Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 23 maja 2025 20:09
  • Data zakończenia: 23 maja 2025 20:20

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest zadanie gaźnika w pojeździe?

A. regulowanie strumienia wtrysku
B. pompowanie paliwa
C. dozowanie paliwa i powietrza
D. podgrzewanie powietrza
Gaźnik odgrywa kluczową rolę w silniku spalinowym, odpowiadając za dozowanie paliwa i powietrza do mieszanki paliwowej, która jest następnie dostarczana do cylindrów silnika. Właściwe proporcje tego połączenia są istotne dla efektywności spalania, co ma bezpośredni wpływ na osiągi silnika oraz emisję spalin. W praktyce, gaźniki są projektowane w taki sposób, aby zapewnić optymalne mieszanie paliwa i powietrza w różnych warunkach pracy silnika, takich jak różne prędkości obrotowe czy obciążenia. Przykładem zastosowania dobrych praktyk w konstrukcji gaźników jest zastosowanie dławików, które regulują przepływ powietrza, co pozwala na precyzyjne dostosowanie mieszanki do aktualnych potrzeb silnika. Wiedza na temat działania gaźnika ma kluczowe znaczenie dla mechaników i inżynierów zajmujących się diagnostyką i naprawą układów zasilania w silnikach spalinowych.

Pytanie 2

Wybór zamienników świec zapłonowych do silnika z zapłonem iskrowym, oprócz podstawowych wymiarów gwintów, uwzględnia także istotny parametr, którym jest

A. liczba elektrod
B. kształt elektrod
C. rezystancja wewnętrzna
D. wartość cieplna
Kształt elektrod, liczba elektrod oraz rezystancja wewnętrzna to parametry, które mogą być istotne w kontekście ogólnego działania świec zapłonowych, jednak nie są kluczowe przy doborze zamienników. Kształt elektrod ma wpływ na proces zapłonu mieszanki paliwowo-powietrznej. Świece z różnymi kształtami elektrod mogą mieć różne właściwości zapłonowe, ale zmiana kształtu nie powinna być głównym czynnikiem przy doborze zamiennika, gdyż bardzo często standardowy kształt zapewnia wystarczające parametry pracy. Liczba elektrod również może wpływać na efektywność zapłonu, jednak w przypadku silników o określonych wymaganiach, nie jest to krytyczny parametr, gdyż najczęściej stosuje się standardowe świecy z jedną elektrodą. Rezystancja wewnętrzna świecy zapłonowej dotyczy głównie redukcji zakłóceń elektromagnetycznych w systemach zapłonowych, co jest szczególnie istotne w nowoczesnych pojazdach z bardziej złożonymi systemami elektronicznymi. Jednakże, w kontekście ogólnego działania silnika i jego efektywności, wartość cieplna pozostaje najważniejszym czynnikiem. Typowym błędem jest zatem koncentrowanie się na parametrach, które są mniej istotne w kontekście działania silnika, zamiast na kluczowej wartości cieplnej, która decyduje o prawidłowym funkcjonowaniu świec zapłonowych w danym silniku.

Pytanie 3

Luz zmierzony w zamku pierścienia tłokowego, umieszczonego w cylindrze silnika po przeprowadzonej naprawie, wynosi 0,6 mm. Producent wskazuje, że ten luz powinien wynosić od 0,25 do 0,40 mm. Uzyskany wynik wskazuje, że

A. luz jest zbyt duży
B. luz jest zbyt mały
C. luz zamka pierścienia należy powiększyć
D. luz mieści się w podanych zaleceniach
Wynik pomiaru luzu w zamku pierścienia tłokowego, który wynosi 0,6 mm, jest powyżej maksymalnej wartości zalecanej przez producenta, która wynosi 0,40 mm. Należy pamiętać, że luz ten jest kluczowy dla prawidłowego funkcjonowania silnika, gdyż zbyt duży luz może prowadzić do zwiększenia zużycia paliwa, a także obniżenia efektywności pracy tłoka. W praktyce, nadmierny luz skutkuje też problemami z uszczelnieniem komory spalania, co może prowadzić do spadku mocy silnika oraz podwyższonej emisji spalin. Standardy branżowe, takie jak normy ISO czy SAE, podkreślają znaczenie precyzyjnego pomiaru i utrzymania luzów w zalecanych granicach, aby zapewnić optymalną wydajność silnika. W przypadku stwierdzenia zbyt dużego luzu, konieczne jest przeprowadzenie dodatkowych działań, takich jak wymiana pierścieni tłokowych lub ich dostosowanie, aby przywrócić odpowiednie parametry funkcjonalne.

Pytanie 4

W funkcjonowaniu podnośników hydraulicznych stosowane jest prawo

A. Boyle'a-Mariott'a
B. Pascala
C. Kirchoffa
D. Hooke'a
Prawo Pascala, sformułowane przez Blaise'a Pascala w XVII wieku, mówi, że zmiana ciśnienia wywierana na cieczy w zamkniętym układzie jest przekazywana w każdym kierunku równomiernie. To prawo jest kluczowe w działaniu podnośników hydraulicznych, które wykorzystują ciecz do przenoszenia siły. W praktyce działa to tak, że niewielka siła przyłożona do małego tłoka powoduje, że ciśnienie wzrasta i jest przenoszone na większy tłok, co pozwala na podniesienie znacznie większego ciężaru. Przykładem zastosowania tego prawa są podnośniki używane w warsztatach samochodowych, gdzie pozwalają na podnoszenie pojazdów w celu wykonywania różnych prac serwisowych. Zastosowanie prawa Pascala jest zgodne z zasadami inżynierii mechanicznej oraz hydraulicznej, które kładą nacisk na efektywność i bezpieczeństwo w operacjach związanych z podnoszeniem i transportem ciężarów. Poznanie tego prawa jest niezbędne dla inżynierów i techników zajmujących się hydrauliką.

Pytanie 5

Jak powinno odbywać się przetransportowanie osoby poszkodowanej z podejrzeniem urazu kręgosłupa?

A. na materacu piankowym
B. z użyciem twardych noszy
C. na wózku inwalidzkim
D. z użyciem miękkich noszy
Transport poszkodowanego z podejrzeniem urazu kręgosłupa powinien być przeprowadzany z wykorzystaniem twardych noszy, ponieważ zapewniają one stabilizację i unieruchomienie kręgosłupa w trakcie transportu. W przypadku urazów kręgosłupa niezwykle istotne jest minimalizowanie ruchów, które mogą pogorszyć stan poszkodowanego lub prowadzić do dodatkowych obrażeń. Twarde nosze są zaprojektowane tak, aby równomiernie rozkładać ciężar ciała oraz skutecznie blokować wszelkie ruchy w obrębie kręgosłupa. Przykładem zastosowania twardych noszy jest ich wykorzystywanie w sytuacjach wypadków komunikacyjnych, gdzie konieczne jest szybkie, ale bezpieczne przeniesienie osoby poszkodowanej do szpitala. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz standardami ratownictwa medycznego, użycie twardych noszy jest najlepszą praktyką, gdy istnieje ryzyko urazu kręgosłupa. Ponadto, stosowanie tych noszy ułatwia również dalszą diagnostykę oraz interwencje medyczne, ponieważ pacjent pozostaje w stabilnej pozycji do momentu podjęcia odpowiednich działań przez personel medyczny.

Pytanie 6

Wskaźnikiem zdolności akumulatora do magazynowania energii jest

A. szybkość obrotów alternatora
B. maksymalny czas wyładowania
C. najwyższe napięcie
D. pojemność
Pojemność akumulatora to kluczowa miara zdolności do gromadzenia energii, która jest wyrażana w amperogodzinach (Ah). Im większa pojemność, tym więcej energii akumulator jest w stanie zmagazynować i dostarczyć podczas rozładowania. Przykładowo, akumulator o pojemności 100 Ah jest w stanie dostarczać prąd o natężeniu 5 amperów przez 20 godzin, co pokazuje, jak istotna jest ta wartość w praktyce. Pojemność jest również ważna przy doborze akumulatorów do różnych zastosowań, takich jak pojazdy elektryczne, systemy fotowoltaiczne czy zasilanie awaryjne. Dobrze skonstruowany akumulator, zgodny z normami IEC 60896 lub DIN 43539, powinien mieć określoną pojemność, co pozwala na przewidywanie jego wydajności oraz czasu pracy pod różnym obciążeniem. Właściwy dobór pojemności akumulatora zapewnia optymalną wydajność i żywotność systemów energetycznych, w których jest zastosowany.

Pytanie 7

Zgięty wahacz w pojeździe należy

A. wyprostować w niskiej temperaturze
B. wymienić na nowy
C. wzmocnić dodatkowym elementem
D. wyprostować w wysokiej temperaturze
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 8

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Lepkości cieczy
B. Temperatury cieczy
C. Natężenia prądu
D. Napięcia prądu
Odpowiedź 'Natężenia prądu' jest poprawna, ponieważ zapis 100A odnosi się bezpośrednio do wartości natężenia prądu elektrycznego, które mierzone jest w amperach (A). Natężenie prądu definiuje ilość ładunku elektrycznego przepływającego przez punkt w obwodzie w jednostce czasu. W praktyce, zrozumienie natężenia prądu jest kluczowe w wielu zastosowaniach inżynieryjnych i elektronicznych, np. przy projektowaniu obwodów elektrycznych, w których należy zapewnić, aby przekroje przewodów były odpowiednie do przewodzenia określonego natężenia prądu bez ryzyka przegrzania. Standardy takie jak IEC 60228 dotyczące przewodów elektrycznych zawierają szczegółowe wytyczne dotyczące doboru przekrojów przewodów w zależności od natężenia prądu. Warto również zauważyć, że w systemach zasilania, takich jak instalacje domowe czy przemysłowe, natężenie prądu ma kluczowe znaczenie dla obliczania mocy elektrycznej, co jest niezbędne do prawidłowego doboru urządzeń oraz zabezpieczeń elektrycznych.

Pytanie 9

Pasek zębaty w napędzie kół mechanizmu rozrządu?

A. trzeba nasuwać jednocześnie na oba koła zębate
B. kolejność nasuwania jest dowolna
C. trzeba nasuwać najpierw na koło zębate na wale korbowym
D. trzeba nasuwać najpierw na koło zębate na wale rozrządu
Prawidłowe nasuwanie paska zębatego na oba koła zębate jednocześnie jest kluczowym elementem prawidłowego funkcjonowania mechanizmu rozrządu. Taki sposób montażu zapewnia równomierne napięcie paska, co minimalizuje ryzyko poślizgu lub niewłaściwego ustawienia momentów obrotowych. W przypadku silników spalinowych, gdzie precyzyjna synchronizacja między wałem korbowym a wałem rozrządu jest niezbędna do prawidłowego działania silnika, każde niedopasowanie może prowadzić do poważnych uszkodzeń. Przykładowo, przy niewłaściwym nasuwaniu paska, istnieje ryzyko kolizji między zaworami a tłokami, co może skutkować kosztownymi naprawami. W praktyce zastosowanie narzędzi takich jak ustalacze rozrządu oraz przestrzeganie instrukcji producenta w kontekście momentów dokręcania i sekwencji montażu jest niezwykle ważne, a zalecane jest również wykonywanie kontroli po złożeniu, aby upewnić się, że wszystkie elementy są prawidłowo zamontowane i działają w pełnej synchronizacji.

Pytanie 10

Wymiana uszczelki głowicy silnika jest konieczna w przypadku

A. wymiany pompy oleju
B. naprawy przekładni napędu wałka rozrządu
C. wymiany uszczelniacza wału korbowego
D. naprawy gniazd zaworowych
Uszczelka głowicy silnika to naprawdę ważny element, który odpowiada za to, żeby w układzie cylindrowym nie było wycieków. No bo przecież, jakby olej czy płyn chłodzący się lały, to silnik nie działałby jak należy. Jak trzeba naprawić gniazda zaworowe, to wymiana uszczelki też jest konieczna. Zwykle przy tym demontuje się głowicę, żeby mieć dostęp do zaworów. A stara uszczelka, jeżeli jest w złym stanie, może szwankować. Dlatego nowa uszczelka to podstawa, żeby wszystko dobrze działało. Ważne jest, żeby przed jej montażem oczyścić powierzchnie, żeby nie było tam żadnych brudów. Jak użyjesz dobrej jakości uszczelki od producenta, to masz większą pewność, że silnik będzie działał długo i bezproblemowo.

Pytanie 11

Aby zmierzyć luz zaworowy, konieczne jest posiadanie

A. mikrometru
B. szczelinomierza
C. głębokościomierza
D. passametra
Szczelinomierz to narzędzie niezbędne do pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a dźwignią zaworu (lub innym elementem napędu) i jest kluczowy dla prawidłowego działania silnika. Zbyt mały luz może prowadzić do zatarcia zaworów, natomiast zbyt duży luz może powodować nieprawidłowe działanie silnika i zwiększone zużycie paliwa. Szczelinomierz składa się z zestawu cienkich blaszek o różnych grubościach, które umożliwiają dokładne określenie luzu. Przykładowo, w silnikach o napędzie benzynowym, zaleca się regularne sprawdzanie luzu zaworowego co 10 000-15 000 km, co można wykonać właśnie przy pomocy szczelinomierza, zgodnie z zaleceniami producenta. Ponadto, znajomość i umiejętność stosowania szczelinomierza jest podstawowym elementem wyposażenia mechanika, co potwierdzają standardy branżowe i dobre praktyki w obsłudze silników.

Pytanie 12

Sprężarka Rootsa może być wykorzystana w systemie

A. doładowania silnika
B. wspomagania
C. chłodzenia silnika
D. paliwowym
Sprężarka Rootsa, znana również jako sprężarka z dwiema wirującymi łopatkami, jest wykorzystywana przede wszystkim w systemach doładowania silników spalinowych. Jej konstrukcja pozwala na efektywne sprężanie mieszanki powietrza i paliwa, co znacząco zwiększa moc silnika oraz jego wydajność. W praktyce, sprężarki Rootsa są stosowane w układach turbo doładowania, gdzie ich zdolność do dostarczania dużych ilości powietrza w krótkim czasie przyczynia się do poprawy osiągów silnika. Przykładami zastosowania są silniki sportowe oraz pojazdy wyścigowe, w których kluczowe jest uzyskanie maksymalnej mocy w jak najkrótszym czasie. Dobre praktyki branżowe zalecają korzystanie ze sprężarek Rootsa w połączeniu z systemami chłodzenia powietrza doładowanego, co podnosi efektywność całego układu. Dodatkowo, w kontekście norm emisji spalin, sprężarki te pozwalają na bardziej efektywne spalanie, co może przyczynić się do ograniczenia emisji szkodliwych substancji. Z tego powodu, ich zastosowanie w motoryzacji i innych dziedzinach przemysłu jest niezwykle istotne.

Pytanie 13

O jakim oznaczeniu mowa, gdy chodzi o oponę przeznaczoną do pojazdu dostawczego?

A. 3MPSF
B. C
C. M/C
D. M+S
Oznaczenie 'C' na oponie to znak, że jest stworzona specjalnie dla samochodów dostawczych. Takie opony są projektowane z myślą o większych obciążeniach, przez co są trwalsze i bardziej odporne niż zwykłe opony osobowe. Często mają też twardszą gumę, co przekłada się na ich dłuższy okres użytkowania i lepszą odporność na różne uszkodzenia. Na przykład, kiedy przewozisz towary, opony 'C' dają lepszą stabilność i wydajność, co jest mega ważne na co dzień. Warto dodać, że opony dostawcze są zazwyczaj testowane pod kątem norm jakościowych, takich jak ECE-R 30, co zapewnia ich bezpieczeństwo i komfort jazdy. Więc korzystając z opon z oznaczeniem 'C', zmniejszasz ryzyko awarii i poprawiasz efektywność transportu.

Pytanie 14

W jakim układzie lub systemie może być użyty czujnik Halla?

A. cofania
B. zasilania
C. zapłonowym
D. komfortu jazdy
Czujnik Halla, choć ma wiele zastosowań w automatyce i elektronice, nie jest odpowiednim rozwiązaniem do układów cofania, zasilania ani komfortu jazdy. W układzie cofania, typowo wykorzystuje się różnego rodzaju czujniki ultradźwiękowe lub kamery, które monitorują otoczenie pojazdu i pozwalają na detekcję przeszkód. Użycie czujnika Halla w tym kontekście mogłoby prowadzić do nieprecyzyjnych odczytów, ponieważ jego działanie opiera się na pomiarze pola magnetycznego, a nie na bezpośredniej detekcji obiektów. W przypadku zasilania, czujniki Halla mogą być stosowane do pomiaru natężenia prądu, ale nie stanowią kluczowego elementu układu zasilania w pojazdach. Z kolei w systemach komfortu jazdy, takich jak klimatyzacja czy automatyczna regulacja siedzeń, dominują inne technologie, takie jak czujniki temperatury czy przełączniki elektryczne. Wybierając niewłaściwe zastosowanie czujnika Halla, można wpaść w pułapkę nieprawidłowej diagnozy i naprawy, co może prowadzić do poważnych problemów w działaniu pojazdu. Zrozumienie specyfiki zastosowań czujników w różnych układach jest kluczowe dla ich prawidłowego użytkowania i utrzymania skuteczności systemów w samochodach.

Pytanie 15

Jakie paliwo charakteryzuje się najniższą emisją gazów cieplarnianych?

A. Benzyna
B. Propan-butan
C. Olej napędowy
D. Wodór
Wodór jest uznawany za paliwo o najmniejszej emisji gazów cieplarnianych, gdyż jego spalanie wytwarza jedynie wodę jako produkt uboczny. W porównaniu do tradycyjnych paliw kopalnych, takich jak benzyna, olej napędowy czy propan-butan, które generują znaczące ilości dwutlenku węgla (CO2) oraz innych zanieczyszczeń, wodór oferuje czystsze rozwiązania energetyczne. W praktyce, wodór może być stosowany w ogniwach paliwowych, które zyskują na znaczeniu jako alternatywa dla silników spalinowych w pojazdach. Dodatkowo, wodór może być produkowany z różnych źródeł, w tym z energii odnawialnej, co sprawia, że jest on kluczowym elementem strategii dekarbonizacji sektora transportowego i energetycznego. Standardy, takie jak ISO 14687, definiują wymagania dotyczące jakości wodoru, co jest niezbędne dla zapewnienia efektywności i bezpieczeństwa jego stosowania. W dążeniu do zminimalizowania wpływu na środowisko, wodór stanowi obiecującą opcję w kontekście zrównoważonego rozwoju oraz globalnych wysiłków na rzecz ograniczenia zmian klimatycznych.

Pytanie 16

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu zapłonowego
B. systemu napędowego
C. systemu hamulcowego
D. systemu kierowniczego
Lampa stroboskopowa jest narzędziem diagnostycznym, które umożliwia ocenę działania układu zapłonowego silnika spalinowego. Jej działanie opiera się na emitowaniu błysków świetlnych w regularnych odstępach czasu, co pozwala na wizualizację ruchu elementów silnika, takich jak wałek rozrządu czy zapłon. Dzięki stroboskopowi mechanik może ocenić synchronizację zapłonu oraz ewentualne opóźnienia, co jest kluczowe dla prawidłowego funkcjonowania silnika. Przykładem praktycznego zastosowania lampy stroboskopowej jest analiza działania pojedynczego cylindra w silniku, co umożliwia wykrycie problemów z iskrownikiem lub cewką zapłonową. Dobrym standardem w branży jest przeprowadzanie diagnozy przy użyciu lampy stroboskopowej w trakcie regulacji zapłonu, aby upewnić się, że osiągnięto optymalne ustawienia dla maksymalnej efektywności silnika. Regularne użycie tego narzędzia w warsztatach samochodowych przyczynia się do poprawy jakości usług oraz zadowolenia klientów.

Pytanie 17

Na kloszu lampy światła do jazdy dziennej powinno być umieszczone oznaczenie

A. B
B. RL
C. G
D. F
Odpowiedzi G, B i F dotyczą różnych typów świateł, które nie są zgodne z oznaczeniem świateł do jazdy dziennej. Oznaczenie G zwykle odnosi się do świateł pozycyjnych, które mają inną funkcję, a mianowicie zapewnienie widoczności pojazdu stojącego na drodze. W przypadku świateł pozycyjnych ich użycie w ciągu dnia nie jest zalecane do poprawy bezpieczeństwa, ponieważ nie oferują one tak wyraźnej widoczności jak światła do jazdy dziennej. Z kolei oznaczenie B może być mylone z światłami stop, które zapalają się jedynie w momencie hamowania i nie spełniają funkcji zwiększania widoczności w ciągu dnia. Natomiast oznaczenie F odnosi się do świateł drogowych, które są używane w nocy w celu oświetlenia drogi z pełną mocą, ale ich użycie w ciągu dnia jest niepraktyczne i może oślepiać innych kierowców. Pojęcie świateł do jazdy dziennej oraz ich odpowiednie oznaczenie jest kluczowe dla zachowania bezpieczeństwa na drogach, ponieważ pomagają one zwiększyć widoczność pojazdu, a także informują innych uczestników ruchu drogowego o jego obecności. Niewłaściwe zrozumienie tych oznaczeń może prowadzić do sytuacji, w których kierowcy nie stosują się do zalecanych praktyk bezpieczeństwa, co może skutkować wypadkami.

Pytanie 18

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. dodać olej silnikowy do maksymalnego poziomu.
B. uzupełnić zbiornik paliwa.
C. podnieść temperaturę silnika do wartości eksploatacyjnej.
D. schłodzić silnik.
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 19

Jeśli przełożenie w skrzyni biegów wynosi ib=1,0, a przełożenie tylnego mostu to it=4,1, to całkowite przełożenie układu napędowego jest równe

A. 4,1
B. 1,0
C. 5,1
D. 3,1
Przełożenie całkowite układu napędowego oblicza się, mnożąc przełożenie skrzyni biegów przez przełożenie tylnego mostu. W tym przypadku mamy ib=1,0 oraz it=4,1. Obliczenia wyglądają następująco: icałkowite = ib * it = 1,0 * 4,1 = 4,1. Oznacza to, że moment obrotowy na kołach jest 4,1 razy większy niż moment obrotowy na wale silnika. Taki układ napędowy jest typowy w pojazdach terenowych i sportowych, gdzie potrzebna jest większa siła napędowa przy niższej prędkości. Zrozumienie przełożeń jest kluczowe dla efektywności działania pojazdu oraz jego osiągów. W praktyce, odpowiednie dostosowanie przełożeń zwiększa przyczepność oraz umożliwia lepsze wykorzystanie mocy silnika w różnych warunkach drogowych, co jest zgodne z najlepszymi praktykami w inżynierii motoryzacyjnej.

Pytanie 20

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. dezaktywacją zacisków hamulcowych
B. wymianą płynu hamulcowego
C. jednoczesną wymianą tarcz i klocków hamulcowych
D. odpowietrzeniem układu hamulcowego
Dezaktywacja zacisków hamulcowych jest niezbędnym krokiem przy wymianie klocków hamulcowych w pojazdach wyposażonych w systemy EPB (elektroniczna ręczna sprężyna) lub SBC (inteligentny system hamulcowy). Przy tych rozwiązaniach, zaciski hamulcowe są sterowane elektronicznie, co oznacza, że przed przystąpieniem do wymiany klocków, konieczne jest ich odłączenie. Proces ten pozwala na prawidłowe usunięcie zużytych klocków bez ryzyka uszkodzenia systemu hamulcowego. W praktyce, aby dezaktywować zaciski, należy skorzystać z odpowiedniego narzędzia diagnostycznego, które umożliwia komunikację z jednostką sterującą systemu hamulcowego. Tego typu działania są zgodne z zaleceniami producentów i są kluczowe dla zachowania integralności układu hamulcowego. W przypadku nieprzeprowadzenia dezaktywacji, może dojść do uszkodzenia elementów zacisku lub niewłaściwej pracy hamulców po wymianie, co stwarza zagrożenie dla bezpieczeństwa jazdy. Prawidłowa procedura wymiany klocków hamulcowych, z uwzględnieniem dezaktywacji zacisków, jest zgodna z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 21

Symbol umieszczony na oponie 145/50 wskazuje na szerokość opony w

A. calach oraz wskaźnik profilu w milimetrach
B. milimetrach oraz wskaźnik profilu w milimetrach
C. calach oraz wskaźnik profilu w %
D. milimetrach oraz wskaźnik profilu w %
Odpowiedź "milimetrach i wskaźnik profilu w %" jest poprawna, ponieważ oznaczenie opony 145/50 wskazuje, że szerokość opony wynosi 145 mm. W branży motoryzacyjnej powszechnie przyjęty standard polega na tym, że szerokość opony podawana jest w milimetrach, co jest zgodne z międzynarodowymi normami ISO. Wskaźnik profilu, czyli stosunek wysokości boku opony do jej szerokości, wyrażany jest w procentach. W tym przypadku 50% oznacza, że wysokość boku opony wynosi połowę szerokości, czyli 72,5 mm. Zrozumienie tego oznaczenia jest kluczowe dla doboru odpowiednich opon do pojazdów, ponieważ wpływa na zarówno bezpieczeństwo, jak i komfort jazdy. Właściwy dobór opon, zgodny z ich parametrami, jest istotny dla osiągów pojazdu oraz efektywności paliwowej. Dobrze dobrane opony mogą również wpłynąć na trwałość ogumienia oraz stabilność na drodze, co jest szczególnie ważne w trudnych warunkach atmosferycznych.

Pytanie 22

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. oceny stopnia zużycia elementów ciernych
B. wykrycia owalizacji bębnów hamulcowych
C. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
D. wykrycia deformacji oraz bicia tarcz hamulcowych
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 23

Podczas wizyty w ASO wykonano obsługę okresową w pojeździe. Łączny czas pracy został określony jako 3,5 roboczogodziny. Uwzględniając zawarte w tabeli ceny wykorzystanych części i materiałów eksploatacyjnych oraz koszt wykonanych czynności, wskaż ile klient zapłaci za wykonanie obsługi.

Nazwa części/materiałuWymagana ilośćCena jednostkowa [zł]
Filtr oleju1 szt.19,00
Olej silnikowy4,0 l*30,00
Płyn hamulcowy0,5 l*18,00
Płyn chłodniczy5,5 l*20,00
Koszt jednej roboczogodziny 1,0 rbg = 125,00 zł
*płyny eksploatacyjne są pobierane z opakowań zbiorczych z dokładnością do 0,5 l

A. 705,50 zł
B. 704,50 zł
C. 695,50 zł
D. 685,50 zł
Poprawna odpowiedź to 695,50 zł, co oznacza, że obliczenia zostały przeprowadzone zgodnie z obowiązującymi standardami branżowymi przy wykonywaniu usług serwisowych w pojazdach. W przypadku obsługi okresowej istotne jest uwzględnienie nie tylko kosztów robocizny, ale również cen części zamiennych oraz materiałów eksploatacyjnych. W tym przypadku czas roboczy wynoszący 3,5 godzin przekłada się na określoną stawkę robocizny, która jest ustalana przez warsztat. Po dodaniu tych kosztów do kosztów części i materiałów, otrzymujemy całkowity koszt usługi. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne dla właścicieli pojazdów, którzy powinni być świadomi, jak poszczególne elementy wpływają na całkowity koszt serwisu. Dobrou praktyką jest również porównywanie ofert różnych warsztatów, aby uzyskać najlepszy stosunek ceny do jakości usług. Dzięki umiejętnościom obliczeniowym w zakresie kosztów, klienci mogą lepiej zrozumieć, za co płacą, i podejmować świadome decyzje.

Pytanie 24

W systemie chłodzenia cieczą silnika spalinowego wykorzystywane są pompy

A. wirnikowe
B. tłoczkowe
C. zębate
D. membranowe
Pompy wirnikowe, zwane też pompami odśrodkowymi, to jedne z najczęściej używanych w układach chłodzenia silników spalinowych. To dlatego, że świetnie radzą sobie z pompowaniem sporych ilości cieczy, a przy tym nie zużywają zbyt dużo energii. Ich działanie jest oparte na tej zasadzie, że wirnik się kręci i dzięki temu wypycha ciecz na zewnątrz. Ich prosta budowa sprawia, że są niezawodne i łatwe w konserwacji. Na przykład w autach to właśnie te pompy odpowiadają za cyrkulację płynu chłodzącego i pomagają utrzymać silnik w odpowiedniej temperaturze, co jest kluczowe dla jego wydajności. W praktyce, te pompy są dostosowane do wymagań silników, co czyni je istotnym elementem nowoczesnych systemów chłodzenia. Warto regularnie sprawdzać stan tych pomp i dbać o ich konserwację, żeby układ chłodzenia działał przez dłuższy czas.

Pytanie 25

Zawroty kół napędowych o różnych promieniach są możliwe dzięki wykorzystaniu

A. drążków skrętnych
B. trapezowego układu kierowniczego
C. mechanizmu różnicowego
D. kolumn McPhersona
Kolumny McPhersona to popularny typ zawieszenia stosowany w samochodach, który jednak nie wpływa na możliwość pokonywania zakrętów o różnych promieniach. Ich główną rolą jest zapewnienie stabilności pojazdu, a nie zarządzanie prędkością obrotową kół. Drążki skrętne również nie mają wpływu na różnicowanie prędkości obrotowej kół, lecz są elementami układów zawieszenia, które zwykle pomagają w utrzymaniu kontaktu kół z nawierzchnią drogi, co nie ma bezpośredniego związku z pokonywaniem zakrętów. Trapezowy układ kierowniczy z kolei służy do przenoszenia ruchu kierownicy na koła, jednak nie rozwiązuje problemu różnicy prędkości między kołami podczas pokonywania zakrętów. Błędem jest mylenie tych systemów z mechanizmem różnicowym, który ma na celu właśnie umożliwienie kołom napędowym obracania się z różnymi prędkościami. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla prawidłowej analizy układów napędowych pojazdów, a także dla skutecznego projektowania nowych rozwiązań w motoryzacji.

Pytanie 26

Podczas naprawy silnika mechanik zauważył biały dym wydobywający się z rury wydechowej. Co może być tego przyczyną?

A. Przegrzanie tarcz hamulcowych
B. Zużycie bieżnika opon
C. Niedrożność układu paliwowego
D. Uszkodzenie uszczelki pod głowicą
Biały dym wydobywający się z rury wydechowej samochodu jest często symptomem uszkodzenia uszczelki pod głowicą. Uszczelka ta znajduje się między blokiem silnika a głowicą cylindrów i pełni kluczową rolę w zapewnieniu szczelności komory spalania. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynu chłodzącego do komory spalania. Spalanie płynu chłodzącego w cylindrach prowadzi do powstawania białego dymu, który jest widoczny na zewnątrz przez rurę wydechową. Taka sytuacja jest nie tylko oznaką problemu, ale może prowadzić do poważniejszych uszkodzeń silnika, jeśli nie zostanie szybko naprawiona. Dobrą praktyką jest regularne sprawdzanie stanu uszczelki pod głowicą, szczególnie przy objawach takich jak biały dym lub nadmierne zużycie płynu chłodzącego. Wymiana uszczelki jest skomplikowanym zadaniem, które wymaga precyzji i odpowiednich narzędzi, dlatego zazwyczaj powinno być zlecone doświadczonemu mechanikowi. Warto także pamiętać o przestrzeganiu zaleceń producenta dotyczących momentów dokręcania śrub głowicy, co może zapobiec przyszłym problemom.

Pytanie 27

Po zakończeniu naprawy systemu wydechowego w pojeździe zlecono wykonanie pomiaru poziomu hałasu. Przy jakiej prędkości obrotowej silnika należy dokonać odczytu jego poziomu w dB?

A. Przy prędkości 1 000-15 000 obr/min.
B. Przy maksymalnej prędkości obrotowej.
C. Przy zwiększaniu prędkości obrotowej od biegu jałowego do maksymalnej.
D. Przy 75% maksymalnej prędkości obrotowej.
Odczyt poziomu hałasu w dB przy 75% prędkości obrotowej mocy maksymalnej jest standardową metodą stosowaną w branży motoryzacyjnej. Tego rodzaju pomiar pozwala na uzyskanie reprezentatywnych danych dotyczących pracy układu wydechowego w warunkach, które najlepiej odwzorowują jego rzeczywiste działanie w trakcie eksploatacji. Praktyczne zastosowanie tej metody można zauważyć w procesie homologacji pojazdów, gdzie istotne jest spełnienie norm emisji hałasu narzuconych przez przepisy. Wykonywanie pomiarów przy wyższych obrotach, jak przy maksymalnej prędkości obrotowej, może prowadzić do nieadekwatnych wyników, które nie oddają rzeczywistych warunków większości sytuacji drogowych. Ponadto, pomiar przy 75% obrotów daje możliwość wykrywania potencjalnych problemów z układem wydechowym, takich jak nieszczelności czy uszkodzenia, które mogą wpływać na poziom generowanego hałasu. Takie podejście jest zgodne z normami ISO oraz z zaleceniami producentów i specjalistów w dziedzinie motoryzacji.

Pytanie 28

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. uszkodzenie zaworów silnikowych
B. zbyt ubogą mieszankę paliwową
C. zbyt bogatą mieszankę paliwową
D. zbyt wysoki poziom oleju
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 29

Do zadań tarczy sprzęgłowej należy przekazywanie momentu obrotowego?

A. z wałka sprzęgłowego na koło zamachowe
B. z wałka sprzęgłowego na wałek atakujący
C. z wałka pośredniego na wałek sprzęgłowy
D. z koła zamachowego na wałek sprzęgłowy
Tarcza sprzęgłowa odgrywa kluczową rolę w przenoszeniu momentu obrotowego z koła zamachowego na wałek sprzęgłowy. To połączenie jest niezbędne do efektywnego przekazywania energii mechanicznej w układzie napędowym pojazdu. W praktyce, tarcza sprzęgłowa działa na zasadzie tarcia, co pozwala na synchronizację obrotów silnika z ruchem kół. W momencie, gdy kierowca naciska pedał sprzęgła, tarcza sprzęgłowa odłącza silnik od skrzyni biegów, co umożliwia zmianę biegów. Dobre praktyki w zakresie konserwacji sprzęgła obejmują regularne sprawdzanie stanu tarczy oraz odpowiednie użytkowanie, aby zminimalizować zużycie. Zrozumienie działania tarczy sprzęgłowej jest kluczowe dla diagnozowania problemów z układem napędowym oraz dla świadomego użytkowania pojazdu, co może poprawić jego wydajność i żywotność podzespołów.

Pytanie 30

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. ustawienia świateł
B. zbieżności kół tylnych
C. zbieżności kół przednich
D. wyważenia kół
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 31

Podstawowym celem systemu diagnostyki OBDII jest

A. nadzorowanie układu napędowego w kontekście emisji spalin
B. obserwacja stanu zużycia elementów pojazdu
C. zapis oraz usuwanie kodów błędów
D. analiza stanu technicznego czujników w pojeździe
Odpowiedzi, które nie odnoszą się do głównego celu systemu OBDII, pokazują, że masz jakieś pojęcie o tym, co ten system robi, ale chyba nie w pełni rozumiesz, na czym to tak na prawdę polega. Zważ, że ocena stanu technicznego czujników jest ważna, ale to tylko część większej całości związanej z OBDII. Kluczowe w tym systemie jest monitorowanie emisji spalin, co ma ogromne znaczenie dla środowiska i przepisów prawnych. Odczytywanie kodów błędów i ich kasowanie to działania wynikające z funkcjonowania systemu, a nie jego główny cel. Łatwo jest pomylić te funkcje i myśleć, że OBDII to tylko identyfikacja błędów, ale w rzeczywistości chodzi głównie o kontrolę emisji zanieczyszczeń. No i też monitorowanie stanu zużycia podzespołów to nie jest priorytet w przypadku OBDII. Takie podejście może prowadzić do błędnych wniosków o tym, jak ten system działa, co jest dość powszechne, gdy brakuje świadomości, że OBDII wspiera normy ekologiczne. Żeby zrozumieć, co naprawdę oznacza OBDII, warto skupić się na tym, jak wspiera systemy ochrony środowiska. To jest kluczowe do ogarnięcia, jak ten standard działa w nowoczesnych autach.

Pytanie 32

Aby rozmontować końcówkę drążka kierowniczego z ramienia zwrotnicy, jaki sprzęt powinno się zastosować?

A. szczypiec uniwersalnych
B. młotka bezwładnościowego
C. ściągacza do przegubów kulowych
D. prasy hydraulicznej
Ściągacz do przegubów kulowych to naprawdę przydatne narzędzie, które stworzone jest z myślą o demontażu połączeń kulowych, jak końcówki drążków kierowniczych. Dzięki niemu siła rozkłada się równomiernie, co zmniejsza ryzyko uszkodzenia elementów w układzie kierowniczym oraz samego przegubu. Użycie ściągacza może naprawdę zwiększyć bezpieczeństwo pracy i zaoszczędzić czas, bo pozwala na szybkie rozłączenie części. Z mojego doświadczenia, kiedy pojawia się problem z korozją lub użytkowaniem, to ściągacz jest często jedynym sensownym rozwiązaniem, które pozwala na skuteczne zdjęcie końcówki bez uszkodzenia. Pamiętaj, że przestrzeganie norm BHP jest mega ważne - korzystając ze ściągacza, masz większą kontrolę nad procesem i mniejsze ryzyko kontuzji, w porównaniu do innych metod, jak młotek.

Pytanie 33

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. sprawdzeniu tętna oraz oddechu.
B. ustawieniu kończyny.
C. aplikacji zimnego okładu.
D. nałożeniu jałowego opatrunku.
W przypadku zwichnięcia kończyny dolnej, pierwszą pomocą przedlekarską jest wykonanie chłodnego okładu. To podejście ma na celu zmniejszenie obrzęku oraz łagodzenie bólu poprzez działanie przeciwzapalne i znieczulające. Chłodzenie miejscowe powinno być stosowane w sposób ostrożny, aby uniknąć odmrożeń. Należy używać worków z lodem lub chłodnych kompresów, które są owinięte w materiał, aby nie miały bezpośredniego kontaktu ze skórą. Zastosowanie chłodnego okładu powinno trwać około 15-20 minut, a następnie można powtórzyć co 1-2 godziny w ciągu pierwszych 48 godzin po urazie. W sytuacjach, gdy podejrzewamy zwichnięcie, kluczowe jest unikanie ruchów w stawie oraz niepróbowanie nastawiania kończyny, co może prowadzić do dalszych uszkodzeń. Warto również pamiętać o tym, że po zastosowaniu okładu, pacjent powinien być niezwłocznie przewieziony do placówki medycznej w celu dalszej diagnostyki i leczenia. Stosowanie chłodzenia jest zgodne z ogólnymi zasadami pierwszej pomocy, które kładą nacisk na minimalizowanie szkód oraz podejmowanie działań uspokajających pacjenta.

Pytanie 34

Pomiar ciśnienia sprężania przeprowadza się, aby ocenić szczelność

A. chłodnicy
B. układu wydechowego
C. opon
D. zaworów
Pomiar ciśnienia sprężania w silniku spalinowym jest kluczowym testem diagnostycznym, który pozwala ocenić szczelność zaworów, a także ogólny stan silnika. Wysokiej jakości szczelność zaworów jest niezbędna do prawidłowego działania silnika, ponieważ zapewnia efektywne spalanie mieszanki paliwowo-powietrznej. W przypadku uszkodzenia lub niewłaściwego funkcjonowania zaworów, ciśnienie sprężania może być znacznie niższe niż normy producenta, co prowadzi do obniżenia mocy silnika, zwiększenia zużycia paliwa oraz emisji spalin. Standardowe procedury diagnostyczne, takie jak pomiar ciśnienia sprężania, są zalecane przez producentów silników i stosowane w warsztatach mechanicznych jako rutynowy element diagnostyki. Dobrą praktyką jest regularne przeprowadzanie takich testów, aby wykryć problemy, zanim doprowadzą one do poważniejszych awarii. Na przykład, w silnikach z uszkodzonymi zaworami wydechowymi, może wystąpić zjawisko "zaworu niezamkniętego" (ang. valve overlap), co znacząco obniża wydajność silnika. Testy ciśnienia sprężania powinny być przeprowadzane z użyciem odpowiednich narzędzi, takich jak manometry, które są kalibrowane i spełniają standardy branżowe.

Pytanie 35

Jakie są zalecenia pierwszej pomocy w przypadku oparzenia termicznego?

A. wykorzystanie koca termicznego
B. schładzanie rany zimną wodą przez około 15 minut
C. unieruchomienie oparzonego obszaru
D. użycie opaski uciskowej
Chłodzenie rany zimną wodą przez około 15 minut jest pierwszym i najważniejszym działaniem w przypadku oparzenia termicznego, gdyż pozwala na obniżenie temperatury tkanki i zmniejszenie rozległości uszkodzenia. Woda powinna być czysta i chłodna, jednak nie lodowata, aby uniknąć dodatkowego uszkodzenia skóry. Tego typu działanie prowadzi do rozszerzenia naczyń krwionośnych, co z kolei zmniejsza ból oraz ryzyko powstania pęcherzy. Ważne jest, aby nie stosować lodu bezpośrednio na skórę, ponieważ to może skutkować odmrożeniem uszkodzonej tkanki. Przykładem zastosowania tej procedury jest sytuacja, gdy ktoś przypadkowo dotknie gorącego przedmiotu lub wpadnie w kontakt z płynem wrzącym. Dobrym zwyczajem jest również pamiętanie, że po schłodzeniu rany należy ją przykryć czystym opatrunkiem, aby zminimalizować ryzyko zakażenia, co jest zgodne z najlepszymi praktykami pierwszej pomocy. W przypadku poważniejszych oparzeń, zawsze należy wezwać pomoc medyczną.

Pytanie 36

Podczas spalania mieszanki paliwa z powietrzem w silniku ZI maksymalna temperatura w cylindrze osiąga wartość

A. 300°C
B. 2 500°C
C. 800°C
D. 220°C
Odpowiedzi 800°C, 300°C i 220°C nie odzwierciedlają rzeczywistych warunków panujących w cylindrze silnika ZI. Odpowiedź 800°C może być mylnie postrzegana jako maksymalna temperatura, ale dotyczy raczej temperatury spalin, które są znacznie niższe niż maksymalne temperatury występujące wewnątrz cylindra podczas spalania. W rzeczywistości, takie wartości są zbyt niskie, aby mogły wspierać kompletny proces spalania, w którym istotne jest osiągnięcie wysokiej temperatury dla pełnego utlenienia paliwa. 300°C i 220°C to wartości, które praktycznie nie mogą występować w czasie rzeczywistego spalania w silniku ZI, ponieważ są to wartości znacznie poniżej temperatury wymaganej do zapłonu mieszanki paliwowo-powietrznej. Niska temperatura w cylindrze prowadzi do nieefektywnego spalania, co skutkuje zwiększeniem emisji spalin oraz obniżeniem mocy silnika. W praktyce, efektywne zarządzanie temperaturą jest kluczowe dla zapewnienia odpowiedniej wydajności i minimalizacji wpływu na środowisko, zatem zrozumienie procesów zachodzących w silniku jest fundamentalne dla inżynierów i techników zajmujących się projektowaniem i optymalizacją układów napędowych.

Pytanie 37

Częścią układu hamulcowego nie jest

A. wysprzęglik
B. pompa ABS
C. korektor siły hamowania
D. hamulec ręczny
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.

Pytanie 38

Zanim przeprowadzisz pomiar ciśnienia oleju w silniku, powinieneś

A. zamknąć przepustnicę
B. odłączyć akumulator
C. rozgrzać silnik
D. wykręcić świece zapłonowe
Zamknięcie przepustnicy, wykręcenie świec zapłonowych oraz odłączenie akumulatora są działaniami, które nie mają uzasadnienia w kontekście pomiaru ciśnienia oleju, a ich zastosowanie może prowadzić do nieprawidłowych wyników i uszkodzeń. Zamknięcie przepustnicy może obniżyć ciśnienie oleju z powodu ograniczenia dopływu powietrza do silnika. To działanie nie jest zalecane, ponieważ zmienia warunki pracy silnika i nie odzwierciedla rzeczywistego ciśnienia oleju podczas normalnej eksploatacji. Wykręcenie świec zapłonowych również jest błędne, ponieważ ma na celu zatrzymanie pracy cylindrów, co generuje ciśnienie w układzie smarowania. Działanie to skutkuje brakiem możliwości prawidłowego pomiaru ciśnienia oleju, które w normalnych warunkach powinno być monitorowane podczas pracy silnika. Odłączenie akumulatora wyłącza zasilanie całego układu elektronicznego pojazdu, co również uniemożliwia dokładną ocenę jego parametrów pracy. Te podejścia są wynikiem błędnych założeń dotyczących funkcjonowania silników spalinowych, gdzie ciśnienie oleju powinno być mierzone w warunkach rzeczywistych, a nie w sztucznie wytworzonych. Kluczowym elementem w diagnostyce silnikowej jest zrozumienie zasad działania układu smarowania oraz znaczenia warunków pracy silnika dla uzyskania wiarygodnych wyników pomiarów.

Pytanie 39

Wartość sprężania w silnikach z zapłonem iskrowym w porównaniu do silników z zapłonem samoczynnym jest

A. niższa.
B. zawsze identyczna.
C. zawsze wyższa.
D. nie do porównania.
Silniki z zapłonem iskrowym, takie jak silniki benzynowe, charakteryzują się niższym stopniem sprężania w porównaniu do silników z zapłonem samoczynnym (silników Diesla). Zazwyczaj stopień sprężania w silnikach benzynowych wynosi od 8 do 12, podczas gdy w silnikach Diesla wartość ta może wynosić od 14 do 25. Niższy stopień sprężania w silnikach z zapłonem iskrowym pozwala na uniknięcie zjawiska klekotania, które jest bardziej powszechne przy wyższych wartościach sprężania. W praktyce oznacza to, że silniki z zapłonem iskrowym mogą być łatwiej uruchamiane w różnych warunkach oraz mają mniejsze wymagania dotyczące jakości paliwa, co czyni je bardziej elastycznymi. Ponadto, niższy stopień sprężania wpływa na efektywność spalania i moc silnika, co może być istotne w kontekście osiągów i ekonomiki jazdy. W związku z tym, zrozumienie różnic w stopniach sprężania między tymi dwoma typami silników jest kluczowe dla inżynierów i projektantów pojazdów, którzy muszą dostosować parametry silników do ich zamierzonych zastosowań.

Pytanie 40

Do metod ilościowych stosowanych przy weryfikacji elementów samochodowych należy metoda

A. magnetyczna
B. objętościowa
C. penetrująca
D. ultradźwiękowa
Metoda objętościowa to jedna z ważniejszych metod, jeśli chodzi o ilościową ocenę jakości części samochodowych. Chodzi tutaj o mierzenie objętości materiału, co daje nam możliwość oceny jakości odlewów i innych elementów, jak te z metali czy tworzyw sztucznych. Na przykład, w przypadku odlewów silnikowych, dokładne pomiary objętości mogą ujawnić wady, takie jak pęknięcia czy zanieczyszczenia. W inżynierii, zgodnie z normami ISO 9001 i innymi standardami jakości, ważne jest, żeby te pomiary były dokładne i powtarzalne. Dzięki temu zapewniamy bezpieczeństwo i niezawodność pojazdów. Połączenie metody objętościowej z innymi technikami, na przykład badaniami nieniszczącymi, daje nam pełniejszy obraz jakości części samochodowych, co z kolei minimalizuje ryzyko awarii.