Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 kwietnia 2025 19:00
  • Data zakończenia: 10 kwietnia 2025 19:31

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Awaria zaworu zwrotnego ssącego
B. Niewłaściwie ustawiony wyłącznik ciśnieniowy
C. Nieprawidłowy kierunek obrotów silnika
D. Wytarcie jednego z pierścieni uszczelniających tłok
Zespół nieprawidłowych odpowiedzi sugeruje różne koncepcje, które nie są związane z opisaną sytuacją. Źle wyregulowany wyłącznik ciśnieniowy, choć może wpływać na ogólną wydajność systemu, nie jest bezpośrednią przyczyną wydmuchiwania powietrza z cylindra sprężarki. Jego niewłaściwe ustawienie może skutkować wyłączaniem urządzenia w nieodpowiednich momentach, ale nie prowadzi do opisanego zjawiska. Zły kierunek wirowania silnika jest kolejnym błędnym podejściem, które może powodować problemy z pracą całego systemu, ale nie wyjaśnia wydmuchiwania powietrza z cylindra. Tego typu sytuacje mogą prowadzić do poważnych uszkodzeń, jednak nie mają związku z bezpośrednim uszkodzeniem zaworu zwrotnego. Zużycie jednego z pierścieni uszczelniających tłok jest z pewnością istotnym czynnikiem, jednak jego wpływ na wydajność sprężarki objawia się w inny sposób, głównie poprzez spadek ciśnienia i wzrost zużycia energii, a nie przez wydmuchiwanie powietrza do atmosfery. Zrozumienie tych różnic jest kluczowe dla prawidłowej diagnostyki i utrzymania systemów mechatronicznych, gdzie precyzyjne określenie przyczyny problemu ma kluczowe znaczenie dla dalszej pracy urządzenia.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. silnika hydraulicznego
B. siłownika hydraulicznego
C. smarownicy pneumatycznej
D. siłownika pneumatycznego
Odpowiedzi takie jak smarownica pneumatyczna, silnik hydrauliczny i siłownik hydrauliczny zawierają szereg nieporozumień, które wynikają z mylenia różnych technologii napędowych. Smarownica pneumatyczna jest urządzeniem stosowanym do wprowadzania smarów do systemów pneumatycznych, a nie do generowania ruchu, co czyni ją nieodpowiednią w kontekście parametru skoku czy dokładności położenia. Silnik hydrauliczny, chociaż wykorzystuje ciśnienie płynów do generowania ruchu, funkcjonuje na zupełnie innych zasadach niż siłowniki pneumatyczne. Jego budowa i charakterystyka pracy opierają się na płynach hydraulicznych, co oznacza, że maksymalne ciśnienie i temperatura pracy są zupełnie inne. Siłowniki hydrauliczne, podobnie jak silniki hydrauliczne, także operują na zasadzie wykorzystania cieczy pod ciśnieniem, co diametralnie różni się od zasad działania siłowników pneumatycznych, gdzie główną rolę odgrywa sprężone powietrze. Wybór technologii powinien być uzasadniony specyfiką aplikacji, ponieważ zarówno siłowniki hydrauliczne, jak i pneumatyczne mają swoje unikalne zalety i ograniczenia. Zrozumienie tych różnic jest kluczowe dla właściwego doboru komponentów w systemach automatyki przemysłowej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A

A. 230 V DC
B. 400 V DC
C. 230 V AC
D. 400 V AC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. siłowniki
B. elementy sygnalizacyjne
C. zawory pneumatyczne
D. pompy
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 15

Jakie z poniższych działań może być realizowane podczas eksploatacji pompy hydroforowej?

A. Smarowanie elementów poruszających się
B. Czyszczenie elementów poruszających się
C. Kilka razy włączenie pompy w celu eliminacji powietrza z wirnika
D. Usuwanie osłon w trakcie funkcjonowania urządzenia
Kilkukrotne uruchomienie pompy hydroforowej w celu usunięcia powietrza z wirnika jest kluczowym działaniem, które zapewnia jej prawidłową pracę i wydajność. W przypadku pompy hydroforowej, obecność powietrza w układzie może prowadzić do tzw. "kawitacji", która z kolei może spowodować uszkodzenia wirnika oraz obniżenie efektywności pompy. Regularne uruchamianie pompy w celu usunięcia powietrza jest częścią rutynowej konserwacji, zalecanej przez producentów urządzeń oraz zgodnej z najlepszymi praktykami w branży hydraulicznej. W praktyce oznacza to, że przed rozpoczęciem długoterminowego użytkowania pompy warto przeprowadzić kilka cykli rozruchowych, aby upewnić się, że układ jest całkowicie napełniony wodą, co pozwoli uniknąć problemów w trakcie eksploatacji. Ponadto, warto monitorować ciśnienie w instalacji, aby zidentyfikować ewentualne nieprawidłowości, które mogą wskazywać na obecność powietrza w systemie. Tego rodzaju praktyki pozwalają na maksymalizację wydajności i żywotności pompy hydroforowej.

Pytanie 16

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Odwróceniem sygnałów Set i Reset
B. Ilością stanów pośrednich
C. Czasem reakcji
D. Przewagą sygnałów Set i Reset
Zauważ, że wybrałeś poprawną odpowiedź, bo jest istotna różnica między przerzutnikiem RS a SR. W przerzutniku RS sygnał Set zawsze ma pierwszeństwo. To znaczy, że jak go aktywujesz, to wyjście idzie w stan wysoki. Dopiero gdy Set nie działa, możemy mówić o sygnale Reset. Ta zasada jest naprawdę ważna, zwłaszcza w automatyce. Na przykład, w różnych systemach sterowania, chcemy, żeby urządzenie znowu zaczęło działać po wyłączeniu. Dzięki przerzutnikowi RS to jest całkiem proste i bezpieczne. No i wiesz, standardy jak IEC 61131-3 mówią o tym, jak powinny działać programy do PLC, więc dobrze znać te różnice, żeby nie popełnić błędów przy projektowaniu systemów. Moim zdaniem, im lepiej rozumiesz te kwestie, tym lepiej zaprojektujesz swoje układy.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką czynność projektową nie jest możliwe zrealizowanie w oprogramowaniu CAM?

A. Przygotowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping
B. Wykonywania symulacji obróbki obiektu w środowisku wirtualnym
C. Generowania kodu dla obrabiarki CNC
D. Przygotowania dokumentacji technologicznej produktu
Wybierając odpowiedzi, takie jak 'Opracowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping', 'Symulowania obróbki obiektu w wirtualnym środowisku' czy 'Wygenerowania kodu dla obrabiarki CNC', można łatwo wpaść w pułapkę mylnego zrozumienia funkcji oprogramowania CAM. Oprogramowanie CAM jest zaprojektowane z myślą o generowaniu kodu sterującego i symulowaniu procesów obróbczych, co jest kluczowe dla efektywności produkcji. Niewłaściwe zrozumienie roli CAM może prowadzić do przekonania, że wszystkie aspekty projektowania i wytwarzania mieszczą się w jego funkcjonalności, co jest z gruntu błędne. Oprogramowanie CAM nie zapewnia jednak żadnych funkcji związanych z tworzeniem dokumentacji technologicznej, a to właśnie takie działania są niezbędne w wielu branżach, zwłaszcza w kontekście standardów jakości i procedur produkcyjnych. Często spotyka się błędy myślowe, takie jak założenie, że wszelkiego rodzaju instrukcje operacyjne mogą być generowane w CAM bez wcześniejszego przetworzenia danych w CAD. W praktyce, każdy projekt wymaga odpowiedniej dokumentacji, która może być realizowana jedynie poprzez dedykowane oprogramowanie CAD, a następnie wdrażana w procesie produkcji przez CAM. Ignorowanie tego podziału prowadzi do nieefektywności i błędów w procesie produkcyjnym.

Pytanie 21

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. X
B. Φ
C. D
D. R
Wybór odpowiedzi innych niż "R" wskazuje na pewne nieporozumienia związane z konwencjami stosowanymi w rysunku technicznym. Odpowiedź "D" może sugerować skojarzenie z innymi rodzajami wymiarów, jednak w kontekście promieni łuków nie jest stosowana. Z kolei litera "X" w rysunku technicznym z reguły odnosi się do nieokreślonych wartości lub miejsc, co czyni ją nieodpowiednią do oznaczenia promienia. Na koniec, symbol "Φ" jest zazwyczaj używany do oznaczania średnicy, co jest zupełnie inną miarą niż promień. Błąd w doborze symbolu wynika z nieznajomości podstawowych pojęć związanych z geometrią i rysunkiem technicznym. Ogólnie rzecz biorąc, wiedza o standardowych oznaczeniach w rysunku technicznym jest fundamentem dla każdej osoby zajmującej się projektowaniem. Zrozumienie tej problematyki jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych pomyłek w procesie produkcji. Przykładem może być sytuacja, gdzie niepoprawne oznaczenie promienia skutkuje problemami przy montażu elementów, co w efekcie prowadzi do awarii lub konieczności wprowadzenia poprawek, co zwiększa koszty projektu oraz czas realizacji.

Pytanie 22

Ile par biegunów powinno mieć uzwojenie stojana silnika o wielu prędkościach, aby po podłączeniu do źródła zasilania 230/240 V, 50 Hz jego wał obracał się z prędkością zbliżoną do 1500 obr/min?

A. trzy
B. cztery
C. dwie
D. jedna
Wybór innej liczby par biegunów prowadzi do błędnych wniosków dotyczących prędkości obrotowej silnika. Na przykład, wskazanie jednej pary biegunów skutkuje prędkością obrotową równą 3600 obr/min, co znacznie przekracza wymaganą wartość 1500 obr/min. W przypadku trzech par biegunów prędkość wynosiłaby 1200 obr/min, co również nie spełnia wymogu. Te nieprawidłowe odpowiedzi wynikają z błędnego zrozumienia zależności między liczbą biegunów a prędkością obrotową w silnikach synchronicznych. W praktyce, zbyt niska liczba par biegunów może prowadzić do problemów z kontrolą prędkości oraz do nieefektywności energetycznej. W przypadku silników o większej liczbie par biegunów, takich jak cztery, mogą wystąpić problemy z osiągnięciem wymaganej prędkości obrotowej. Kluczowe jest, aby inżynierowie projektujący systemy napędowe rozumieli te zależności, aby unikać nieefektywnych rozwiązań. Podstawową zasadą w inżynierii elektrycznej jest optymalne dopasowanie liczby biegunów do wymagań aplikacji, co pozwala na uzyskanie odpowiedniej efektywności oraz stabilności pracy urządzenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zwiększyć zakres histerezy
B. zwiększyć wartość sygnału regulacyjnego
C. zmniejszyć wartość sygnału zadawania
D. zmniejszyć zakres histerezy
Wydaje mi się, że wybór niepoprawnej odpowiedzi może wynikać z pewnego nieporozumienia na temat tego, jak działa histereza w regulatorach dwustanowych. Zmniejszenie szerokości histerezy sprawia, że system staje się bardziej czuły na małe zmiany, co prowadzi do częstszych zmian stanu wyjścia. Można powiedzieć, że to trochę jakby zamiast pomagać, jeszcze bardziej komplikuje sytuację, bo prowadzi do nadmiernej reakcji na małe fluktuacje. To z kolei zwiększa oscylacje zamiast je redukować. Poza tym, zmniejszenie histerezy jest po prostu sprzeczne z podstawowymi zasadami regulacji. Stabilność systemu osiągamy też przez odpowiednie dostrojenie parametrów regulatora. Większa amplituda sygnału regulującego też nie rozwiąże problemu, bo jedynie zwiększy zakres zmian, co może powodować jeszcze większy chaos. Zmniejszenie wartości sygnału zadającego może wydawać się rozsądne, ale też nie pomoże w pozbyciu się oscylacji, tylko wpłynie na to, jak wysoko czy nisko działa regulator. W praktyce inżynieryjnej ważne jest, żeby unikać sytuacji, które mogą sprawić, że system będzie bardziej wrażliwy na zakłócenia, bo to prowadzi do niechcianych oscylacji.

Pytanie 25

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Uszkodzenie izolacji kabla zasilającego urządzenie
B. Uszkodzenie przewodu ochronnego PE
C. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
D. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
Uszkodzenie izolacji przewodu zasilającego urządzenie II klasy ochronności stanowi poważne zagrożenie porażenia prądem, ponieważ narusza integralność systemu ochrony przed porażeniem elektrycznym. W urządzeniach tej klasy, które nie mają metalowej obudowy uziemionej, kluczową rolę odgrywa izolacja. W przypadku, gdy izolacja ulegnie uszkodzeniu, istnieje ryzyko kontaktu z przewodem pod napięciem, co może prowadzić do poważnych obrażeń lub śmierci. Zgodnie z normą PN-EN 61140, urządzenia klasy II powinny być projektowane z myślą o minimalizacji ryzyka porażenia prądem, co oznacza, że wszelkie uszkodzenia izolacji powinny być niezwłocznie diagnozowane i naprawiane. Praktycznie oznacza to, że regularne przeglądy oraz stosowanie odpowiednich technik konserwacji, takich jak testy izolacji, są kluczowe w zapobieganiu takim sytuacjom. Ponadto, zastosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może znacząco zwiększyć bezpieczeństwo użytkowników i zapobiec poważnym wypadkom.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakiego komponentu należy użyć w opracowywanym systemie hydraulicznym, aby zapewnić niezmienną prędkość wysuwu tłoczyska siłownika w przypadku zmiennego obciążenia?

A. Zawór zwrotny sterowany
B. Zawór dławiąco-zwrotny
C. Zawór redukcyjny
D. Regulator natężenia przepływu
Regulator natężenia przepływu jest kluczowym elementem w układach hydraulicznych, który pozwala na osiągnięcie stałej prędkości wysuwu tłoczyska siłownika, mimo zmieniających się warunków obciążenia. Działa on na zasadzie regulacji ilości cieczy przepływającej przez siłownik, co w praktyce oznacza, że niezależnie od tego, jak duże obciążenie działa na tłoczysko, regulator dostosowuje przepływ, aby utrzymać stałą prędkość. Przykładem jego zastosowania może być praca z maszynami przemysłowymi, takimi jak prasy hydrauliczne, gdzie kontrola prędkości ruchu jest kluczowa dla precyzyjności i jakości finalnego produktu. W praktyce, stosowanie regulatorów natężenia przepływu zgodnie z normami hydrauliki przemysłowej, takimi jak ISO 4413, zwiększa efektywność operacyjną i bezpieczeństwo układów hydraulicznych, co ma bezpośredni wpływ na wydajność i niezawodność procesów produkcyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Które z wymienionych w tabeli czynności wchodzą w zakres oględzin napędu mechatronicznego, w którym elementem wykonawczym (napędowym) jest silnik komutatorowy?

Lp.Czynność
1.Sprawdzanie skuteczności chłodzenia elementów energoelektronicznych
2.Sprawdzanie stanu pierścieni ślizgowych i komutatorów
3.Pomiar temperatury obudowy i łożysk
4.Sprawdzanie stanu szczotek i szczotkotrzymaczy
5.Sprawdzanie jakości połączeń elementów urządzenia

A. 1, 2, 4
B. 1, 2, 3
C. 2, 3, 5
D. 2, 4, 5
Wybór czynności, które nie obejmują stanów pierścieni ślizgowych, komutatorów, szczotek oraz jakości połączeń, może prowadzić do niewłaściwej oceny stanu silnika komutatorowego. Sprawdzanie skuteczności chłodzenia elementów elektroniki (1) oraz pomiar temperatury obudowy i łożysk (3) są istotne dla ogólnej diagnostyki urządzenia, lecz nie są specyficzne dla silników komutatorowych. Problemy z chłodzeniem mogą występować w różnych rodzajach napędów, ale nie dotyczą bezpośrednio mechanizmu działania silnika komutatorowego, co sprawia, że te czynności, mimo że ważne, nie powinny być priorytetem w kontekście jego oględzin. Typowym błędem w myśleniu jest zakładanie, że ogólne czynności diagnostyczne są wystarczające dla specyficznych układów. Przykładowo, niewłaściwe zrozumienie roli szczotek i komutatorów może prowadzić do poważnych problemów operacyjnych, takich jak niestabilność pracy silnika czy jego przegrzewanie. Skupienie się wyłącznie na temperaturze lub chłodzeniu ignoruje kluczowe elementy, które mogą bezpośrednio wpływać na funkcjonowanie silnika. W rezultacie, takie podejście może prowadzić do nieefektywnej diagnostyki i w konsekwencji do awarii systemu lub zwiększonego zużycia komponentów.

Pytanie 34

Jaka prędkość wyjścia tłoka siłownika hydraulicznego o powierzchni czynnej A = 3·10-3 m2 będzie, jeśli natężenie przepływu wynosi Q = 1,5·10-3 m3/s?

A. 0,3 m/s
B. 0,5 m/s
C. 5 m/s
D. 3 m/s
W przypadku odpowiedzi, które nie są poprawne, kluczowe jest zrozumienie merytorycznych podstaw hydrauliki, które leżą u podstaw obliczeń prędkości w siłownikach. Odpowiedzi takie jak 0,3 m/s, 5 m/s czy 3 m/s mogą wydawać się logiczne na pierwszy rzut oka, ale wynikają z fundamentalnych błędów w interpretacji danych. Na przykład, odpowiedź 0,3 m/s nie uwzględnia prawidłowego stosunku natężenia przepływu do powierzchni tłoka, co prowadzi do niedoszacowania prędkości. Z kolei odpowiedzi 5 m/s i 3 m/s sugerują, że natężenie przepływu byłoby znacznie wyższe niż podane, co jest sprzeczne z definicją i właściwościami natężenia przepływu w układach hydraulicznych. Kluczowym błędem myślowym jest pominięcie faktu, że zmiana powierzchni przekroju poprzecznego wpływa bezpośrednio na prędkość przepływu. Aby obliczenie było poprawne, należy zawsze odnosić się do wzoru v = Q/A. W praktyce, błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów w układzie hydraulicznym, co w skrajnych przypadkach może skutkować awarią urządzenia lub nieefektywną pracą, a także zwiększonym zużyciem energii. Z tego powodu zrozumienie podstawowych zasad obliczeń hydraulicznych jest kluczowe dla inżynierów i techników pracujących w branży.

Pytanie 35

Maksymalne obciążenie prądowe wyjść cyfrowych sterownika PLC 24 V DC wynosi 0,7 A. Jaką wartość mocy może mieć odbiornik, który podłączony do wyjścia sterownika, będzie pobierał prąd niższy od dopuszczalnego?

A. 10 W
B. 20 W
C. 15 W
D. 5 W
Poprawna odpowiedź to 15 W, co wynika z obliczenia maksymalnej wartości mocy odbiornika, który można podłączyć do wyjścia cyfrowego sterownika PLC. Obciążalność prądowa wyjść wynosi 0,7 A, a napięcie zasilania to 24 V. Zatem, moc obliczamy ze wzoru: P = I × U, gdzie P to moc, I to prąd, a U to napięcie. Wstawiając wartości, otrzymujemy: 0,7 A × 24 V = 16,8 W. Jednakże, aby zapewnić bezpieczną pracę urządzenia, odbiornik musi pobierać mniej prądu niż maksymalne dopuszczalne, co oznacza, że 15 W to wartość bezpieczna. W praktyce oznacza to, że do wyjścia PLC możemy podłączyć urządzenia, których moc znamionowa nie przekracza 15 W. Zastosowanie takiego podejścia jest kluczowe w projektowaniu układów automatyki, aby uniknąć uszkodzeń komponentów i zapewnić ich niezawodność. Ta zasada jest zgodna z normami IEC 61131 dotyczącymi programowalnych sterowników logicznych, które podkreślają znaczenie bezpieczeństwa i efektywności w systemach automatyki.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω

A. przerwę w uzwojeniu U1-U2.
B. przerwę w uzwojeniu V1-V2.
C. zwarcie między uzwojeniem W1-W2, a obudową silnika.
D. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
Odpowiedź wskazująca na zwarcie między uzwojeniem W1-W2 a obudową silnika jest prawidłowa, ponieważ analizy wyników pomiarów rezystancji izolacji ujawniają niską wartość rezystancji wynoszącą 30 Ω. Taka wartość wskazuje na poważne problemy z izolacją, które mogą prowadzić do zwarcia. W warunkach normalnych, dla dobrze działających silników, rezystancja izolacji powinna wynosić przynajmniej kilka megaomów, co zapewnia wystarczającą ochronę przed przepływem prądu do obudowy. W przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie szczegółowej analizy oraz podjęcie działań naprawczych, które mogą obejmować wymianę uszkodzonych uzwojeń. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji, zwłaszcza przed rozpoczęciem długotrwałej eksploatacji maszyn. Tylko dzięki tym pomiarom można uniknąć potencjalnych awarii i zagrożeń dla bezpieczeństwa. W kontekście standardów branżowych, np. IEC 60034, zaleca się, aby rezystancja izolacji przekraczała 1 MΩ dla silników o napięciu do 1000 V, co podkreśla konieczność utrzymywania właściwych parametrów izolacyjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.