem praktycznego zastosowania Spybot jest sytuacja, gdy użytkownik instaluje nowe oprogramowanie, a Spybot automatycznie skanuje system, identyfikując i eliminując wszelkie zagrożenia, co znacznie poprawia bezpieczeństwo danych osobowych, numerów kart płatniczych i haseł. W świecie, gdzie cyberprzestępczość rośnie w zastraszającym tempie, stosowanie takiego oprogramowania jest zgodne z najlepszymi praktykami w zakresie ochrony danych i bezpieczeństwa informatycznego, co powinno być standardem dla każdego użytkownika.

Pytanie 20

W komputerze zainstalowano nowy dysk twardy o pojemności 8 TB i podzielono go na dwie partycje, z których każda ma 4 TB. Jaki typ tablicy partycji powinien być zastosowany, aby umożliwić takie partycjonowanie?

A. MBR
B. SWAP
C. GPT
D. FAT32
Odpowiedź, którą wybrałeś, jest spoko, bo GPT to naprawdę nowoczesna tablica partycji, która radzi sobie z większymi dyskami, np. 8 TB. Dzięki niej można tworzyć dużo partycji, co jest super, bo MBR tego nie umożliwia - tam max to 2 TB i cztery partycje. Tak więc, jak masz większe dyski, to GPT to świetny wybór. No i jeszcze to, że GPT jest bardziej odporna na błędy, bo kopie partycji są przechowywane, co znacznie zwiększa bezpieczeństwo danych. Jeśli planujesz coś instalować na takim dysku albo traktować go jak magazyn, to naprawdę warto postawić na GPT – to dzisiaj standard w branży.

Pytanie 21

Do zarządzania przydziałami przestrzeni dyskowej w systemach Windows 7 oraz Windows 8 wykorzystywane jest narzędzie

A. dcpromo
B. fsutil
C. query
D. perfmon
fsutil to potężne narzędzie w systemach Windows, które umożliwia zarządzanie różnymi aspektami systemu plików oraz przydziałami dyskowymi. Jego funkcje obejmują, między innymi, zarządzanie woluminami, optymalizację przestrzeni dyskowej oraz monitorowanie i konfigurację systemu plików. Dzięki fsutil administratorzy mogą na przykład tworzyć, usuwać i modyfikować punkty montowania oraz zarządzać dostępem do dysków. Użycie tego narzędzia jest kluczowe w optymalizacji wydajności oraz w zarządzaniu przestrzenią na dysku, co jest szczególnie ważne w środowiskach o dużych wymaganiach dotyczących pamięci. Ponadto, fsutil wspiera różne typy systemów plików, umożliwiając administratorom elastyczne zarządzanie danymi. Przykład zastosowania fsutil to komenda 'fsutil sparse setflag', która umożliwia ustawienie flagi na plikach sparse, co pozwala na efektywniejsze wykorzystanie przestrzeni dyskowej.

Pytanie 22

Aby obserwować przesył danych w sieci komputerowej, należy wykorzystać program typu

A. sniffer
B. firmware
C. debugger
D. kompilator
Sniffer, znany również jako analizator protokołów, to narzędzie używane do monitorowania i analizowania ruchu sieciowego. Jego podstawowym zadaniem jest przechwytywanie pakietów danych przesyłanych przez sieć, co umożliwia administratorom i specjalistom ds. bezpieczeństwa zrozumienie, co dzieje się w sieci w czasie rzeczywistym. Przykładowe zastosowanie snifferów obejmuje diagnozowanie problemów z połączeniem, analizę wydajności sieci oraz identyfikację potencjalnych zagrożeń bezpieczeństwa. W praktyce sniffery są używane do monitorowania ruchu HTTP, FTP, a także do analizy ruchu VoIP. Standardy takie jak Wireshark, który jest jednym z najpopularniejszych snifferów, są zgodne z najlepszymi praktykami branżowymi, umożliwiając głęboką analizę protokołów i efektywne wykrywanie anomalii w ruchu sieciowym.

Pytanie 23

Zasadniczym sposobem zabezpieczenia danych przechowywanych na serwerze jest

A. ustawienie punktu przywracania systemu
B. automatyczne wykonywanie kompresji danych
C. uruchomienie ochrony systemu
D. tworzenie kopii zapasowej
Tworzenie kopii bezpieczeństwa danych jest podstawowym mechanizmem ochrony danych znajdujących się na serwerze, ponieważ pozwala na ich odzyskanie w przypadku awarii, ataku cybernetycznego czy przypadkowego usunięcia. Regularne tworzenie kopii zapasowych jest uznawane za najlepszą praktykę w zarządzaniu danymi, a standardy takie jak ISO 27001 podkreślają znaczenie bezpieczeństwa danych. Przykładem wdrożenia tej praktyki może być stosowanie rozwiązań takich jak systemy RAID, które przechowują dane na wielu dyskach, lub zewnętrzne systemy kopii zapasowych, które wykonują automatyczne backupy. Oprócz tego, ważne jest, aby kopie bezpieczeństwa były przechowywane w różnych lokalizacjach, co zwiększa ich odporność na awarie fizyczne. Nie należy również zapominać o regularnym testowaniu odtwarzania danych z kopii zapasowych, co zapewnia pewność ich integralności i użyteczności w krytycznych momentach. Takie podejście nie tylko minimalizuje ryzyko utraty danych, ale także pozwala na szybsze przywrócenie ciągłości działania organizacji.

Pytanie 24

Który instrument służy do pomiaru długości oraz tłumienności przewodów miedzianych?

A. Woltomierz
B. Omomierz
C. Reflektometr TDR
D. Miernik mocy
Reflektometr TDR (Time Domain Reflectometer) jest specjalistycznym przyrządem używanym do pomiaru długości i tłumienności przewodów miedzianych, a także innych typów kabli. Działa na zasadzie analizy odbicia sygnału, co pozwala na precyzyjne lokalizowanie miejsc uszkodzeń oraz pomiar długości przewodu. Dzięki temu narzędziu, inżynierowie mogą szybko ocenić jakość połączeń oraz wykrywać ewentualne problemy, takie jak przerwy czy zwarcia. Przykładowo, w branży telekomunikacyjnej, reflektometry TDR są nieocenione podczas instalacji i serwisowania kabli, co pozwala na minimalizację przestojów w działaniu sieci. Korzystanie z reflektometrów zgodnie z normami branżowymi, takimi jak IEC 61280, zapewnia dokładność i rzetelność wyników, a także zgodność z najlepszymi praktykami. Warto również zauważyć, że reflektometry TDR mogą być używane nie tylko w aplikacjach telekomunikacyjnych, ale także w automatyce przemysłowej, co czyni je wszechstronnym narzędziem w pomiarach elektrycznych.

Pytanie 25

Celem złocenia styków złącz HDMI jest

A. ulepszenie przewodności oraz trwałości złącza
B. stworzenie produktu o ekskluzywnym charakterze, aby osiągnąć wyższe zyski ze sprzedaży
C. zwiększenie przepustowości powyżej wartości ustalonych w standardach
D. zapewnienie przesyłu obrazu w rozdzielczości 4K
Zrozumienie zastosowania złocenia styków w złączach HDMI wymaga analizy różnych aspektów technicznych i marketingowych. Odpowiedź stwierdzająca, że złocenie umożliwia przesył obrazu w jakości 4K, jest myląca, ponieważ jakość przesyłanego obrazu jest determinowana przez rozdzielczość oraz przepustowość sygnału, a nie przez materiał zastosowany na stykach. HDMI jako standard obsługuje różne rozdzielczości, a sama jakość sygnału jest bardziej związana z jego specyfikacją, niż z użyciem złota. Również stwierdzenie, że złocenie poprawia przewodność i żywotność złącza, nie jest w pełni trafne. Choć złoto ma lepszą przewodność w porównaniu do niektórych innych metali, to przewodność styków miedzianych, które są powszechnie stosowane w różnych złączach HDMI, jest wystarczająca dla większości zastosowań. Wysoka jakość przewodnictwa nie jest jedynym czynnikiem wpływającym na żywotność złącza – istotne są również inne czynniki, takie jak sposób użytkowania czy warunki pracy. Podobnie, twierdzenie, że złocenie zwiększa przepustowość powyżej wartości określonych standardem, jest nieporozumieniem. Standard HDMI ma ściśle określone parametry techniczne, które nie mogą być zmieniane poprzez zastosowanie drobnych modyfikacji w materiałach. Często pojawiającym się błędem jest myślenie, że droższe materiały automatycznie przekładają się na lepsze parametry techniczne, co nie zawsze ma odzwierciedlenie w rzeczywistości. Złocenie styków jest często bardziej związane z marketingiem i postrzeganą wartością produktu niż z rzeczywistymi korzyściami technicznymi.

Pytanie 26

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. drugiej o długości 48 bitów
B. trzeciej o długości 48 bitów
C. drugiej o długości 32 bitów
D. trzeciej o długości 32 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przydzielanym każdemu interfejsowi sieciowemu, który korzysta z technologii Ethernet. Jego długość wynosi 48 bitów, co odpowiada 6 bajtom. Adres MAC jest używany w warstwie drugiej modelu OSI, czyli warstwie łącza danych, do identyfikacji urządzeń w sieci lokalnej. Dzięki standardowi IEEE 802.3, każda karta sieciowa produkowana przez różnych producentów otrzymuje unikalny adres MAC, co jest kluczowe dla prawidłowego działania sieci Ethernet. Przykładowo, w zastosowaniach takich jak DHCP (Dynamic Host Configuration Protocol), adres MAC jest niezbędny do przypisania odpowiednich adresów IP urządzeniom w sieci. Ponadto, w praktyce adresy MAC mogą być używane w różnych technologiach zabezpieczeń, takich jak filtracja adresów MAC, co pozwala na kontrolowanie dostępu do sieci. Zrozumienie roli adresu MAC w architekturze sieciowej jest fundamentalne dla każdego specjalisty w dziedzinie IT, a jego poprawne wykorzystanie jest zgodne z najlepszymi praktykami zarządzania siecią.

Pytanie 27

Firma uzyskała zakres adresów 10.10.10.0/16. Po podzieleniu na podsieci zawierające 510 hostów, jakie są adresy podsieci z zastosowaną maską?

A. 255.255.254.0
B. 255.255.240.0
C. 255.255.0.0
D. 255.255.253.0
Propozycje 255.255.0.0, 255.255.240.0 i 255.255.253.0 nie są trafione i warto by je lepiej przeanalizować. Zaczynając od 255.255.0.0, to odpowiada notacji /16, co oznacza, że 16 bitów idzie na sieć. W takim wypadku liczba dostępnych adresów dla hostów wynosi 2^(32-16) - 2 = 65,534, co zdecydowanie więcej niż potrzebujesz, bo potrzebujesz tylko 510. Zbyt wiele adresów to kiepskie zarządzanie przestrzenią adresową, więc to nie jest dobra droga. Maska 255.255.240.0, czyli /20, także się nie sprawdzi, bo daje 12 bitów na hosty, co pozwala na 2^(32-20) - 2 = 4,094 adresów. No i maska 255.255.253.0, co to /21, daje 11 bitów na hosty i 2^(32-21) - 2 = 2,046 adresów. Generalnie, zbyt duże przydziały adresów mogą wprowadzać zamieszanie. Kluczowy błąd to brak ogarnięcia, jak dobrze dopasować maskę podsieci do realnych potrzeb, co jest mega istotne dla każdego, kto się zajmuje sieciami.

Pytanie 28

Komputery K1, K2, K3, K4 są podłączone do interfejsów przełącznika, które są przypisane do VLAN-ów wymienionych w tabeli. Które z tych komputerów mają możliwość komunikacji ze sobą?

Nazwa komputeraAdres IPNazwa interfejsuVLAN
K110.10.10.1/24F1VLAN 10
K210.10.10.2/24F2VLAN 11
K310.10.10.3/24F3VLAN 10
K410.10.11.4/24F4VLAN 11

A. K1 z K3
B. K1 i K4
C. K2 i K4
D. K1 i K2
Komputery K1 i K3 mogą się ze sobą komunikować, ponieważ są przypisane do tego samego VLAN-u, czyli VLAN 10. W sieciach komputerowych VLAN (Virtual Local Area Network) to logiczna sieć, która pozwala na oddzielenie ruchu sieciowego w ramach wspólnej infrastruktury fizycznej. Przypisanie urządzeń do tego samego VLAN-u umożliwia im komunikację tak, jakby znajdowały się w tej samej sieci fizycznej, mimo że mogą być podłączone do różnych portów przełącznika. Jest to podstawowa praktyka w zarządzaniu sieciami, szczególnie w dużych infrastrukturach, gdzie organizacja sieci w różne VLAN-y poprawia wydajność i bezpieczeństwo. Komputery w różnych VLAN-ach domyślnie nie mogą się komunikować, chyba że zostaną skonfigurowane odpowiednie reguły routingu lub zastosowane mechanizmy takie jak routery między VLAN-ami. Praktyczne zastosowanie VLAN-ów obejmuje segmentację sieci dla różnych działów w firmie lub rozgraniczenie ruchu danych i głosu w sieciach VoIP. Zrozumienie działania VLAN-ów jest kluczowe dla zarządzania nowoczesnymi sieciami, ponieważ pozwala na efektywne zarządzanie zasobami oraz minimalizowanie ryzyka związanego z bezpieczeństwem danych.

Pytanie 29

Który z parametrów w ustawieniach punktu dostępowego działa jako login używany podczas próby połączenia z punktem dostępowym w sieci bezprzewodowej?

Ilustracja do pytania
A. Wireless Channel
B. Wireless Network Name
C. Transmission Rate
D. Channel Width
Wireless Network Name znany również jako SSID czyli Service Set Identifier odgrywa kluczową rolę w konfiguracji punktu dostępowego sieci bezprzewodowej. SSID to unikalna nazwa, która identyfikuje określoną sieć bezprzewodową wśród wielu innych w zasięgu użytkownika. Jest to pierwsze co widzi urządzenie próbujące połączyć się z siecią dlatego można go porównać do loginu w kontekście sieci bezprzewodowych. W praktyce użytkownik wybiera właściwy SSID z listy dostępnych sieci aby nawiązać połączenie. Jest to standardowa praktyka w konfiguracji sieci bezprzewodowych oparta na specyfikacjach IEEE 802.11. Dobre praktyki zarządzania sieciami zalecają nadanie unikalnej nazwy SSID unikanie domyślnych nazw oraz regularną aktualizację zabezpieczeń sieciowych. SSID może być ustawiony jako widoczny lub ukryty co wpływa na sposób w jaki urządzenia mogą go znaleźć. Ukrycie SSID może zwiększyć bezpieczeństwo ale nie jest ono jedynym środkiem ochrony. Większość routerów i punktów dostępowych pozwala na modyfikację SSID co jest jednym z podstawowych kroków podczas konfiguracji nowego urządzenia sieciowego.

Pytanie 30

Administrator systemu Linux wydał komendę mount /dev/sda2 /mnt/flash. Co to spowoduje?

A. podłączenie dysku SATA do katalogu flash
B. odłączenie pamięci typu flash z lokalizacji /dev/sda2
C. odłączenie dysku SATA z katalogu flash
D. podłączenie pamięci typu flash do lokalizacji /dev/sda2
Polecenie 'mount /dev/sda2 /mnt/flash' jest używane w systemie Linux do podłączania partycji lub urządzeń magazynujących do systemu plików. W tym konkretnym przypadku, '/dev/sda2' oznacza drugą partycję na pierwszym dysku SATA, a '/mnt/flash' to lokalizacja, w której partycja ta zostanie zamontowana. Po wykonaniu tego polecenia, użytkownicy będą mogli uzyskać dostęp do zawartości partycji '/dev/sda2' za pośrednictwem katalogu '/mnt/flash', co jest standardową praktyką w zarządzaniu systemami plików w systemach Unixowych. Warto pamiętać, że przed przystąpieniem do montowania, partycja powinna być poprawnie sformatowana i nie powinna być już zamontowana w innym miejscu. Dobrą praktyką jest również upewnienie się, że użytkownik ma odpowiednie uprawnienia do wykonania operacji montowania. Przykładowo, po montowaniu partycji, można wykorzystać polecenia takie jak 'ls' do przeglądania plików na zamontowanej partycji, co jest szczególnie przydatne w administracji systemami oraz zarządzaniu danymi.

Pytanie 31

W biurowcu należy podłączyć komputer do routera ADSL za pomocą przewodu UTP Cat 5e. Jaka powinna być maksymalna odległość między komputerem a routerem?

A. 50 m
B. 500 m
C. 100 m
D. 185 m
W przypadku zastosowania przewodów UTP (Unshielded Twisted Pair) kategorii 5e, maksymalna długość kabla, który można wykorzystać do przesyłu sygnału Ethernet, wynosi 100 metrów. W praktyce oznacza to, że odległość między urządzeniem końcowym, czyli komputerem, a aktywnym urządzeniem sieciowym, takim jak router ADSL, nie powinna przekraczać tej wartości. Przekroczenie 100 metrów może skutkować degradacją sygnału, co prowadzi do spadku prędkości transmisji oraz zwiększonego ryzyka błędów w przesyłanych danych. W szczególności w środowiskach biurowych, gdzie stabilność i prędkość połączeń sieciowych są kluczowe, przestrzeganie tych limitów jest niezbędne dla zapewnienia optymalnej wydajności sieci. Dodatkowo, stosowanie przewodów o odpowiedniej kategorii, takich jak Cat 5e, zapewnia wsparcie dla prędkości do 1 Gb/s na krótkich dystansach, co jest kluczowe w nowoczesnych zastosowaniach biurowych związanych z przesyłaniem dużych ilości danych.

Pytanie 32

Jaki protokół jest używany przez komendę ping?

A. IPX
B. SMTP
C. ICMP
D. FTP
Odpowiedź ICMP (Internet Control Message Protocol) jest poprawna, ponieważ to właśnie ten protokół jest wykorzystywany przez polecenie ping do testowania łączności między urządzeniami w sieci. Ping wysyła pakiety ICMP Echo Request do określonego adresu IP i oczekuje na odpowiedź w postaci pakietu ICMP Echo Reply. Dzięki temu administratorzy sieci mogą szybko zdiagnozować problemy z połączeniami sieciowymi, takie jak niska jakość sygnału czy przerwy w komunikacji. ICMP jest częścią zestawu protokołów TCP/IP i działa na poziomie sieci, co pozwala na wymianę informacji o błędach oraz statusie trasowania. W praktyce, używając narzędzia ping, można uzyskać cenny wgląd w stan sieci, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami komputerowymi. Należy pamiętać, że ICMP może być ograniczany przez zapory sieciowe, co może wpłynąć na wyniki testów ping.

Pytanie 33

W systemie SI jednostką do mierzenia napięcia jest

A. herc
B. wat
C. amper
D. wolt
Wolt (V) jest jednostką miary napięcia w układzie SI, która mierzy różnicę potencjałów elektrycznych między dwoma punktami. Został zdefiniowany na podstawie pracy wykonywanej przez jednostkę ładunku elektrycznego, gdy przechodzi przez element obwodu. Na przykład, gdy napięcie wynosi 5 woltów, oznacza to, że pomiędzy dwoma punktami jest ustalona różnica potencjału, która pozwala na przepływ prądu. W praktyce, wolt jest kluczowym parametrem w elektrotechnice i elektronice, wpływając na projektowanie urządzeń elektrycznych, takich jak zasilacze, akumulatory, a także w systemach telekomunikacyjnych. Dobrą praktyką jest mierzenie napięcia w obwodach za pomocą multimetru, co pozwala na monitorowanie i diagnostykę układów elektronicznych. Przykłady zastosowania napięcia to różne urządzenia domowe, takie jak żarówki, które działają na napięciu 230 V, czy systemy fotowoltaiczne, w których napięcie generowane przez ogniwa słoneczne ma kluczowe znaczenie dla efektywności zbierania energii.

Pytanie 34

Standard IEEE 802.11b dotyczy sieci

A. telefonicznych
B. światłowodowych
C. przewodowych
D. bezprzewodowych
Norma IEEE 802.11b jest standardem sieci bezprzewodowych, który został zatwierdzony w 1999 roku. Jest to jeden z pierwszych standardów z rodziny IEEE 802.11, który umożliwił bezprzewodową komunikację w sieciach lokalnych (WLAN). Standard 802.11b operuje w paśmie 2,4 GHz i może osiągnąć prędkości transmisji danych do 11 Mbps. Przykładem zastosowania 802.11b są domowe sieci Wi-Fi, które pozwalają na łączenie urządzeń takich jak komputery, smartfony czy drukarki bez potrzeby fizycznego okablowania. W praktyce, standard ten był szeroko wykorzystywany w pierwszych routerach Wi-Fi i stanowił podstawę dla dalszego rozwoju technologii bezprzewodowej, w tym nowszych standardów, jak 802.11g czy 802.11n. Zrozumienie roli 802.11b w kontekście ewolucji sieci bezprzewodowych jest kluczowe dla każdego, kto zajmuje się infrastrukturą IT lub projektowaniem systemów komunikacyjnych.

Pytanie 35

Jaka jest maksymalna liczba komputerów, które mogą być zaadresowane w podsieci z adresem 192.168.1.0/25?

A. 254
B. 510
C. 62
D. 126
Odpowiedź 126 jest poprawna, ponieważ w podsieci o adresie 192.168.1.0/25 mamy do czynienia z maską sieciową, która umożliwia podział adresów IP na mniejsze grupy. Maska /25 oznacza, że pierwsze 25 bitów jest używane do identyfikacji sieci, co pozostawia 7 bitów na adresowanie urządzeń w tej podsieci. W praktyce oznacza to, że liczba dostępnych adresów do przypisania urządzeniom oblicza się według wzoru 2^n - 2, gdzie n to liczba bitów przeznaczonych na adresowanie hostów. W tym przypadku 2^7 - 2 = 128 - 2 = 126. Odejmujemy 2, ponieważ jeden adres jest zarezerwowany dla adresu sieci (192.168.1.0) a drugi dla adresu rozgłoszeniowego (192.168.1.127). Taki podział jest kluczowy w projektowaniu i zarządzaniu sieciami, ponieważ pozwala na efektywne wykorzystanie dostępnych adresów IP oraz organizację ruchu sieciowego. W praktyce ten rodzaj podsieci często wykorzystuje się w małych lub średnich firmach, gdzie liczba urządzeń nie przekracza 126. Umożliwia to efektywne zarządzanie zasobami oraz minimalizuje ryzyko konfliktów adresów IP, co jest zgodne z zasadami dobrej praktyki w inżynierii sieciowej.

Pytanie 36

Które z wymienionych mediów nie jest odpowiednie do przesyłania danych teleinformatycznych?

A. skrętka
B. sieć15KV
C. światłowód
D. sieć 230V
Sieć 15KV jest niewłaściwym medium do przesyłania danych teleinformatycznych, ponieważ jest to sieć wysokiego napięcia, której głównym celem jest transport energii elektrycznej, a nie danych. Wysokie napięcie używane w takich sieciach stwarza poważne zagrożenia dla urządzeń teleinformatycznych, a także dla ludzi. W przeciwieństwie do tego, światłowód, skrętka czy inne medium stosowane w telekomunikacji są projektowane z myślą o przesyłaniu informacji. Światłowody oferują wysoką przepustowość i są odporne na zakłócenia elektromagnetyczne, co czyni je idealnym rozwiązaniem dla nowoczesnych sieci. Skrętka, z kolei, jest popularnym medium w lokalnych sieciach komputerowych, a jej konstrukcja minimalizuje wpływ zakłóceń. W przypadku sieci 15KV, brak odpowiednich protokołów i standardów dla transmisji danych oznacza, że nie może ona być stosowana do przesyłania informacji. Przykładem dobrego rozwiązania teleinformatycznego są sieci LAN, które wykorzystują skrętkę i światłowody zgodnie z normami IEEE 802.3, co gwarantuje ich wydajność i bezpieczeństwo.

Pytanie 37

Okablowanie wertykalne w sieci strukturalnej łączy

A. główny punkt dystrybucji z gniazdem abonenta
B. pośredni punkt dystrybucji z gniazdem abonenta
C. dwa gniazda abonentów
D. główny punkt dystrybucji z pośrednimi punktami dystrybucji
Wybór opcji, która łączy dwa gniazda abonenckie, jest nieprawidłowy, ponieważ nie uwzględnia istoty okablowania pionowego, które ma na celu połączenie różnych segmentów sieci w bardziej złożoną strukturę. Okablowanie pionowe nie jest jedynie łączeniem gniazd, lecz tworzy ramy dla całej architektury sieci, umożliwiając przesyłanie danych między głównymi i pośrednimi punktami rozdzielczymi. Wybór opcji łączącej główny punkt rozdzielczy z gniazdem abonenckim pomija kluczowe elementy struktury sieci, które są niezbędne do efektywnego zarządzania i organizacji infrastruktury. Ta odpowiedź nie uwzględnia również faktu, że gniazda abonenckie są zazwyczaj końcowymi punktami, a ich bezpośrednie połączenie z głównymi punktami rozdzielczymi nie zapewnia odpowiedniego zarządzania siecią ani nie wsparcia dla ewentualnych rozbudów. Z kolei łączenie głównego punktu rozdzielczego z pośrednimi punktami umożliwia skalowanie i integrację różnych technologii, co jest zgodne z dobrymi praktykami branżowymi. Ignorowanie tego aspektu prowadzi do konstrukcji sieci, która nie jest elastyczna ani dostosowana do potrzeb użytkowników. Dlatego ważne jest, aby dobrze zrozumieć hierarchię i strukturę okablowania, aby stworzyć wydajną i przyszłościową sieć.

Pytanie 38

Licencja Windows OEM nie umożliwia wymiany

A. sprawnego zasilacza na model o wyższych parametrach
B. sprawnej karty sieciowej na model o wyższych parametrach
C. sprawnej płyty głównej na model o wyższych parametrach
D. sprawnego dysku twardego na model o wyższych parametrach
Licencja Windows OEM (Original Equipment Manufacturer) jest związana z konkretnym sprzętem, na którym system operacyjny został zainstalowany. W przypadku wymiany płyty głównej, licencja przestaje być ważna, ponieważ system operacyjny uznaje nowy sprzęt za inny komputer. W praktyce oznacza to, że zmiana płyty głównej wiąże się z koniecznością zakupu nowej licencji na Windows, co jest istotnym ograniczeniem dla użytkowników korzystających z OEM. Zrozumienie tej zasady jest kluczowe dla zarządzania licencjami w środowiskach komputerowych. W przypadku innych komponentów, takich jak zasilacz, karta sieciowa czy dysk twardy, wymiany można dokonywać bez wpływu na licencję, ponieważ nie zmieniają one identyfikacji sprzętowej komputera. Przykładami praktycznymi mogą być aktualizacje karty graficznej lub dysku SSD, które są powszechnie stosowane w celu zwiększenia wydajności bez obaw o legalność oprogramowania.

Pytanie 39

Jakie medium transmisyjne używają myszki Bluetooth do interakcji z komputerem?

A. Promieniowanie podczerwone
B. Fale radiowe w paśmie 800/900 MHz
C. Fale radiowe w paśmie 2,4 GHz
D. Promieniowanie ultrafioletowe
Myszki Bluetooth wykorzystują fale radiowe w paśmie 2,4 GHz do komunikacji z komputerem. To pasmo jest szeroko stosowane w technologii Bluetooth, która została zaprojektowana z myślą o krótkozasięgowej łączności bezprzewodowej. Warto zauważyć, że technologia Bluetooth operuje w tak zwanym zakresie ISM (Industrial, Scientific and Medical), co oznacza, że jest przeznaczona do użytku ogólnego i nie wymaga specjalnych pozwoleń na użytkowanie. Dzięki działaniu w paśmie 2,4 GHz, myszki Bluetooth są w stanie zapewnić stabilne połączenie z komputerem na odległość do około 10 metrów, co czyni je idealnym rozwiązaniem dla osób korzystających z laptopów lub komputerów stacjonarnych w różnych warunkach. W praktyce, umożliwia to użytkownikom wygodne korzystanie z urządzeń bezprzewodowych, eliminując problem splątanych kabli i zapewniając większą mobilność. Ponadto, wiele nowoczesnych urządzeń, takich jak smartfony, tablety i głośniki, również wykorzystuje technologię Bluetooth, co pozwala na łatwe parowanie i współdzielenie danych bez potrzeby skomplikowanej konfiguracji, co jest zgodne z dobrymi praktykami w zakresie ergonomii i funkcjonalności w projektowaniu urządzeń elektronicznych.

Pytanie 40

Wynikiem poprawnego pomnożenia dwóch liczb binarnych 111001102 oraz 000111102 jest wartość

A. 690010
B. 0110 1001 0000 00002
C. 64400O
D. 6900H
Wybór innej odpowiedzi niż 690010 może świadczyć o tym, że masz problem z konwersją między systemami czy z samym mnożeniem w systemie binarnym. Odpowiedzi jak 6900H czy 64400O po prostu nie mają sensu. 6900H sugeruje, że coś jest w systemie szesnastkowym, ale to nie pasuje do wyniku mnożenia. Z kolei 64400O to format, którego nie ma w standardowych systemach, więc jest totalnie błędny. No i odpowiedź 0110 1001 0000 00002 jest niepoprawna, bo w binarnym nie ma cyfry '2'. Ludzie często się mylą, mieszając systemy lub zapominając, że w każdym systemie używa się tylko odpowiednich cyfr. Zrozumienie, jak działa liczba binarna i umiejętność zmiany ich na inne systemy, to kluczowe umiejętności w informatyce. To jakby fundament pod algorytmy i rozumienie, jak działają komputery i procesory, które zawsze operują na danych binarnych.